
The Tree Width of Separation Logic with Recursive
Definitions

Radu Iosif1, Adam Rogalewicz2, and Jiri Simacek2

1 VERIMAG/CNRS, Grenoble, France
2 FIT, Brno University of Technology, IT4Innovations Centre of Excellence, Czech Republic

Abstract. Separation Logic is a widely used formalism for describing dynam-
ically allocated linked data structures, such as lists, trees, etc. The decidability
status of various fragments of the logic constitutes a long standing open problem.
Current results report on techniques to decide satisfiability and validity of entail-
ments for Separation Logic(s) over lists (possibly with data). In this paper we
establish a more general decidability result. We prove that any Separation Logic
formula using rather general recursively defined predicates is decidable for satis-
fiability, and moreover, entailments between such formulae are decidable for va-
lidity. These predicates are general enough to define (doubly-) linked lists, trees,
and structures more general than trees, such as trees whose leaves are chained in
a list. The decidability proofs are by reduction to decidability of Monadic Second
Order Logic on graphs with bounded tree width.

1 Introduction

Separation Logic (SL) [17] is a general framework for describing dynamically allo-
cated mutable data structures generated by programs that use pointers and low-level
memory allocation primitives. The logics in this framework are used by an important
number of academic (SPACE INVADER [1], SLEEK [16] and PREDATOR [9]), as well
as industrial-scale (INFER [7]) tools for program verification and certification. These
logics are used both externally, as property specification languages, or internally, as
e.g., abstract domains for computing invariants, or for proving verification conditions.
The main advantage of using SL when dealing with heap manipulating programs, is the
ability to provide compositional proofs, based on the principle of local reasoning i.e.,
analyzing different sections (e.g., functions, threads, etc.) of the program, that work on
disjoint parts of the global heap, and combining the analysis results a-posteriori.

The basic language of SL consists of two kinds of atomic propositions describing
either (i) the empty heap, or (ii) a heap consisting of an allocated cell, connected via a
separating conjunction primitive. Hence a basic SL formula can describe only a heap
whose size is bounded by the size of the formula. The ability of describing unbounded
data structures is provided by the use of recursive definitions. Figure 1 gives several
common examples of recursive data structures definable in this framework.

The main difficulty that arises when using Separation Logic with Recursive Def-
initions (SLRD) to reason automatically about programs is that the logic, due to its
expressiveness, does not have very nice decidability properties. Most dialects used in
practice restrict the language (e.g., no quantifier alternation, the negation is used in a

list(hd, tl) ::= emp∧hd = tl
| ∃x. hd 7→ x∗ list(x, tl)

dll(hd, p, tl) ::= emp∧hd = tl
| ∃x. hd 7→ (x, p)∗dll(x,hd, tl)

tree(root) ::= emp∧ root = nil
| ∃l,r. root 7→ (l,r)∗ tree(l)∗ tree(r)

tll(x, ll, lr) ::= x 7→ (nil,nil, lr)∧ x = ll
| ∃l,r,z. x 7→ (l,r,nil)∗ tll(l, ll,z)
∗tll(r,z, lr)

nil

tl

hd tl
p

list:

dll:

...

...

hd

roottree: root

ll lr

tll:

nilnil

Fig. 1. Examples of recursive data structures definable in SLRD.

very restricted ways, etc.) and the class of models over which the logic is interpreted
(typically singly-linked lists, and slight variations thereof). In the same way, we ap-
ply several natural restrictions on the syntax of the recursive definitions, and define the
fragment SLRDbtw, which guarantees that all models of a formula in the fragment have
bounded tree width. Indeed, this ensures that the satisfiability and entailment problems
in this fragment are decidable without any restrictions on the type of the recursive data
structures considered.

In general, the techniques used in proving decidability of Separation Logic are ei-
ther proof-based ([16, 2]), or model-based ([5, 8]). It is well-known that automata the-
ory, through various automata-logics connections, provides a unifying framework for
proving decidability of various logics, such as (W)SkS, Presburger Arithmetic or MSO
over certain classes of graphs. In this paper we propose an automata-theoretic approach
consisting of two ingredients. First, SLRDbtw formulae are translated into equivalent
Monadic Second Order (MSO) formulae over graphs. Second, we show that the models
of SLRDbtw formulae have the bounded tree width property, which provides a decid-
ability result by reduction to the satisfiability problem for MSO interpreted over graphs
of bounded tree width [18], and ultimately, to the emptiness problem of tree automata.

Related Work The literature on defining decidable logics for describing mutable data
structures is rather extensive. Initially, first-order logic with transitive closure of one
function symbol was introduced in [11] with a follow-up logic of reachability on com-
plex data structures, in [19]. The decision procedures for these logics are based on
reductions to the decidability of MSO over finite trees. Along the same lines, the logic
PALE [15] goes beyond trees, in defining trees with edges described by regular routing
expressions, whose decidability is still a consequence of the decidability of MSO over
trees. More recently, the CSL logic [4] uses first-order logic with reachability (along
multiple selectors) in combination with arithmetic theories to reason about shape, path
lengths and data within heap structures. Their decidability proof is based on a small
model property, and the algorithm is enumerative. In the same spirit, the STRAND logic
[14] combines MSO over graphs, with quantified data theories, and provides decidable
fragments using a reduction to MSO over graphs of bounded tree width.

On what concerns SLRD [17], the first (proof-theoretic) decidability result on a
restricted fragment defining only singly-linked lists was reported in [2], which describe
a coNP algorithm. The full basic SL without recursive definitions, but with the magic

2

wand operator was found to be undecidable when interpreted in any memory model
[6]. Recently, the entailment problem for SLRD over lists has been reduced to graph
homomorphism in [8], and can be solved in PTIME. This method has been extended
to reason nested and overlaid lists in [10]. The logic SLRDbtw, presented in this paper
is, to the best of our knowledge, the first decidable SL that can define structures more
general than lists and trees, such as e.g. trees with parent pointers and linked leaves.

2 Preliminaries

For a finite set S, we denote by ||S|| its cardinality. We sometimes denote sets and se-
quences of variables as x, the distinction being clear from the context. If x denotes a
sequence, (x)i denotes its i-th element. For a partial function f : A ⇀ B, and ⊥ /∈ B, we
denote f (x) =⊥ the fact that f is undefined at some point x∈ A. By f [a← b] we denote
the function λx . if x= a then b else f (x). The domain of f is denoted dom(f) = {x∈A |
f (x) 6=⊥}, and the image of f is denoted as img(f) = {y ∈ B | ∃x ∈ A . f (x) = y}. By
f : A ⇀ f in B we denote any partial function whose domain is finite. Given two partial
functions f ,g defined on disjoint domains, we denote by f ⊕g their union.

Stores, Heaps and States. We consider PVar = {u,v,w, . . .} to be a countable infinite
set of pointer variables and Loc = {l,m,n, . . .} to be a countable infinite set of memory
locations. Let nil ∈ PVar be a designated variable, null ∈ Loc be a designated location,
and Sel = {1, . . . ,S}, for some given S > 0, be a finite set of natural numbers, called
selectors in the following.

Definition 1. A state is a pair 〈s,h〉 where s : PVar ⇀ Loc is a partial function mapping
pointer variables into locations such that s(nil) = null, and h : Loc ⇀ f in Sel ⇀ f in Loc
is a finite partial function such that (i) null 6∈ dom(h) and (ii) for all ` ∈ dom(h) there
exist k ∈ Sel such that (h(`))(k) 6=⊥.

Given a state S = 〈s,h〉, s is called the store and h the heap. For any k ∈ Sel, we write

hk(`) instead of (h(`))(k), and `
k−→ `′ for hk(`) = `′. We sometimes call a triple ` k−→ `′ an

edge, and k is called a selector. Let Img(h) =
⋃

`∈Loc img(h(`)) be the set of locations
which are destinations of some selector edge in h. A location ` ∈ Loc is said to be
allocated in 〈s,h〉 if ` ∈ dom(h) (i.e. it is the source of an edge), and dangling in 〈s,h〉
if ` ∈ [img(s)∪ Img(h)] \ dom(h), i.e., it is either referenced by a store variable, or
reachable from an allocated location in the heap, but it is not allocated in the heap itself.
The set loc(S) = img(s)∪dom(h)∪ Img(h) is the set of all locations either allocated or
referenced in a state S = 〈s,h〉.

Trees. Let Σ be a finite label alphabet, and N∗ be the set of sequences of natural num-
bers. Let ε ∈ N∗ denote the empty sequence, and p.q denote the concatenation of two
sequences p,q ∈ N∗. A tree t over Σ is a finite partial function t : N∗⇀ f in Σ, such that
dom(t) is a finite prefix-closed subset of N∗, and for each p ∈ dom(t) and i ∈ N, we
have: t(p.i) 6=⊥⇒∀0≤ j < i . t(p. j) 6=⊥. Given two positions p,q ∈ dom(t), we say

3

that q is the i-th successor (child) of p if q = p.i, for i ∈ N. Also q is a successor of p,
or equivalently, p is the parent of q, denoted p = parent(q) if q = p.i, for some i ∈ N.

We will sometimes denote by D(t) = {−1,0, . . . ,N} the direction alphabet of t,
where N = max{i ∈ N | p.i ∈ dom(t)}. The concatenation of positions is defined over
D(t) with the convention that p.(−1) = q if and only if p = q.i for some i ∈ N. We
denote D+(t) = D(t)\{−1}. A path in t, from p1 to pk, is a sequence p1, p2, . . . , pk ∈
dom(t) of pairwise distinct positions, such that either pi = parent(pi+1) or pi+1 =
parent(pi), for all 1 ≤ i < k. Notice that a path in the tree can also link sibling nodes,
not just ancestors to their descendants, or viceversa. However, a path may not visit the
same tree position twice.

Tree Width. A state (Def. 1) can be seen as a directed graph, whose nodes are loca-
tions, and whose edges are defined by the selector relation. Some nodes are labeled by
program variables (PVar) and all edges are labeled by selectors (Sel). The notion of
tree width is then easily adapted from generic labeled graphs to states. Intuitively, the
tree width of a state (graph) measures the similarity of the state to a tree.

Definition 2. Let S = 〈s,h〉 be a state. A tree decomposition of S is a tree t : N∗⇀ f in

2loc(S), labeled with sets of locations from loc(S), with the following properties:

1. loc(S) =
⋃

p∈dom(t) t(p), the tree covers the locations of S

2. for each edge l1
s−→ l2 in S, there exists p ∈ dom(t) such that l1, l2 ∈ t(p)

3. for each p,q,r ∈ dom(t), if q is on a path from p to r in t, then t(p)∩ t(r)⊆ t(q)

The width of the decomposition is w(t) = maxp∈dom(t){||t(p)||−1}. The tree width of S
is tw(S) = min{w(t) | t is a tree decomposition of S}.

A set of states is said to have bounded tree width if there exists a constant k ≥ 0 such
that tw(S)≤ k, for any state S in the set. Figure 2 gives an example of a graph (left) and
a possible tree decomposition (right).

{1,4}

5 {2,4,5}

2

3{2,3,4}

4

1

1 2 3 4 5

{1,2,4} {1,4}

Fig. 2. A graph and a possible tree decomposition of width 2

2.1 Syntax and Semantics of Monadic Second Order Logic

Monadic second-order logic (MSO) on states is a straightforward adaptation of MSO on
labeled graphs [13]. As usual, we denote first-order variables, ranging over locations,

4

by x,y, . . . , and second-order variables, ranging over sets of locations, by X ,Y, The
set of logical MSO variables is denoted by LVarmso, where PVar∩LVarmso = /0.

We emphasize here the distinction between the logical variables LVarmso and the
pointer variables PVar: the former may occur within the scope of first and second order
quantifiers, whereas the latter play the role of symbolic constants (function symbols of
zero arity). For the rest of this paper, a logical variable is said to be free if it does not
occur within the scope of a quantifier. By writing ϕ(x), for an MSO formula ϕ, and a
set of logical variables x, we mean that all free variables of ϕ are in x.

The syntax of MSO is defined below:

u ∈ PVar; x,X ∈ LVarmso; k ∈ N
ϕ ::= x = y | varu(x) | edgek(x,y) | null(x) | X(x) | ϕ∧ϕ | ¬ϕ | ∃x.ϕ | ∃X .ϕ

The semantics of MSO on states is given by the relation S, ι,ν |=mso ϕ, where S = 〈s,h〉
is a state, ι : {x,y,z, . . .}⇀ f in Loc is an interpretation of the first order variables, and ν :
{X ,Y,Z, . . .}⇀ f in 2Loc is an interpretation of the second order variables. If S, ι,ν |=mso ϕ

for all interpretations ι : {x,y,z, . . .}⇀ f in Loc and ν : {X ,Y,Z, . . .}⇀ f in 2Loc, then we
say that S is a model of ϕ, denoted S |=mso ϕ. We use the standard MSO semantics [18],
with the following interpretations of the vertex and edge labels:

S, ι,ν |=mso null(x) ⇐⇒ ι(x) = nil
S, ι,ν |=mso varu(x) ⇐⇒ s(u) = ι(x)

S, ι,ν |=mso edgek(x,y) ⇐⇒ hk(ι(x)) = ι(y)

The satisfiability problem for MSO asks, given a formula ϕ, whether there exists a state
S such that S |=mso ϕ. This problem is, in general, undecidable. However, one can show
its decidability on a restricted class of models. The theorem below is a slight variation
of a classical result in (MSO-definable) graph theory [18]. For space reasons, all proofs
are given in [12].

Theorem 1. Let k ≥ 0 be an integer constant, and ϕ be an MSO formula. The problem
asking if there exists a state S such that tw(S)≤ k and S |=mso ϕ is decidable.

2.2 Syntax and Semantics of Separation Logic

Separation Logic (SL) [17] uses only a set of first order logical variables, denoted
as LVarsl , ranging over locations. We suppose that LVarsl ∩ PVar = /0 and LVarsl ∩
LVarmso = /0. Let Varsl denote the set PVar∪LVarsl . A formula is said to be closed if
it does not contain logical variables which are not under the scope of a quantifier. By
writing ϕ(x) for an SL formula ϕ and a set of logical variables x, we mean that all free
variables of ϕ are in x.

Basic Formulae. The syntax of basic formula is given below:

α ∈ Varsl \{nil}; β ∈ Varsl ; x ∈ LVarsl
π ::= α = β | α 6= β | π1∧π2
σ ::= emp | α 7→ (β1, . . . ,βn) | σ1 ∗σ2 , for some n > 0
ϕ ::= π∧σ | ∃x . ϕ

5

A formula of the form
∧n

i=1 αi = βi ∧
∧m

j=1 α j 6= β j defined by π in the syntax above
is said to be pure. If Π is a pure formula, let Π∗ denote its closure, i.e., the equivalent
pure formula obtained by the exhaustive application of the reflexivity, symmetry, and
transitivity axioms of equality. A formula of the form Fk

i=1αi 7→ (βi,1, . . . ,βi,n) defined
by σ in the syntax above is said to be spatial. The atomic proposition emp denotes the
empty spatial conjunction. For a spatial formula Σ, let |Σ| be the total number of variable
occurrences in Σ, e.g. |emp|= 0, |α 7→ (β1, . . . ,βn)|= n+1, etc.

The semantics of a basic formula ϕ is given by the relation S, ι |=sl ϕ where S= 〈s,h〉
is a state, and ι : LVarsl ⇀ f in Loc is an interpretation of logical variables from ϕ. For a
closed formula ϕ, we denote by S |=sl ϕ the fact that S is a model of ϕ.

S, ι |=sl emp ⇐⇒ dom(h) = /0

S, ι |=sl α 7→ (β1, . . . ,βn) ⇐⇒ h = {〈(s⊕ ι)(α),λi . if i≤ n then (s⊕ ι)(βi) else ⊥〉}
S, ι |=sl ϕ1 ∗ϕ2 ⇐⇒ S1, ι |=sl ϕ1 and S2, ι |=sl ϕ2 where S1]S2 = S

The semantics of =, 6=, ∧, and ∃ is classical. Here, the notation S1] S2 = S means
that S is the union of two states S1 = 〈s1,h1〉 and S2 = 〈s2,h2〉 whose stacks agree on
the evaluation of common program variables (∀α ∈ PVar . s1(α) 6= ⊥∧ s2(α) 6= ⊥⇒
s1(α) = s2(α)), and whose heaps have disjoint domains (dom(h1)∩dom(h2) = /0) i.e.,
S = 〈s1∪ s2,h1⊕h2〉. Note that we adopt here the strict semantics, in which a points-to
relation α 7→ (β1, . . . ,βn) holds in a state consisting of a single cell pointed to by α,
with exactly n outgoing edges towards dangling locations pointed to by β1, . . . ,βn, and
the empty heap is specified by emp.

Every basic formula ϕ is equivalent to an existentially quantified pair Σ∧Π where
Σ is a spatial formula and Π is a pure formula. Given a basic formula ϕ, one can define
its spatial (Σ) and pure (Π) parts uniquely, up to equivalence. A variable α ∈Var is said
to be allocated in ϕ if and only if α 7→ (. . .) occurs in Σ. It is easy to check that an
allocated variable may not refer to a dangling location in any model of ϕ. A variable β

is referenced if and only if α 7→ (. . . ,β, . . .) occurs in Σ for some variable α. For a basic
formula ϕ≡ Σ∧Π, the size of ϕ is defined as |ϕ|= |Σ|.

Lemma 1. Let ϕ(x) be a basic SL formula, S = 〈s,h〉 be a state, and ι : LVarsl ⇀ f in Loc
be an interpretation, such that S, ι |=sl ϕ(x). Then tw(S)≤max(|ϕ|, ||PVar||).

Recursive Definitions. A system P of recursive definitions is of the form:

P1(x1,1, . . . ,x1,n1) ::= |m1
j=1 R1, j(x1,1, . . . ,x1,n1)

. . .
Pk(xk,1, . . . ,xk,nk) ::= |mk

j=1 Rk, j(xk,1, . . . ,xk,nk)

where P1, . . . ,Pk are called predicates, xi,1, . . . ,xi,ni are called parameters, and the for-
mulae Ri, j are called the rules of Pi. Concretely, a rule Ri, j is of the form Ri, j(x) ≡
∃z . Σ∗Pi1(y1)∗ . . .∗Pim(ym) ∧ Π, where Σ is a spatial SL formula over variables x∪z,
called the head of Ri, j, 〈Pi1(y1), . . . ,Pim(ym)〉 is an ordered sequence of predicate oc-
currences, called the tail of Ri, j (we assume w.l.o.g. that x∩ z = /0, and that yk ⊆ x∪ z,
for all k = 1, . . . ,m), Π is a pure formula over variables x∪ z.

6

Without losing generality, we assume that all variables occurring in a rule of a recur-
sive definition system are logical variables from LVarsl – pointer variables can be passed
as parameters at the top level. We subsequently denote head(Ri, j) ≡ Σ, tail(Ri, j) ≡
〈Pik(yk)〉mk=1 and pure(Ri, j) ≡ Π, for each rule Ri, j. Rules with empty tail are called
base cases. For each rule Ri, j let ||Ri, j||var = ||z||+ ||x|| be the number of variables,
both existentially quantified and parameters, that occur in Ri, j. We denote by ||P ||var =
max{||Ri. j||var | 1 ≤ i ≤ k, 1 ≤ j ≤ mi} the maximum such number, among all rules in
P . We also denote by D(P) = {−1,0, . . . ,max{|tail(Ri, j)| | 1≤ i≤ k, 1≤ j≤mi}−1}
the direction alphabet of P .

Example. The predicate tll describes a data structure called a tree with parent pointers
and linked leaves (see Fig. 3(b)). The data structure is composed of a binary tree in
which each internal node points to left and right children, and also to its parent node. In
addition, the leaves of the tree are kept in a singly-linked list, according to the order in
which they appear on the frontier (left to right).

tll(x, p, lea fl , lea fr) ::= x 7→ (nil,nil, p, lea fr)∧ x = lea fl (R1)
| ∃l,r,z. x 7→ (l,r, p,nil)∗ tll(l,x, lea fl ,z)∗ tll(r,x,z, lea fr) (R2)

The base case rule (R1) allocates leaf nodes. The internal nodes of the tree are allocated
by the rule (R2), where the ttl predicate occurs twice, first for the left subtree, and
second for the right subtree. ut

Definition 3. Given a system of recursive definitions P =
{

Pi ::= |mi
j=1 Ri, j

}n
i=1, an

unfolding tree of P rooted at i is a finite tree t such that:

1. each node of t is labeled by a single rule of the system P ,
2. the root of t is labeled with a rule of Pi,
3. nodes labeled with base case rules have no successors, and
4. if a node u of t is labeled with a rule whose tail is Pi1(y1) ∗ . . . ∗Pim(ym), then the

children of u form the ordered sequence v1, . . . ,vm where v j is labeled with one of
the rules of Pi j for all j = 1, . . . ,m.

Remarks. Notice that the recursive predicate P(x) ::= ∃y . x 7→ y ∗P(y) does not have
finite unfolding trees. However, in general a system of recursive predicates may have
infinitely many finite unfolding trees. ut

In the following, we denote by Ti(P) the set of unfolding trees of P rooted at i. An
unfolding tree t ∈ Ti(P) corresponds to a basic formula of separation logic φt , called
the characteristic formula of t, and defined in what follows. For a set of tree positions
P ⊆ N∗, we denote LVarP = {xp | x ∈ LVar, p ∈ P}. For a tree position p ∈ N∗ and
a rule R, we denote by Rp the rule obtained by replacing every variable occurrence x
in R by xp. For each position p ∈ dom(t), we define a formula φ

p
t , by induction on the

structure of the subtree of t rooted at p:

– if p is a leaf labeled with a base case rule R, then φ
p
t ≡ Rp

– if p has successors p.1, . . . , p.m, and the label of p is the recursive rule R(x) ≡
∃z . head(R)∗Fm

j=1Pi j(y j)∧ pure(R), then:

φ
p
t (xp)≡ ∃zp . head(Rp)∗Fm

j=1[∃x
p.i
i j

. φ
p.i
t (xp.i

i j
)∧yp

j = xp.i
i j
]∧ pure(Rp)

7

In the rest of the paper, we write φt for φε
t . Notice that φt is defined using the set of

logical variables LVardom(t), instead of LVar. However the definition of SL semantics
from the previous carries over naturally to this case.

Example. (cont’d) Fig. 3(a) presents an unfolding tree for the tll predicate given in the
previous example. The characteristic formula of each node in the tree can be obtained
by composing the formulae labeling the children of the node with the formula labeling
the node. The characteristic formula of the tree is the formula of its root. ut

∃lε,rε,zε.xε 7→ (lε,rε, pε,nil)∧
∃x0, p0, lea f 0

l , lea f 0
r ,x

1, p1, lea f 1
l , lea f 1

r .

lε = x0∧ xε = p0∧ lea f ε
l = lea f 0

l ∧ zε = lea f 0
r ∧

rε = x1∧ xε = p1∧ zε = lea f 1
l ∧ lea f ε

r = lea f 1
r

∃l0,r0,z0.x0 7→ (l0,r0, p0,nil)∧
∃x00, p00, lea f 00

l , lea f 00
r ,x01, p01, lea f 01

l , lea f 01
r .

l0 = x00∧ x0 = p00∧ lea f 0
l = lea f 00

l ∧ z0 = lea f 00
r ∧

r0 = x01∧ x0 = p01∧ z0 = lea f 01
l ∧ lea f 0

r = lea f 01
r

x00 7→ (nil,nil, p00, lea f 00
r)

∧ x00 = lea f 00
l

x01 7→ (nil,nil, p01, lea f 01
r)

∧ x01 = lea f 01
l

∃l1,r1,z1.x1 7→ (l1,r1, p1,nil)∧
∃x10, p10, lea f 10

l , lea f 10
r ,x11, p11, lea f 11

l , lea f 11
r .

l1 = x10∧ x1 = p10∧ lea f 1
l = lea f 10

l ∧ z1 = lea f 10
r ∧

r1 = x11∧ x1 = p11∧ z1 = lea f 11
l ∧ lea f 1

r = lea f 11
r

x10 7→ (nil,nil, p10, lea f 10
r)

∧ x10 = lea f 10
l

x11 7→ (nil,nil, p11, lea f 11
r)

∧ x11 = lea f 11
l

∗

∗
∗

∗

∗
∗

zε

z0 z1

(a)

1 2

2

333
3

1
1 2

33

4 4 4

(b)

Fig. 3. (a) An unfolding tree for tll predicate and (b) a model of the corresponding formula

Given a system of recursive definitions P =
{

Pi ::= |mi
j=1 Ri, j

}n
i=1, the semantics of

a recursive predicate Pi is defined as follows:

S, ι |=sl Pi(xi,1, . . . ,xi,ni) ⇐⇒ S, ιε |=sl φt(xε
i,1, . . . ,x

ε
i,ni

), for some t ∈ Ti(P) (1)

where ιε(xε
i, j)

de f
= ι(xi, j) for all j = 1, . . . ,ni.

Remark. Since the recursive predicate P(x) ::= ∃y . x 7→ y ∗P(y) does not have finite
unfolding trees, the formula ∃x.P(x) is unsatisfiable. ut

Top Level Formulae. We are now ready to introduce the fragment of Separation Logic
with Recursive Definitions (SLRD). A formula in this fragment is an existentially quan-
tified formula of the following form: ∃z . ϕ∗Pi1 ∗ . . .∗Pin , where ϕ is a basic formula,
and Pi j are occurrences of recursive predicates, with free variables in PVar∪ z. The se-
mantics of an SLRD formula is defined in the obvious way, from the semantics of the
basic fragment, and that of the recursive predicates.

Example. The following SLRD formulae, with PVar = {root,head}, describe both the
set of binary trees with parent pointer and linked leaves, rooted at root, with the leaves

8

linked into a list pointed to by head. The difference is that ϕ1 describes also a tree
containing only a single allocated location:

ϕ1 ≡ tll(root,nil,head,nil)
ϕ2 ≡ ∃l,r,x.root 7→ (l,r,nil,nil)∗ tll(l,root,head,x)∗ tll(r,root,x,nil) ut

We are interested in solving two problems on SLRD formulae, namely satisfiability and
entailment. The satisfiability problem asks, given a closed SLRD formula ϕ, whether
there exists a state S such that S |=sl ϕ. The entailment problem asks, given two closed
SLRD formulae ϕ1 and ϕ2, whether for all states S, S |=sl ϕ1 implies S |=sl ϕ2. This is
denoted also as ϕ1 |=sl ϕ2. For instance, in the previous example we have ϕ2 |=sl ϕ1,
but not ϕ1 |=sl ϕ2.

In general, it is possible to reduce an entailment problem ϕ1 |= ϕ2 to satisfiability of
the formula ϕ1∧¬ϕ2. In our case, however, this is not possible directly, because SLRD
is not closed under negation. The decision procedures for satisfiability and entailment
is the subject of the rest of this paper.

3 Decidability of Satisfiability and Entailment in SLRD

The decision procedure for the satisfiability and entailment in SLRD is based on two
ingredients. First, we show that, under certain natural restrictions on the system of re-
cursive predicates, which define a fragment of SLRD, called SLRDbtw, all states that
are models of SLRDbtw formulae have bounded tree width (Def. 2). These restrictions
are as follows:

1. Progress: each rule allocates exactly one variable
2. Connectivity: there is at least one selector edge between the variable allocated by a

rule and the variable allocated by each of its children in the unfolding tree
3. Establishment: all existentially quantified variables in a recursive rule are eventu-

ally allocated

Second, we provide a translation of SLRDbtw formulae into equivalent MSO formulae,
and rely on the fact that satisfiability of MSO is decidable on classes of states with
bounded tree width.

3.1 A Decidable Subset of SLRD

At this point we define the SLRDbtw fragment formally, by defining the three restrictions
above. The progress condition (1) asks that, for each rule R in the system of recursive
definitions, we have head(R) ≡ α 7→ (β1, . . . ,βn), for some variables α,β1, . . . ,βn ∈
Varsl . The intuition between this restriction is reflected by the following example.

Example. Consider the following system of recursive definitions:

ls(x,y) ::= x 7→ y | ∃z, t . x 7→ (z,nil)∗ t 7→ (nil,y)∗ ls(z, t)

The predicate ls(x,y) defines the set of structures {x(1−→)nz 7→ t(2−→)ny | n ≥ 0}, which
clearly cannot be defined in MSO. ut

The connectivity condition (2) is defined below:

9

Definition 4. A rule R of a system of recursive definitions, such that head(R) ≡ α 7→
(β1, . . . ,βn) and tail(R) ≡ 〈Pi1(y1), . . . ,Pim(ym)〉, m ≥ 1, is said to be connected if and
only if the following hold:

– for each j = 1, . . . ,m, (y j)s = β′, for some 1 ≤ s ≤ ni j , where ni j is the number of
parameters of Pi j

– βt = β′ occurs in pure(R)∗, for some 1≤ t ≤ n
– the s-th parameter xi j ,s of Pi j is allocated in the heads of all rules of Pi j .

In this case we say that between rule R and any rule Q of Pi j , there is a local edge,
labeled by selector t. F (R, j,Q) ⊆ Sel denotes the set of all such selectors. If all rules
of P are connected, we say that P is connected.

Example. The following recursive rule, from the previous tll predicate, is connected:

∃l,r,z . x 7→ (l,r, p,nil)∗ tll(l,x, lea fl ,z)∗ tll(r,x,z, lea fr) (R2)

R2 is connected because the variable l is referenced in R2 and it is passed as the first
parameter to tll in the first recursive call to tll. Moreover, the first parameter (x) is
allocated by all rules of tll. R2 is connected, for similar reasons. We have F (R2,1,R2)=
{1} and F (R2,2,R2) = {2}. ut

The establishment condition (3) is formally defined below.

Definition 5. Let P(x1, . . . ,xn) = |mj=1R j(x1, . . . ,xn) be a predicate in a recursive system
of definitions. We say that a parameter xi, for some i = 1, . . . ,n is allocated in P if and
only if, for all j = 1, . . . ,m:

– either xi is allocated in head(R j), or
– (i) tail(R j) = 〈Pi1(y1), . . . ,Pik(yk)〉, (ii) (y`)s = xi occurs in pure(R j)

∗, for some
`= 1, . . . ,k, and (iii) the s-th parameter of Pi` is allocated in Pi`

A system of recursive definitions is said to be established if and only if every existentially
quantified variable is allocated.

Example. Let llextra(x) ::= x 7→ (nil,nil) | ∃n,e. x 7→ (n,e)∗ llextra(n) be a recursive
definition system, and let φ ::= llextra(head), where head ∈ PVar. The models of the
formula φ are singly-linked lists, where in all locations of the heap, the first selector
points to the next location in the list, and the second selector is dangling i.e., it can
point to any location in the heap. These dangling selectors may form a squared grid of
arbitrary size, which is a model of the formula φ. However, the set of squared grids does
not have bounded tree width [18]. The problem arises due to the existentially quantified
variables e which are never allocated. ut

Given a system P of recursive definitions, one can effectively check whether it is
established, by guessing, for each predicate Pi(xi,1, . . . ,xi,ni) of P , the minimal set of
parameters which are allocated in Pi, and verify this guess inductively3. Then, once the
minimal set of allocated parameters is determined for each predicate, one can check
whether every existentially quantified variable is eventually allocated.

3 For efficiency, a least fixpoint iteration can be used instead of a non-deterministic guess.

10

Lemma 2. Let P = {Pi ::=|mi
j=1 Ri j(xi,1, . . . ,xi,ni)}k

i=1 be a established system of recur-
sive definitions, and S = 〈s,h〉 be a state, such that S, ι |=sl Pi(xi,1, . . . ,xi,ni) for some
interpretation ι : LVarsl ⇀ f in Loc and some 1≤ i≤ k. Then tw(S)≤ ||P ||var.

The result of the previous lemma extends to an arbitrary top-level formula:

Theorem 2. Let P = {Pi ::=|mi
j=1 Ri j(xi,1, . . . ,xi,ni)}k

i=1 be a established system of re-
cursive definitions, and S = 〈s,h〉 be a state, such that S |=sl ∃z . ϕ(y0)∗Pi1(y1)∗ . . .∗
Pin(yn), where ϕ is a basic SL formula, and Pi j are predicates of P , and yi ⊆ z, for all
i = 0,1, . . . ,n. Then tw(S)≤max(||z||, |ϕ|, ||PVar||, ||P ||var).

4 From SLRDbtw to MSO

This section describes the translation of a SL formula using recursively defined predi-
cates into an MSO formula. We denote by Π(X0, . . . ,Xi,X) the fact that X0, . . . ,Xi is a
partition of X , and by Σ(x,X) the fact that X is a singleton with x as the only element.

4.1 Converting Basic SL Formulae to MSO

For every SL logical variable x ∈ LVarsl we assume the existence of an MSO logical
variable x ∈ LVarmso, which is used to replace x in the translation. For every program
variable u ∈ PVar \ {nil} we assume the existence of a logical variable xu ∈ LVarmso.
The special variable nil ∈ LVarsl is translated into xnil ∈ LVarmso (with the associated
MSO constraint null(xnil)). In general, for any pointer or logical variable α ∈Varsl , we
denote by α, the logical MSO variable corresponding to it.

The translation of a pure SL formula α = β, α 6= β, π1 ∧ π2 is α = β, ¬(α = β),
π1∧π2, respectively, where π(α1, . . . ,αk) is the translation of π(α1, . . . ,αk). Spatial SL
formulae σ(α1, . . . ,αk) are translated into MSO formulae σ(α1, . . . ,αk,X), where X is
used for the set of locations allocated in σ. The fact that X actually denotes the domain
of the heap, is ensured by the following MSO constraint:

Heap(X)≡ ∀x
||Sel||∨
i=1

(∃y . edgei(x,y))↔ X(x)

The translation of basic spatial formulae is defined by induction on their structure:

emp(X) ≡ ∀x . ¬X(x)
(α 7→ (β1, . . . ,βn))(X) ≡ Σ(α,X) ∧

∧n
i=1 edgei(α,βi) ∧

∧||Sel||
i=n+1∀x . ¬edgei(α,x)

(σ1 ∗σ2)(X) ≡ ∃Y∃Z . σ1(Y) ∧ σ2(Z) ∧ Π(Y,Z,X)

The translation of a closed basic SL formula ϕ in MSO is defined as ∃X . ϕ(X), where
ϕ(X) is defined as (π∧σ)(X)≡ π∧σ(X), and (∃x . ϕ1)(X)≡∃x . ϕ1(X). The following
lemma proves that the MSO translation of a basic SL formula defines the same set of
models as the original SL formula.

11

Lemma 3. For any state S = 〈s,h〉, any interpretation ι : LVarsl ⇀ f in Loc, and any ba-
sic SL formula ϕ, we have S, ι |=sl ϕ if and only if S, ι,ν[X ← dom(h)] |=mso ϕ(X) ∧
Heap(X), where ι : LVarmso ⇀ f in Loc is an interpretation of first order variables,
such that ι(xu) = s(u), for all u ∈ PVar, and ι(x) = ι(x), for all x ∈ LVarsl , and ν :
LVarmso ⇀ f in 2Loc is any interpretation of second-order variables.

4.2 States and Backbones

The rest of this section is concerned with the MSO definition of states that are models of
recursive SL formulae, i.e. formulae involving recursively defined predicates. The main
idea behind this encoding is that any part of a state which is the model of a recursive
predicate can be decomposed into a tree-like structure, called the backbone, and a set
of edges between the nodes in this tree. Intuitively, the backbone is a spanning tree that
uses only local edges. For instance, in the state depicted in Fig. 3(b), the local edges are
drawn in solid lines.

Let Pk(x1, . . . ,xn) be a recursively defined predicate of a system P , and S, ι |=sl
Pk(x1, . . . ,xn), for some state S = 〈s,h〉 and some interpretation ι : LVarsl → Loc. Then
S, ι |=sl φt , where t ∈ Tk(P) is an unfolding tree, φt is its characteristic formula, and µ :
dom(t)→ dom(h) is the bijective tree that describes the allocation of nodes in the heap
by rules labeling the unfolding tree. Recall that the direction alphabet of the system P is
D(P) = {−1,0, . . . ,N−1}, where N is the maximum number of predicate occurrences
within some rule of P , and denote D+(P) = D(P)\{−1}. For each rule Ri j in P and
each direction d ∈ D(P), we introduce a second order variable Xd

i j to denote the set
of locations ` such that (i) t(µ−1(`)) ≡ Ri j and (ii) µ−1(`) is a d-th child, if d ≥ 0, or
µ−1(`) is the root of t, if d = −1. Let

−→
X be the sequence of Xk

i j variables, enumerated
in some order. We use the following shorthands:

Xi j(x) ≡
∨

k∈D(P)

Xk
i j(x) Xi(x) ≡

∨
1≤ j≤mi

Xi j(x) Xk
i (x) ≡

∨
1≤ j≤mi

Xk
i j(x)

to denote, respectively, locations that are allocated by a rule Ri j (Xi j), by a recursive
predicate Pi (Xi), or by a predicate Pi, who are mapped to a k-th child (or to the root, if
k =−1) in the unfolding tree of P , rooted at i (Xk

i).
In order to characterize the backbone of a state, one must first define the local edges:

local edged
i, j,p,q(x,y) ≡

∧
s∈F (Ri, j ,d,Rpq) edges(x,y)

for all d ∈ D+(P). Here F (Ri j,d,Rpq) is the set of forward local selectors for direc-
tion d, which was defined previously – notice that the set of local edges depends on
the source and destination rules Ri j and Rpq, that label the corresponding nodes in the
unfolding tree, respectively. The following predicate ensures that these labels are used
correctly, and define the successor functions in the unfolding tree:

succd(x,y,
−→
X) ≡

∨
Xi j(x) ∧ Xk

pq(y) ∧ local edged
i, j,p,q(x,y)

1 ≤ i, p≤ M
1 ≤ j ≤ mi
1 ≤ q≤ mp

12

for all d ∈ D+(P). The definition of the backbone of a recursive predicate Pi in MSO
follows tightly the definition of the unfolding tree of P rooted at i (Def. 3):

backbonei(r,
−→
X ,T)≡ tree(r,

−→
X ,T) ∧ X−1

i (r) ∧ succ labels(
−→
X)

where tree(r,
−→
X ,T) defines a tree4 with domain T , rooted at r, with successor functions

defined by succ0, . . . ,succN−1, and succ labels ensures that the labeling of each tree
position (with rules of P) is consistent with the definition of P :

succ labels(
−→
X) ≡

∧
Xi j(x)→

∧ri j−1
d=0 ∃y . Xd

kd
(y)∧ succd(x,y,

−→
X)

1 ≤ i≤ M
1 ≤ j ≤ mi

∧ ∀y .
∧||Sel||

p=si j+1¬edgep(x,y)

where we suppose that, for each rule Ri j of P , we have head(Ri j)≡ α 7→ (β1, . . . ,βsi j)
and tail(Ri j) = 〈Pk1 , . . . ,Pkri j

〉, for some ri j ≥ 0, and some indexing k1, . . . ,kri j of pred-
icate occurrences within Ri j. The last conjunct ensures that a location allocated in
Ri j does not have more outgoing edges than specified by head(Ri j). This condition is
needed, since, unlike SL, the semantics of MSO does not impose strictness conditions
on the number of outgoing edges.

4.3 Inner Edges

An edge between two locations is said to be inner if both locations are allocated in the
heap. Let µ be the bijective tree defined in Sec. 4.2. The existence of an edge `

k−→ `′ in

S, between two arbitrary locations `,`′ ∈ dom(h), is the consequence of:

1. a basic points-to formula α 7→ (β1, . . . ,βk, . . . ,βn) that occurs in µ(`)
2. a basic points-to formula γ 7→ (. . .) that occurs in µ(`′)
3. a path µ(`) = p1, p2, . . . , pm−1, pm = µ(`′) in t, such that the equalities β

p1
k = δ

p2
2 =

. . . = δ
pm−1
m−1 = γpm are all logical consequences of φt , for some tree positions

p2, . . . , pm−1 ∈ dom(t) and some variables δ2, . . . ,δm−1 ∈ LVarsl .

Notice that the above conditions hold only for inner edges. The (corner) case of edges
leading to dangling locations is dealt with in [12].

Example. The existence of the edge from tree position 00 to 01 in Fig. 3(b), is a conse-
quence of the following: (1) x00 7→ (nil,nil, p00, lea f 00

r), (2) x01 7→ (nil,nil, p01, lea f 01
r),

and (3) lea f 00
r = z0 = lea f 01

l = x01. The reason for other dashed edges is similar. ut
The main idea here is to encode in MSO the existence of such paths, in the unfolding

tree, between the source and the destination of an edge, and use this encoding to define
the edges. To this end, we use a special class of tree automata, called tree-walking
automata (TWA) to recognize paths corresponding to sequences of equalities occurring
within characteristic formulae of unfolding trees.

4 For space reasons this definition can be found in [12].

13

Tree Walking Automata Given a set of tree directions D = {−1,0, . . . ,N} for some
N ≥ 0, a tree-walking automaton5, is a tuple A = (Σ,Q,qi,q f ,∆) where Σ is a set of
tree node labels, Q is a set of states, qi,q f ∈ Q are the initial and final states, and
∆ : Q× (Σ∪{root})× (Σ∪{?})→ 2Q × (D ∪ {ε}) is the (non-deterministic) transition
function. A configuration of A is a pair 〈p,q〉, where p ∈ D∗ is a tree position, and
q ∈ Q is a state. A run of A over a Σ-labeled tree t is a sequence of configurations
〈p1,q1〉, . . . ,〈pn,qn〉, with p1, . . . , pn ∈ dom(t), such that for all i = 1, . . . ,n− 1, we
have pi+1 = pi.k, where either:

1. pi 6= ε and (qi+1,k) ∈ ∆(qi, t(pi), t(pi.(−1))), for k ∈D ∪{ε}
2. pi = ε and (qi+1,k) ∈ ∆(qi,σ,?), for σ ∈ {t(pi)∪ root} and k ∈D ∪{ε}

The run is said to be accepting if q1 = qi, p1 = ε and qn = q f .

Routing Automata For a system of recursive definitions P =
{

Pi(xi,1, . . . ,xi,ni) ::=

|mi
j=1Ri j(xi,1, . . . ,xi,ni)

}k
i=1, we define the TWA AP = (ΣP ,QP ,qi,q f ,∆P), where ΣP =

{Rk
i j | 1≤ i≤ k, 1≤ j ≤ mi, k ∈D(P)}, QP = {qvar

x | x ∈ LVarsl}∪{qsel
s | s ∈ Sel}∪

{qi,q f }. The transition function ∆P is defined as follows:

1. (qi,k),(qsel
s ,ε) ∈ ∆(qi,σ,τ) for all k ∈D+(P), all s ∈ Sel and all σ ∈ ΣP ∪{root},

τ∈ ΣP ∪{?} i.e., the automaton first moves downwards chosing random directions,
while in qi, then changes to qsel

s for some non-deterministically chosen selector s.
2. (qvar

βs
,ε) ∈ ∆(qsel

s ,Rk
i j,τ) and (q f ,ε) ∈ ∆(qvar

α ,Rk
i j,τ) for all k ∈D(P) and τ ∈ ΣP ∪

{?} if and only if head(Ri j)≡ α 7→ (β1, . . . ,βs, . . . ,βm), for some m > 0 i.e., when
in qsel

s , the automaton starts tracking the destination βs of the selector s through the
tree. The automaton enters the final state when the tracked variable α is allocated.

3. for all k ∈ D+(P), all ` ∈ D(P) and all rules R`q of P̀ (x`,1, . . . ,x`,n`), we have
(qvar

x`, j ,k) ∈ ∆(qvar
y j

,Rl
i j,τ), for all τ ∈ ΣP ∪{?}, and (qvar

y j
,−1) ∈ ∆(qvar

x`, j ,R
k
`q,R

l
i j) if

and only if tail(Ri j)k ≡ P̀ (y1, . . . ,yn`) i.e., the automaton moves down along the k-
th direction tracking x`, j instead of y j, when the predicate P̀ (y) occurs on the k-th
position in Ri j. Symmetrically, the automaton can also move up tracking y j instead
of x`, j, in the same conditions.

4. (qvar
β

,ε) ∈ ∆(qvar
α ,Rk

i j,τ) for all k ∈ D(P) and all τ ∈ ΣP ∪{?} if and only if α =

β occurs in pure(Ri j) i.e., the automaton switches from tracking α to tracking β

when the equality between the two variables occurs in Ri j, while keeping the same
position in the tree.

The following lemma formalizes the correctness of the TWA construction:

Lemma 4. Given a system of recursive definitions P , and an unfolding tree t ∈ Ti(P)
of P , rooted at i, for any x,y ∈ LVarsl and p,r ∈ dom(t), we have |=sl φt → xp = yr if
and only if AP has a run from 〈p,qvar

x 〉 to 〈r,qvar
y 〉 over t, where φt is the characteristic

formula of t.

5 This notion of tree-walking automaton is a slightly modified but equivalent to the one in [3].
We give the translation of TWA into the original definition in [12].

14

To the routing automaton AP corresponds the MSO formula ΦAP (r,
−→
X ,T,

−→
Y), where

r maps to the root of the unfolding tree,
−→
X is the sequence of second order variables Xk

i j

defined previously, T maps to the domain of the tree, and
−→
Y is a sequence of second-

order variables Xq, one for each state q ∈ QP . We denote by Y sel
s and Yf the variables

from
−→
Y that correspond to the states qsel

S and q f , for all s ∈ Sel, respectively. For space
reasons, the definition of ΦAP is given in [12]. With this notation, we define:

inner edges(r,
−→
X ,T)≡∀x∀y

∧
s∈Sel

∃−→Y . ΦAP (r,
−→
X ,T,

−→
Y)∧Y sel

s (x)∧Yf (y)→ edges(x,y)

4.4 Double Allocation

In order to translate the definition of a recursively defined SL predicate P(x1, . . . ,xn)
into an MSO formula P, that captures the models of P, we need to introduce a sanity
condition, imposing that recursive predicates which establish equalities between vari-
ables allocated at different positions in the unfolding tree, are unsatisfiable, due to the
semantics of the separating conjunction of SL, which implicitly conjoins all local for-
mulae of an unfolding tree. A double allocation occurs in the unfolding tree t if and
only if there exist two distinct positions p,q ∈ dom(t) and:

1. a basic points-to formula α 7→ (. . .) occurring in t(p)
2. a basic points-to formula β 7→ (. . .) occurring in t(q)
3. a path p = p1, . . . , pm = q in t, such that the equalities αp = γ

p2
2 = . . .= γ

pm−1
m−1 = βq

are all logical consequences of φt , for some tree positions p2, . . . , pm−1 ∈ dom(t)
and some variables γ2, . . . ,γm−1 ∈ LVarsl

The cases of double allocation can be recognized using a routing automaton BP =
(ΣP ,Q′P ,qi,q f ,∆

′
P), whose states Q′P = {qvar

x | x ∈ LVarsl}∪{q0,qi,q f } and transitions
∆′P differ from AP only in the following rules:

– (q0,ε) ∈ ∆(qi,σ,τ) for all σ ∈ ΣP ∪ {root} and all τ ∈ ΣP ∪ {?}, i.e. after non-
deterministically chosing a position in the tree, the automaton enters a designated
state q0, which occurs only once in each run.

– (qvar
α ,ε) ∈ ∆(q0,Rk

i j,τ) for all k ∈ D(P) and all τ ∈ ΣP ∪ {?} if and only if
head(Ri j) = α 7→ (. . .), while in the designated state q0, the automaton starts track-
ing the variable α, which is allocated at that position.

This routing automaton has a run over t, which labels one position by q0 and a distinct
one by q f if and only if two positions in t allocate the same location. Notice that BP
has always a trivial run that starts and ends in the same position – since each position
p ∈ dom(t) allocates a variable α, and 〈qi,ε〉, . . . ,〈q0, p〉,〈qvar

α , p〉,〈q f , p〉 is a valid run
of BP . The predicate system has no double allocation if and only if these are the only
possible runs of BP .

The existence of a run of BP is captured by an MSO formula ΦBP (r,
−→
X ,T,

−→
Y),

where r maps to the root of the unfolding tree,
−→
X is the sequence of second order vari-

ables Xk
i j defined previously, T maps to the domain of the tree, and

−→
Y is the sequence

15

of second-order variables Yq, taken in some order, each of which maps to the set of
tree positions visited by the automaton while in state q ∈ Q′P – we denote by Y0 and Yf

the variables from
−→
Y that correspond to the states q0 and q f , respectively. Finally, we

define the constraint: no double alloc(r,
−→
X ,T)≡ ∀−→Y . ΦBP (r,

−→
X ,T,

−→
Y)→ Y0 = Yf

4.5 Handling Parameters

The last issue to be dealt with is the role of the actual parameters passed to a recursively
defined predicate Pi(xi,1, . . . ,xi,k) of P , in a top-level formula. Then, for each parameter
xi, j of Pi and each unfolding tree t ∈ Ti(P), there exists a path ε = p1, . . . , pm ∈ dom(t)
and variables α1, . . . ,αm ∈ LVarsl such that xi, j ≡ α1 and α

p`
` = α

p`+1
`+1 is a consequence

of φt , for all ` = 1, . . . ,m− 1. Subsequently, there are three (not necessarily disjoint)
possibilities:

1. head(t(pm))≡ αm 7→ (. . .), i.e. αm is allocated
2. head(t(pm))≡ β 7→ (γ1, . . . ,γp, . . . ,γ`), and αm ≡ γp, i.e. αm is referenced
3. αm ≡ xi,q and pm = ε, for some 1≤ q≤ k, i.e. αm is another parameter xi,q

Again, we use slightly modified routing automata (one for each of the case above)
Ci, j

P ,c = (ΣP ,Q′′P ,qi,q f ,∆
i, j
c) for the cases c = 1,2,3, respectively. Here Q′′P = {qvar

x | x ∈
LVarsl}∪{qsel

s | s ∈ Sel}∪{qi,a | 1 ≤ a ≤ k}∪{qi,q f } and ∆
i, j
c , c = 1,2,3 differ from

the transitions of AP in the following:

– (qi, j,ε) ∈ ∆
i, j
x (qi,root,?), i.e. the automaton marks the root of the tree with a des-

ignated state qi, j, that occurs only once on each run
– (qvar

xi, j
,ε) ∈ ∆

i, j
x (qi, j,R−1

ik ,?), for each rule Rik of Pi, i.e. the automaton starts tracking
the parameter variable xi, j beginning with the root of the tree

– (q f ,ε) ∈ ∆
i, j
1 (qvar

α ,Rk
i j,τ), for all k ∈D(P), τ ∈ ΣP ∪{?} iff head(Ri j)≡ α 7→ (. . .)

is the final rule for Ci, j
P ,1

– (qsel
s ,ε) ∈ ∆

i, j
2 (qvar

γ ,Rk
i j,τ), for all k ∈D(P) and τ ∈ ΣP ∪{?} iff head(Ri j)≡ α 7→

(β1, . . . ,βs, . . . ,βn) and γ ≡ βs i.e., qsel
s is reached in the second case, when the

tracked variable is referenced. After that, Ci, j
P ,2 moves to the final state i.e., (q f ,ε) ∈

∆
i, j
2 (qsel

s ,σ,τ) for all s ∈ Sel, all σ ∈ ΣP ∪{root} and τ ∈ ΣP ∪{?}
– (qi,a,ε) ∈ ∆

i, j
3 (qvar

xi,a
,root,?) and (q f ,ε) ∈ ∆

i, j
3 (qi,a,root,?), for each 1 ≤ a ≤ k and

a 6= j i.e., are the final moves for Ci, j
P ,3

The outcome of this construction are MSO formulae ΦCi, j
P ,c
(r,
−→
X ,T,

−→
Y), for c = 1,2,3,

where r maps to the root of the unfolding tree, respectively,
−→
X is the sequence of second

order variables Xk
i j defined previously, T maps to the domain of the tree, and

−→
Y is

the sequence of second order variables corresponding to states of Q′′P – we denote by
Yf ,Y i,a,Y sel

s ∈
−→
Y the variables corresponding to the states q f , qi,a, and qsel

s , respectively.

16

The parameter xi, j of Pi is assigned by the following MSO constraints:

param1
i, j(r,
−→
X ,T) ≡ ∃−→Y . ΦCi, j

P ,1
∧ Y i, j

0 (xi, j) ∧ ∀y . Yf (y)→ xi, j = y

param2
i, j(r,
−→
X ,T) ≡ ∃−→Y . ΦCi, j

P ,2
∧ Y i, j

0 (xi, j) ∧
∧

s∈Sel ∀y . Y sel
s (y)→ edges(y,xi, j)

param3
i, j(r,
−→
X ,T) ≡ ∃−→Y . ΦCi, j

P ,3
∧ Y i, j

0 (xi, j) ∧
∧

1≤a≤k ∀y . Y i,a(y)→ xi, j = xi,a

where xi, j is the first-order MSO variable corresponding to the SL parameter xi, j. Fi-
nally, the constraint parami, j is conjunction of the paramc

i, j, c = 1,2,3 formulae.

4.6 Translating Top Level SLRDbtw Formulae to MSO

We define the MSO formula corresponding to a predicate Pi(xi,1, . . . ,xi,ni), of a system
of recursive definitions P = {P1, . . . ,Pn}:

Pi(xi,1, . . . ,xi,ni ,T) ≡ ∃r∃
−→
X . backbonei(r,

−→
X ,T) ∧ inner edges(r,

−→
X ,T) ∧

no double alloc(r,
−→
X ,T) ∧

∧
1≤ j≤ni

parami, j(r,
−→
X ,T)

The following lemma is needed to establish the correctness of our construction.

Lemma 5. For any state S = 〈s,h〉, any interpretation ι : LVarsl → f in Loc, and any
recursively defined predicate Pi(x1, . . . ,xn), we have S, ι |=sl Pi(x1, . . . ,xn) if and only
if S, ι,ν[T ← dom(h)] |=mso Pi(x1, . . . ,xk,T)∧Heap(T), where ι : LVarmso ⇀ f in Loc is
an interpretation of first order variables, such that ι(xu) = s(u), for all u ∈ PVar, and
ι(x) = ι(x), for all x∈ LVarsl , and ν : LVarmso ⇀ f in 2Loc is any interpretation of second-
order variables.

Recall that a top level SLRDbtw formula is of the form: ϕ ≡ ∃z . φ(y0) ∗ Pi1(y1) ∗
. . .Pik(yk), where 1 ≤ i1, . . . , ik ≤ n, and y j ⊆ z, for all j = 0,1, . . . ,k. We define the
MSO formula:

ϕ(X)≡ ∃z∃X0,...,k . φ(y0,X0) ∧ Pi1(y1,X1) ∧ . . . ∧ Pik(yk,Xk) ∧ Π(X0,X1, . . . ,Xk,X)

Theorem 3. For any state S and any closed SLRDbtw formula ϕ we have that S |=sl ϕ

if and only if S |=mso ∃X . ϕ(X) ∧ Heap(X).

Theorem 2 and the above theorem prove decidability of satisfiability and entailment
problems for SLRDbtw, by reduction to MSO over states of bounded tree width.

5 Conclusions and Future Work

We defined a fragment of Separation Logic with Recursive Definitions, capable of de-
scribing general unbounded mutable data structures, such as trees with parent pointers
and linked leaves. The logic is shown to be decidable for satisfiability and entailment,
by reduction to MSO over graphs of bounded tree width. We conjecture that the com-
plexity of the decision problems for this logic is elementary, and plan to compute tight
upper bounds, in the near future.

17

Acknowledgement. This work was supported by the Czech Science Foundation (project
P103/10/0306) and French National Research Agency (project VERIDYC ANR-09-
SEGI-016). We also acknowledge Tomáš Vojnar, Lukáš Holı́k and the anonymous re-
viewers for their valuable comments.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang, H.: Shape
analysis for composite data structures. In: Proc. CAV’07. LNCS, vol. 4590. Springer (2007)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic. In: Proc.
of FSTTCS’04. LNCS, vol. 3328. Springer (2004)

3. Bojanczyk, M.: Tree-walking automata. In: Proc. of LATA’08. LNCS, vol. 5196. Springer
(2008)

4. Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: A logic-based framework for reason-
ing about composite data structures. In: Proc. of CONCUR’09. LNCS, vol. 5710. Springer
(2009)

5. Bozga, M., Iosif, R., Perarnau, S.: Quantitative separation logic and programs with lists. J.
Autom. Reasoning 45(2), 131–16o (2010)

6. Brotherston, J., Kanovich, M.: Undecidability of propositional separation logic and its neigh-
bours. In: Proceedings of the 2010 25th Annual IEEE Symposium on Logic in Computer
Science. pp. 130–139. LICS ’10 (2010)

7. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety of c
programs. In: Proc. of NASA Formal Methods’11. LNCS, vol. 6617. Springer (2011)

8. Cook, B., Haase, C., Ouaknine, J., Parkinson, M.J., Worrell, J.: Tractable reasoning in a
fragment of separation logic. In: Proc. of CONCUR’11. LNCS, vol. 6901. Springer (2011)

9. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking manipulation
of dynamic data structures using separation logic. In: Proc. of CAV’11. LNCS, vol. 6806.
Springer (2011)

10. Enea, C., Saveluc, V., Sighireanu, M.: Compositional invariant checking for overlaid and
nested linked lists. In: Proc. of ESOP’13. pp. 129–148 (2013)

11. Immerman, N., Rabinovich, A.M., Reps, T.W., Sagiv, S., Yorsh, G.: The boundary between
decidability and undecidability for transitive-closure logics. In: Proc of CSL’04. LNCS, vol.
3210. Springer (2004)

12. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with recursive
definitions. CoRR abs/1301.5139 (2013)

13. Madhusudan, P., Parlato, G.: The tree width of auxiliary storage. In: Proc. of POPL’11. ACM
(2011)

14. Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap structures and data.
In: Proc. of POPL’11 (2011)

15. Møller, A., Schwartzbach, M.I.: The pointer assertion logic engine. In: Proc. of PLDI’01
(June 2001)

16. Nguyen, H.H., Chin, W.N.: Enhancing program verification with lemmas. In: Proc of
CAV’08. LNCS, vol. 5123. Springer (2008)

17. Reynolds, J.: Separation Logic: A Logic for Shared Mutable Data Structures. In: Proc. of
LICS’02. IEEE CS Press (2002)

18. Seese, D.: The structure of models of decidable monadic theories of graphs. Annals of Pure
and Applied Logic 53(2), 169–195 (1991)

19. Yorsh, G., Rabinovich, A.M., Sagiv, M., Meyer, A., Bouajjani, A.: A logic of reachable pat-
terns in linked data-structures. In: Proc. of FoSSaCS’06. LNCS, vol. 3921. Springer (2006)

18

