The McNaughton Theorem
McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω-recognizable subset of Σ^ω can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that ω-recognizable languages are closed under complement.
Oriented Trees

Let Σ be an alphabet of labels.

An **oriented tree** is a pair of partial functions $t = \langle l, s \rangle$:

- $l : \mathbb{N} \mapsto \Sigma$ denotes the labels of the nodes
- $s : \mathbb{N} \mapsto \mathbb{N}^*$ gives the **ordered** list of children of each node

$$\text{dom}(l) = \text{dom}(s) \stackrel{\text{def}}{=} \text{dom}(t)$$

$p \leq q$: q is a successor of p in t

$p \preceq_{\text{left}} q$: p is **to the left** of q in t ($p \leq q$ and $p \nless q$)
Safra Trees

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

A *Safra tree* is a pair $\langle t, m \rangle$, where t is a finite *oriented tree* labeled with non-empty subsets of S, and $m \subseteq \text{dom}(t)$ is the set of *marked positions*, such that:

- each marked position is a leaf
- for each $p \in \text{dom}(t)$, the union of labels of its children is a strict subset of $t(p)$
- for each $p, q \in \text{dom}(t)$, if $p \not\leq q$ and $q \not\leq p$ then $t(p) \cap t(q) = \emptyset$

Proposition 1 A Safra tree has at most $\|S\|$ nodes.

$$r(p) = t(p) \setminus \bigcup_{p < q} t(q)$$

$$\|\text{dom}(t)\| = \sum_{p \in \text{dom}(t)} 1 \leq \sum_{p \in \text{dom}(t)} \|r(p)\| \leq \|S\|$$
Initial State

We build a Rabin automaton $B = \langle S_B, i_B, T_B, \Omega_B \rangle$, where:

- S_B is the set of all Safra trees $\langle t, m \rangle$ labeled with subsets of S
- $i_B = \langle t, m \rangle$ is the Safra tree defined as either:
 - $\text{dom}(t) = \{1\}$, $t(1) = I$ and $m = \emptyset$ if $I \cap F = \emptyset$
 - $\text{dom}(t) = \{1\}$, $t(1) = I$ and $m = \{1\}$ if $I \subseteq F$
 - $\text{dom}(t) = \{1, 2\}$, $t(1) = I$, $t(2) = I \cap F$ and $m = \{2\}$ if $I \cap F \neq \emptyset$
Classical Subset Move

[Step 1] \(\langle t_1, m_1 \rangle \) is the tree with \(\text{dom}(t_1) = \text{dom}(t) \), \(m_1 = \emptyset \), and
\(t_1(p) = \{ s' \mid s \xrightarrow{\alpha} s', s \in t(p) \} \), for all \(p \in \text{dom}(t) \)
Spawn New Children

[Step 2] \(\langle t_2, m_2 \rangle \) is the tree such that, for each \(p \in \text{dom}(t_1) \), if \(t_1(p) \cap F \neq \emptyset \) we add a new child to the right, identified by the first available id, and labeled \(t_1(p) \cap F \), and \(m_2 \) is the set of all such children.
Horizontal Merge

[Step 3] \(\langle t_3, m_3 \rangle \) is the tree with \(\text{dom}(t_3) = \text{dom}(t_2) \), \(m_3 = m_2 \), such that, for all \(p \in \text{dom}(t_3) \), \(t_3(p) = t_2(p) \setminus \bigcup_{q \prec \text{left}p} t_2(q) \).
Delete Empty Nodes

[Step 4] \(\langle t_4, m_4 \rangle \) is the tree such that \(\text{dom}(t_4) = \text{dom}(t_3) \setminus \{ p \mid t_3(p) = \emptyset \} \) and \(m_4 = m_3 \setminus \{ p \mid t_3(p) = \emptyset \} \)
[Step 5] $\langle t_5, m_5 \rangle$ is $\text{dom}(t_5) = \text{dom}(t_4) \setminus \{q \in \text{dom}(t_4) \mid p \in V, p < q\}$ and $m_5 = (m_4 \cup V) \cap \text{dom}(t_5)$, where $V = \{p \in \text{dom}(t_4) \mid t_4(p) = \bigcup_{p < q} t_4(q)\}$.
Accepting Condition

The Rabin accepting condition is defined as
\[\Omega_B = \{(N_q, P_q) \mid q \in \bigcup_{(t, m) \in S_B} \text{dom}(t)\}, \] where:

- \(N_q = \{(t, m) \in S_B \mid q \notin \text{dom}(t)\} \)
- \(P_q = \{(t, m) \in S_B \mid q \in m\} \)

\[
\Omega_B = \{(\emptyset, \emptyset), (\{R_2\}, \{R_1\}), (\{R_1\}, \{R_2\})\}
\]
Intuition
Correctness of Safra Construction

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton and $B = \langle S_B, i_B, T_B, \Omega_B \rangle$ the resulting Rabin automaton.

Lemma 1 For $0 \leq i \leq n - 1$, $S_{i+1} \subseteq T(S_i, \alpha_{i+1})$. Moreover, for every $q \in S_n$, there is a path in A starting in some $q_0 \in S_0$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König’s Lemma)
Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u = \alpha_0\alpha_1\alpha_2\ldots$

$$\pi : q_0 \xrightarrow{\alpha_0} q_1 \xrightarrow{\alpha_1} q_2 \ldots$$

corresponds to a unique infinite path of B:

$$i_B = R_0 \xrightarrow{\alpha_0} R_1 \xrightarrow{\alpha_1} R_2 \ldots$$

where each q_i belongs to the root of R_i

If the root is marked infinitely often, then u is accepted. Otherwise, let n_0 be the largest number such that the root is marked in R_{n_0}. Let $m > n_0$ be the smallest number such that $q_m \in F$ is repeated infinitely often in π.

Since $q_m \in F$ it appears in a child of the root. If it appears always on the same position p_m and the node is marked infinitely often, then the path is accepting. Otherwise it appears to the left of p_m from some n_1 on (horizontal merge). This left switch can occur a finite number of times.
Complexity of the Safra Construction

Given a Büchi automaton with \(n \) states, how many states do we need for an equivalent Rabin automaton?

- The **upper bound** is \(2^{O(n \log n)} \) states
- The **lower bound** is of at least \(n! \) states
Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree $\langle t, m \rangle$ can be uniquely described by the functions:

- $S \rightarrow \{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in \text{dom}(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow \{0, 1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n + 1)^n \cdot 2^n \cdot (n + 1)^n \cdot (n + 1)^n \leq (n + 1)^{4n}$ Safra trees, hence the upper bound is $2^{\mathcal{O}(n \log n)}$.
The Language L_n

$\Sigma = \{1, \ldots, n, \#\}$

$\alpha \in L_n$ if there exist $i_1, \ldots, i_n \in \{1, \ldots, n\}$ such that

- $\alpha_k = i_1$ is the first occurrence of i_1 in α and $q_0 \xrightarrow{\alpha_0 \ldots \alpha_k} q_{i_1}$
- the pairs $i_1i_2, i_2i_3, \ldots, i_ni_1$ appear infinitely often in α.

$(3\#32\#21\#1)^\omega \in L_3$

$(312\#)^\omega \not\in L_3$
The Language L_n

Lemma 2 (Permutation) For each permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$, the infinite word $(i_1i_2\ldots i_n\#)^\omega \notin L_n$.

Lemma 3 (Union) Let $A = (S, i, T, \Omega)$ be a Rabin automaton with $\Omega = \{\langle N_1, P_1 \rangle, \ldots, \langle N_k, P_k \rangle\}$ and ρ_1, ρ_2, ρ be runs of A such that

$$\inf(\rho_1) \cup \inf(\rho_2) = \inf(\rho)$$

If ρ_1 and ρ_2 are not successful, then ρ is not successful either.
Proving the $n!$ Lower Bound

Suppose that A recognizes L_n. We need to show that A has $\geq n!$ states.

Let $\alpha = i_1, i_2, \ldots, i_n$ and $\beta = j_1, j_2, \ldots, j_n$ be two permutations of $1, 2, \ldots, n$. Then the words $(i_1 i_2 \ldots i_n \#)^\omega$ and $(j_1 j_2 \ldots j_n \#)^\omega$ are not accepted.

Let ρ_α, ρ_β be the non-accepting runs of A over α and β, respectively.

Claim 1 $\inf(\rho_\alpha) \cap \inf(\rho_\beta) = \emptyset$

Then A must have $\geq n!$ states, since there are $n!$ permutations.
Proving the $n!$ Lower Bound

By contradiction, assume $q \in \inf(\rho_\alpha) \cap \inf(\rho_\beta)$. Then we can build a run ρ such that $\inf(\rho) = \inf(\rho_1) \cup \inf(\rho_2)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

\[
\begin{align*}
&i_1 \ldots i_{k-1} \quad i_k \quad i_{k+1} \quad \ldots \quad i_{l-1} \quad i_l \quad \ldots \quad i_n \\
= & \quad = \quad \neq \\
&j_1 \ldots j_{k-1} \quad j_k \quad j_{k+1} \quad \ldots \quad j_{r-1} \quad j_r \quad \ldots \quad j_n
\end{align*}
\]

\[
\begin{align*}
i_k \quad i_{k+1}, \quad \ldots \quad i_l &= \j_k \quad \j_{k+1}, \quad \ldots \quad j_{r-1}, \quad j_r = i_k
\end{align*}
\]

The new word is accepted since the pairs $i_k i_{k+1}, \ldots, j_k j_{k+1}, \ldots, j_{r-1} i_k$ occur infinitely often. Contradiction with the fact that ρ is not accepting.
Linear Temporal Logic
Verification of Reactive Systems

• Classical verification à la Floyd-Hoare considered three problems:
 - Partial Correctness:
 \[\{ \varphi \} P \{ \psi \} \text{ iff for any } s \models \varphi, \text{ if } P \text{ terminates on } s, \text{ then } P(s) \models \psi \]
 - Total Correctness:
 \[\{ \varphi \} P \{ \psi \} \text{ iff for any } s \models \varphi, P \text{ terminates on } s \text{ and } P(s) \models \psi \]
 - Termination:
 \[P \text{ terminates on } s \]

• Need to reason about infinite computations:
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. “every request is eventually answered”
Safety vs. Liveness

• **Safety**: *something bad never happens*

 A counterexample is an *finite* execution leading to something bad happening (e.g. an assertion violation).

• **Liveness**: *something good eventually happens*

 A counterexample is an *infinite* execution on which nothing good happens (e.g. the program does not terminate).
Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states.
- Each state in the sequence gives an interpretation to the atomic propositions.
- Temporal operators indicate in which states a formula should be interpreted.

Example 1 Consider the sequence of states:

\[
\{p, q\} \ \{\neg p, \neg q\} \ \{\{\neg p, q\} \ \{p, q\}\}^\omega
\]

Starting from position 2, q holds forever. □
Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of atomic propositions.

A Kripke structure is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of states,
- $s_0 \in S$ a designated initial state,
- $\rightarrow : S \times S$ is a transition relation,
- $L : S \rightarrow 2^\mathcal{P}$ is a labeling function.
Paths in Kripke Structures

A path in K is an infinite sequence $\pi : s_0, s_1, s_2 \ldots$ such that, for all $i \geq 0$, we have $s_i \rightarrow s_{i+1}$.

By $\pi(i)$ we denote the i-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2}, \ldots$.

$$\inf(\pi) = \{s \in S \mid s \text{ appears infinitely often on } \pi\}$$

If S is finite and π is infinite, then $\inf(\pi) \neq \emptyset$.
Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- **atomic proposition symbols** \(p, q, r, \ldots \),
- **boolean connectives** \(\neg, \lor, \land, \rightarrow, \leftrightarrow \),
- **temporal connectives** \(igcirc, \Box, \Diamond, \mathcal{U}, \mathcal{R} \).

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if \(\varphi \) and \(\psi \) are formulae, then \(\neg \varphi \) and \(\varphi \bullet \psi \), for \(\bullet \in \{ \lor, \land, \rightarrow, \leftrightarrow \} \) are also formulae.
- if \(\varphi \) and \(\psi \) are formulae, then \(\bigcirc \varphi, \Box \varphi, \Diamond \varphi, \varphi \mathcal{U} \psi \) and \(\varphi \mathcal{R} \psi \) are formulae,
- nothing else is a formula.
Temporal Operators

• \bigcirc is read at the next time (in the next state)

• \Box is read always in the future (in all future states)

• \Diamond is read eventually (in some future state)

• \mathcal{U} is read until

• \mathcal{R} is read releases
Linear Temporal Logic: Semantics

\[K, \pi \models p \iff p \in L(\pi(0)) \]
\[K, \pi \models \neg \varphi \iff K, \pi \not\models \varphi \]
\[K, \pi \models \varphi \land \psi \iff K, \pi \models \varphi \text{ and } K, \pi \models \psi \]
\[K, \pi \models \Box \varphi \iff K, \pi_1 \models \varphi \]
\[K, \pi \models \varphi U \psi \iff \text{there exists } k \in \mathbb{N} \text{ such that } K, \pi_k \models \psi \text{ and } K, \pi_i \models \varphi \text{ for all } 0 \leq i < k \]

Derived meanings:

\[K, \pi \models \Diamond \varphi \iff K, \pi \models \top U \varphi \]
\[K, \pi \models \Box \varphi \iff K, \pi \models \neg \Diamond \neg \varphi \]
\[K, \pi \models \varphi R \psi \iff K, \pi \models \neg (\neg \varphi U \neg \psi) \]
Examples

- p holds throughout the execution of the system (p is invariant): $\square p$
- whenever p holds, q is bound to hold in the future: $\square(p \rightarrow \Diamond q)$
- p holds infinitely often: $\square\Diamond p$
- p holds forever starting from a certain point in the future: $\Diamond\square p$
- $\square(p \rightarrow \Diamond(\neg q \cup r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- pRq: q is true unless this obligation is released by p being true in a previous state.
LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

\[
\begin{align*}
 Tr(q) & = p_q(t) \\
 Tr(\neg \varphi) & = \neg Tr(\varphi) \\
 Tr(\varphi \land \psi) & = Tr(\varphi) \land Tr(\psi) \\
 Tr(\Box \varphi) & = Tr(\varphi)[t/t + 1] \\
 Tr(\varphi U \psi) & = \exists x . Tr(\psi)[t/x] \land \forall y . y < x \rightarrow Tr(\varphi)[t/y]
\end{align*}
\]

The direction from FOL to LTL is known as Kamp’s Theorem.
The Big Picture

- SF
- FOL
- AP
- LTL

Schutzenberger’s Theorem Kamp’s Theorem
LTL Model Checking
System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often).

- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^\mathcal{P}$ satisfying φ.

Q: Since LTL \subseteq S1S, this automaton can be built, so why bother?

- Check whether $\mathcal{L}(A_{\varphi}) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.
Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A **generalized Büchi automaton** (GBA) over Σ is $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a *transition relation*,
- $F = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of *sets of final states*.

A run π of a GBA is said to be *accepting* iff, for all $1 \leq i \leq k$, we have

$$\text{inf}(\pi) \cap F_i \neq \emptyset$$
Let \(A = \langle S, I, T, \mathcal{F} \rangle \), where \(\mathcal{F} = \{F_1, \ldots, F_k\} \).

Build \(A' = \langle S', I', T', F' \rangle \):

- \(S' = S \times \{1, \ldots, k\} \),
- \(I' = I \times \{1\} \),
- \((\langle s, i \rangle, a, \langle t, j \rangle) \in T' \) iff \((s, t) \in T \) and:
 - \(j = i \) if \(s \not\in F_i \),
 - \(j = (i \mod k) + 1 \) if \(s \in F_i \),
- \(F' = F_1 \times \{1\} \).
The idea of the construction

Let \(K = \langle S, s_0, \rightarrow, L \rangle \) be a Kripke structure over a set of atomic propositions \(\mathcal{P} \), \(\pi : \mathbb{N} \rightarrow S \) be an infinite path through \(K \), and \(\varphi \) be an LTL formula.

To determine whether \(K, \pi \models \varphi \), we label \(\pi \) with sets of subformulae of \(\varphi \) in a way that is compatible with LTL semantics.
Closure

Let φ be an LTL formula written in negation normal form.

The closure of φ is the set $Cl(\varphi) \in 2^{L(LTL)}$:

- $\varphi \in Cl(\varphi)$
- $\Box \psi \in Cl(\varphi) \Rightarrow \psi \in Cl(\varphi)$
- $\psi_1 \cdot \psi_2 \in Cl(\varphi) \Rightarrow \psi_1, \psi_2 \in Cl(\varphi)$, for all $\cdot \in \{\land, \lor, \mathcal{U}, \mathcal{R}\}$.

Example 2 $Cl(\Diamond p) = Cl(\top \mathcal{U} p) = \{\Diamond p, p, \top\}$

Q: What is the size of the closure relative to the size of φ?
Labeling rules

Given $\pi : \mathbb{N} \rightarrow 2^P$ and φ, we define $\tau : \mathbb{N} \rightarrow 2^{Cl(\varphi)}$ as follows:

- for $p \in P$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$

- if $\psi_1 \land \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$

- if $\psi_1 \lor \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$
Labeling rules

\[
\varphi U \psi \iff \psi \lor (\varphi \land \bigcirc (\varphi U \psi))
\]
\[
\varphi R \psi \iff \psi \land (\varphi \lor \bigcirc (\varphi R \psi))
\]

- if \(\bigcirc \psi \in \tau(i) \) then \(\psi \in \tau(i + 1) \)

- if \(\psi_1 U \psi_2 \in \tau(i) \) then either \(\psi_2 \in \tau(i) \), or \(\psi_1 \in \tau(i) \) and \(\psi_1 U \psi_2 \in \tau(i + 1) \)

- if \(\psi_1 R \psi_2 \in \tau(i) \) then \(\psi_2 \in \tau(i) \) and either \(\psi_1 \in \tau(i) \) or \(\psi_1 R \psi_2 \in \tau(i + 1) \)
Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above
- $\varphi \in \tau(0)$, and
- if $\psi_1 \cup \psi_2 \in \tau(i)$, then for some $j \geq i$, $\psi_2 \in \tau(j)$ (the eventuality condition)
Building the GBA $A_\varphi = \langle S, I, T, \mathcal{F} \rangle$

The automaton A_φ is the set of labeling rules + the eventuality condition(s)!

- $\Sigma = 2^P$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s$ and $\varphi_2 \in s$
 - $\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s$ or $\varphi_2 \in s$
- $I = \{ s \in S \mid \varphi \in s \}$,
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in P$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
 - $\Box \psi \in s \Rightarrow \psi \in t$,
 - $\psi_1 U \psi_2 \in s \Rightarrow \psi_2 \in s$ or $[\psi_1 \in s$ and $\psi_1 U \psi_2 \in t]$
 - $\psi_1 R \psi_2 \in s \Rightarrow \psi_2 \in s$ and $[\psi_1 \in s$ or $\psi_1 R \psi_2 \in t]$
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

- for each eventuality $\phi U \psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ

- it is sufficient to ensure that, for each $\phi U \psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi U \psi$ and ψ appear

- let $\phi_1 U \psi_1, \ldots, \phi_n U \psi_n$ be the “until” subformulae of φ

$F = \{F_1, \ldots, F_n\}$, where:

$$F_i = \{s \in S \mid \phi_i U \psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i U \psi_i \notin s\}$$

for all $1 \leq i \leq n$.