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1 Background

Graphs are important for many areas of computing such as static analysis [7], databases with knowledge rep-
resentation [1] and concurrency [4]. A well-established language for specifying graph properties is Monadic
Second Order Logic (MSO), where quantification is over vertices only, or both vertices and edges, and sets
thereof [3].

The tree-width of a graph is a positive integer measuring the distance between the graph and a tree. For
instance, trees have tree-width one, series-parallel graphs (i.e., circuits with one input and one output that can
be either cascaded or overlaid) have tree-width two, whereas n×n square grids have tree-width n, for any n ≥ 1.
The tree-width is a cornerstone of algorithmic tractability. For instance, many NP-complete graph problems
such as Hamiltonicity and 3-Coloring become PTIME, when restricted to inputs whose tree-width is uniformly
bounded by a constant, see, e.g., [5, Chapter 11].

Having a uniform bound on the tree-width of the graphs in class sets a sharp frontier between the decidabil-
ity1 and undecidability of Monadic Second Order (MSO) theories. A result of Courcelle [2] proves that MSO is
decidable over bounded tree-width structures, by reduction to the emptiness problem of tree automata. A dual
result of Seese [8] proves that each class of structures with a decidable MSO theory necessarily has bounded
treewidth. Since MSO is the yardstick of graph specification logics, these results show that tree-width bounded
classes of structures are tantamount to the existence of decision procedures for important classes of properties.

2 Challenges and Goal

Despite being an important tool for reasoning about graphs, there is currently no implementation for a solver
that takes as input an MSO formula and an integer k and decides whether there exists a graph of tree-width at
most k that is a model of the given formula.

A naı̈ve implementation would encode the input problem as the satisfiability of an MSO formula inter-
preted over trees, following the proof of Courcelle’s Theorem (see, e.g., [5, Chapter 11] for a comprehensive
presentation of this proof), for which efficient implementations exist (see, e.g., [6]).

However, a limitation often experienced by automata-based decision procedures is the state-explosion prob-
lem. Indeed, the size of the automata constructed from the MSO formula becomes huge quickly exhausting the
available memory before an answer can be given.

The goal of this internship is to first try the direct implementation that follows Courcelle’s proof, identity its
bottlenecks and, second, devises solutions by generating more compact MSO formulæ over trees, that postpone
(or even avoid) state explosion, in some cases.

The internship consists of both theoretical and implementation work.

3 How to Apply

Send your CV and a letter of intent to: mailto:Radu.Iosif@univ-grenoble-alpes.fr

1The existence of an algorithm that answers whether a given input formula has a model.
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