Automata on Infinite Trees
Büchi Automata on Infinite Trees
Definition

A Büchi tree automaton over Σ is $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T : S \times \Sigma \rightarrow 2^{S \times S}$ is the transition relation,
- $F \subseteq S$ is the set of final states.
Runs

A *run* of A over a tree $t : \{0, 1\}^* \to \Sigma$ is a mapping $\pi : \{0, 1\}^* \to S$ such that, for each position $p \in \{0, 1\}^*$, where $q = \pi(p)$, we have:

- if $p = \epsilon$ then $q \in I$, and

- if $q_i = \pi(p_i)$, $i = 0, 1$ then $\langle q_0, q_1 \rangle \in T(q, t(p))$.

If π is a run of A and σ is a path in t, let $\pi|\sigma$ denote the path in π corresponding to σ.

A run π is said to be *accepting*, if and only if for every path σ in t we have:

$$\inf(\pi|\sigma) \cap F \neq \emptyset$$
Closure Properties

For every Büchi automaton A there exists a complete Büchi automaton A' such that $\mathcal{L}(A) = \mathcal{L}(A')$.

Theorem 1 The class of Büchi-recognizable tree languages is closed under union, intersection and projection.

Let $A_i = \langle S_i, I_i, T_i, F_i \rangle$, $i = 1, 2$, where $S_1 \cap S_2 = \emptyset$.

Let $A_\cup = \langle S_1 \cup S_2, I_1 \cup I_2, T_1 \cup T_2, F_1 \cup F_2 \rangle$.
Closure Properties

Let $A_\cap = \langle S, I, T, F \rangle$ where:

- $S = S_1 \times S_2 \times \{0, 1, 2\}$
- $I = I_1 \times I_2 \times \{1\}$
- for any $s, s_1, s_2 \in S_1, s', s'_1, s'_2 \in S_2$, $a, b \in \{0, 1, 2\}$:
 \[
 \langle (s_1, s'_1, b), (s_2, s'_2, b) \rangle \in T((s, s', a), \sigma)
 \]

 iff $\langle s_1, s_2 \rangle \in T(s, \sigma)$, $\langle s'_1, s'_2 \rangle \in T(s', \sigma)$ and:

 1. if $a = 0$ or ($a = 1$ and $s \notin F_1$), then $b = 1$
 2. if ($a = 1$ and $s \in F_1$) or ($a = 2$ and $s' \notin F_2$), then $b = 2$
 3. if $a = 2$ and $s' \in F_2$, then $b = 0$
- $F = S \times S \times \{0\}$
Emptiness of Büchi Tree Automata

Let $A = \langle S, I, T, F \rangle$ be a Büchi tree automaton where $F = \{s_1, \ldots, s_m\}$, and $\pi : \{0, 1\}^* \to S$ be an accepting run of A on the tree $t \in \mathcal{T}(\Sigma)$.

For any $s \in S$, and any $u \in \{0, 1\}^*$ such that $\pi(u) = s$, let

$$d^\pi_u = \{w \in u \cdot \{0, 1\}^* \mid \forall v. u < v < w \Rightarrow \pi(v) \notin F\}$$

By König’s lemma, d^π_u is finite for any $u \in \{0, 1\}^*$.

Let t^π_s be the restriction of t to d^π_u. Let

$$T_s = \{t^\pi_s \mid \pi \text{ is an accepting run of } A \text{ on } t\}$$
Emptiness of Büchi Tree Automata

If $\vec{s} = \langle s_1, \ldots, s_m \rangle$ are the final states of A:

$$\mathcal{L}(A) = \bigcup_{s_0 \in I} T_{s_0} \cdot \vec{s} \langle T_{s_1}, \ldots, T_{s_m} \rangle_{\omega} \vec{s}$$

Conversely, the expression above denotes a Büchi-recognizable tree language.

Let $A = \langle S, I, T, F \rangle$ be a Büchi tree automaton. For each $s \in S$ let T_s be the recognizable tree language defined above. Eliminate from S (and T) all states s such that $T_s = \emptyset$, and let S' be the resulting set of states.

We claim that $\mathcal{L}(A) \neq \emptyset \iff S' \cap I \neq \emptyset$.
The Complement Problem

Let $\Sigma = \{a, b\}$, $\mathcal{T}_0 = \{t \in \mathcal{T}^\omega(\Sigma) \mid \text{some path in } t \text{ has infinitely many } a\text{'s}\}$

\mathcal{T}_0 is Büchi recognizable.

Let $A = \langle \{s_0, s_1, s_a, s_b\}, \{s_0\}, T, \{s_1, s_a\} \rangle$, where T is defined by:

- $a(s_0, a, b) \rightarrow \{\langle s_1, s_a \rangle, \langle s_a, s_1 \rangle\}$
- $b(s_0, a, b) \rightarrow \{\langle s_1, s_b \rangle, \langle s_b, s_1 \rangle\}$
- $a(s_1) \rightarrow \{\langle s_1, s_1 \rangle\}$
- $b(s_1) \rightarrow \{\langle s_1, s_1 \rangle\}$
The Complement Problem

Let $\mathcal{T}_1 = \mathcal{T}^\omega(\Sigma) \setminus \mathcal{T}_0 = \{t \in \mathcal{T}^\omega(\Sigma) \mid \text{all paths in } t \text{ have finitely many } a\text{'s}\}$. We show that \mathcal{T}_1 cannot be recognized by a Büchi tree automaton.

Exercise 1 $I = \{s_0, s_1\}$, $F = \{s_1\}$ and

\[
\begin{align*}
a(s_0) &\rightarrow \langle s_0, s_0 \rangle \\
&\langle s_0, s_1 \rangle \\
&\langle s_1, s_0 \rangle \\
&\langle s_1, s_1 \rangle \\
b(s_0) &\rightarrow \langle s_0, s_0 \rangle \\
&\langle s_0, s_1 \rangle \\
&\langle s_1, s_0 \rangle \\
&\langle s_1, s_1 \rangle \\
b(s_1) &\rightarrow \langle s_1, s_1 \rangle
\end{align*}
\]
The Complement Problem

Let \(T_n : \{0, 1\}^* \rightarrow \Sigma \) be the language of trees:

\[
t_n(p) = \begin{cases}
a & \text{if } p \in \{\epsilon, 1^{m_1}0, 1^{m_1}01^{m_2}0, \ldots, 1^{m_1}01^{m_2}0 \ldots 1^{m_n}0 \mid m_1, \ldots, m_n \in \mathbb{N}\}
b & \text{otherwise} \end{cases}
\]

Obviously, \(T_n \subset T_1 \), for all \(n \in \mathbb{N} \).

Suppose there exists a Büchi automaton \(A = \langle S, I, T, F \rangle \) with \(k \) states, s.t. \(\mathcal{L}(A) = T_1 \). Let \(\pi \) be the accepting run of \(A \) over \(t_{k+1} \). Then there exist:

- \(m_1 > 0 \) such that \(\pi(1^{m_1}) = s_1 \in F \)
- \(m_2 > 0 \) such that \(\pi(1^{m_1}01^{m_2}) = s_2 \in F \)
- \(\ldots \)

There exists a path \(\sigma \) in \(t_m \) and \(u < v < w < \sigma \), such that \(\pi(u) = \pi(w) = s \in F \) and \(t_m(v) = a \). Then \(\pi = r_1 \cdot s \cdot r_2 \cdot s \cdot r_3 \), and \(r_1 \cdot s \cdot r_2^\omega s \) is an accepting run on \(q_1 \cdot q_2^\omega \), which contains a path with infinitely many \(a \).
Muller Automata on Infinite Trees
Definition

A Muller tree automaton Σ is $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T : S \times \Sigma \rightarrow 2^{S \times S}$ is the *transition function*,
- $F \subseteq 2^S$, is the set of *accepting sets*.

A run π of A over t is said to be *accepting*, iff for every path σ in t:

$$\inf(\pi|_\sigma) \in \mathcal{F}$$
Closure Properties

The class of Muller-recognizable tree languages is closed under union and intersection.

For **union**, the proof is exactly as in the case of Büchi automata. For A_\cup, the set of accepting sets is the union of the sets $\mathcal{F}_i, i = 1, 2$.

For **intersection**, let $A_\cap = \langle S_1 \times S_2, I_1 \times I_2, T, \mathcal{F} \rangle$, where:

- $\langle (s_1, s'_1), (s_2, s'_2) \rangle \in T((s, s'), \sigma)$ iff $\langle s_1, s_2 \rangle \in T(s, \sigma)$ and $\langle s'_1, s'_2 \rangle \in T(s', \sigma)$, and

- $\mathcal{F} = \{ G \in S_1 \times S_2 \mid pr_1(G) \in \mathcal{F}_1 \text{ and } pr_2(G) \in \mathcal{F}_2 \}$, where:
 - $pr_1(G) = \{ s \in S_1 \mid \exists s'. (s, s') \in G \}$, and
 - $pr_2(G) = \{ s \in S_2 \mid \exists s'. (s', s) \in G \}$.

Rabin Automata on Infinite Trees
Definition

A **Rabin** tree automaton \(\Sigma \) is \(A = \langle S, I, T, \Omega \rangle \), where:

- \(S \) is a finite set of **states**,
- \(I \subseteq S \) is a set of **initial states**,
- \(T : S \times \Sigma \to 2^{S \times S} \) is the **transition function**,
- \(\Omega = \{ \langle N_1, P_1 \rangle, \ldots, \langle P_n, N_n \rangle \} \) is the set of **accepting pairs**.

A run \(\pi \) of \(A \) over \(t \) is said to be **accepting**, if and only if for every path \(\sigma \) in \(t \) there exists a pair \(\langle N_i, P_i \rangle \in \Omega \) such that:

\[
\inf(\pi|_{\sigma}) \cap N_i = \emptyset \text{ and } \inf(\pi|_{\sigma}) \cap P_i \neq \emptyset
\]
Büchi, Muller and Rabin

For every Büchi tree automaton A there exists a Muller tree automaton B, such that $\mathcal{L}(A) = \mathcal{L}(B)$, but not viceversa.

For every Muller tree automaton A there exists a Rabin tree automaton B, such that $\mathcal{L}(A) = \mathcal{L}(B)$, and viceversa.
From Büchi to Muller

For each (nondeterministic) Büchi automaton A there exists a (nondeterministic) Muller automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

Define $B = \langle S, I, T, \{G \in 2^S \mid G \cap F \neq \emptyset\} \rangle$

Allowing Muller automata to be nondeterministic is essential here.
From Rabin to Muller

Given a Rabin automaton $A = \langle S, I, T, \Omega \rangle$, such that

$$\Omega = \{ \langle N_1, P_1 \rangle, \ldots, \langle N_k, P_k \rangle \}$$

let $B = \langle S, I, T, \mathcal{F} \rangle$ be the Muller automaton, where

$$\mathcal{F} = \{ F \subseteq S \mid F \cap N_i = \emptyset \text{ and } F \cap P_i \neq \emptyset \text{ for some } 1 \leq i \leq k \}$$
From Muller to Rabin

Given a Muller automaton $A = \langle S, I, T, \mathcal{F} \rangle$, there exists a Rabin automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$.

Let $\mathcal{F} = \{Q_1, \ldots, Q_k\}$

Let $B = \langle S', I', T', \Omega' \rangle$ where:

- $S' = 2^{Q_1} \times \ldots \times 2^{Q_k} \times S$
- $I' = \{\langle \emptyset, \ldots, \emptyset, s_0 \rangle \mid s_0 \in I\}$
From Muller to Rabin

- $T'(\langle S_1, \ldots, S_k, s \rangle, a) = (\langle S'_1, \ldots, S'_k, s' \rangle, \langle S''_1, \ldots, S''_k, s'' \rangle)$ where:
 - $T(s, a) = (s', s'')$
 - for all $1 \leq i \leq k$:
 $$S'_i = S''_i = \begin{cases} \emptyset & \text{, if } S_i \cup \{s\} = Q_i \\ (S_i \cup \{s\}) \cap Q_i & \text{, otherwise} \end{cases}$$

- $P_i = \{\langle S_1, \ldots, S_i, \ldots, S_k, s \rangle \mid S_i = Q_i\}, 1 \leq i \leq k$

- $N_i = \{\langle S_1, \ldots, S_i, \ldots, S_k, s \rangle \mid s \not\in Q_i\}, 1 \leq i \leq k$
The Rabin Complementation Theorem

Theorem 2 (Rabin ’69) The class of Rabin-recognizable tree languages is closed under complement.

The class of Rabin-recognizable tree languages is closed under union and intersection, because Muller-recognizable languages are.
Emptiness of Rabin Automata

Given an alphabet Σ, an infinite tree $t \in T^\omega(\Sigma)$ is said to be *regular* if there are only finitely many distinct subtrees t_u of t, where $u \in \{0, 1\}^\ast$.

Example 1 The infinite binary tree $f(g(f(\ldots), f(\ldots)), g(f(\ldots), f(\ldots)))$ is regular.

Theorem 3 (Rabin ‘72)

1. Any non-empty Rabin-recognizable set of trees contains a regular tree.
2. The emptiness problem for Rabin tree automata is decidable.
Reduction to empty alphabet

Let $A = \langle S, I, T, \Omega \rangle$ be a Rabin tree automaton over Σ, such that $L(A) \neq \emptyset$, where $\Omega = \{\langle N_1, P_1 \rangle, \ldots, \langle N_n, P_n \rangle\}$.

Let $A' = \langle S \times \Sigma, I \times \Sigma, T', \Omega' \rangle$, where:

- $\langle (s_1, \sigma_1), (s_2, \sigma_2) \rangle \in T'((s, \sigma))$ iff $\langle s_1, s_2 \rangle \in T(s, \sigma)$, and $\sigma_1, \sigma_2 \in \Sigma$.
- $\Omega' = \{\langle N_1 \times \Sigma, P_1 \times \Sigma \rangle, \ldots, \langle N_n \times \Sigma, P_n \times \Sigma \rangle\}$.

The accepting runs of A' are pairs (π, t), where $t \in L(A)$, and π is a accepting run of A on t.
Regular accepting runs

For any Rabin tree automaton A, there exists a Rabin tree automaton A' with one initial state such that $\mathcal{L}(A) = \mathcal{L}(A')$.

Consider a Rabin tree automaton $A = \langle S, s_0, T, \Omega \rangle$ over the empty alphabet, and let π be an accepting run of A.

Claim 1 If A has an accepting run, A has also a regular accepting run.

A state $s \in S$ is said to be *live* if $s \neq s_0$ and $\langle s_1, s_2 \rangle \in T(s)$ for some $s_1, s_2 \in S$, where either $s_1 \neq s$ or $s_2 \neq s$.

By induction on $n = \text{the number of live states in } A$.
Regular accepting runs

Base case $n = 0$: $\pi(\epsilon) = s_0$ and $\pi(p) = s$, for all $p \in \text{dom}(\pi)$, and $s \in S$ is non-live.

Inductive step $n > 0$:

Case 1 If some live state in A is missing on π, apply the induction hypothesis.

Case 2 All live states of A appear on π, and there is a position $u \in \{0, 1\}^*$ such that $\pi(u) = s$ is live, but some live state s' does not appear in π_u.

Let $\pi_1 = \pi \setminus \pi_u$ and $\pi_2 = \pi_u$. Both π_1 and π_2 are runs of automata with $n - 1$ live states, hence there exists accepting regular runs π'_1 and π'_2 of these automata. The desired run is $\pi'_1 \cdot_s \pi'_2$.
Regular accepting runs

Case 3 All live states appear in any subtree of π. Let σ be a path in π consisting of all the live states appearing again and again, and only of the live states, with the exception of $\pi(\epsilon)$. Q: Why does σ exist?

There exists $\langle N, P \rangle \in \Omega$, such that $\inf(\sigma) \cap N = \emptyset$ and $\inf(\sigma) \cap P \neq \emptyset$. Then N contains only non-live states.

Let $s \in \inf(\sigma) \cap P$ and u, v be the 1^{st} and 2^{nd} positions such that $\sigma(u) = \sigma(v) = s$.

Let $\pi_1 = \pi \setminus \pi_u$ and $\pi_2 = \pi_u \setminus \pi_v$. Both π_1 and π_2 are accepting runs of automata with $n - 1$ live states, hence there exists accepting regular runs π'_1 and π'_2 of these automata. The desired run is $\pi'_1 \cdot s \pi'_2 \omega s$.
The Emptiness Problem

Let A be an input-free Rabin tree automaton with n live states.

We derive $A_{n-1}, A_{n-2}, \ldots, A_0$ from A, having $n-1, n-2, \ldots, 0$ live states.

If A has a accepting run, then it it has a regular run, composed of runs of $A_{n-1}, A_{n-2}, \ldots, A_0$.

So it is enough to check emptiness of $A_{n-1}, A_{n-2}, \ldots, A_0$.
Rabin Automata, SkS and SωS
Defining infinite paths

We say that a set of positions X is linear iff the following holds:

$$linear(X) : (\forall x, y . X(x) \land X(y) \rightarrow x \leq y \lor y \leq x)$$

X is a path iff:

$$path(X) : linear(X) \land \forall Y . linear(Y) \land X \subseteq Y \rightarrow X = Y$$
From Automata to Formulae

Let $A = \langle S, I, T, \Omega \rangle$ be a Rabin tree automaton, where $S = \{s_1, \ldots, s_p\}$.

Let $\vec{Y} = \{Y_1, \ldots, Y_p\}$ be set variables.

If X denotes a path, state i appears infinitely often in X iff:

$$\inf_i(X) : \forall x . X(x) \rightarrow \exists y . x \leq y \wedge X(y) \wedge Y_i(y)$$

The formula expressing the accepting condition is:

$$\Phi_\Omega(\vec{Y}) : \forall X . \text{path}(X) \rightarrow \bigvee_{\langle N,P \rangle \in \Omega} \left(\bigwedge_{s_i \in N} \neg \inf_i(X) \wedge \bigvee_{s_i \in P} \inf_i(X) \right)$$
Decidability of S2S

Theorem 4 Given an alphabet Σ, a tree language $L \subseteq T^\omega(\Sigma)$ is definable in S2S iff it is recognizable.

Corollary 1 The SAT problem for S2S is decidable.
Obtaining Decidability Results by Reduction

Suppose we have a logic \mathcal{L} interpreted over the domain \mathcal{D}, such that the following problem is decidable:

\[
\text{for each formula } \varphi \text{ of } \mathcal{L} \text{ there exists } m \in \mathcal{D} \text{ such that } m \models \varphi
\]

Then we can prove the same thing for another logic \mathcal{L}' interpreted over \mathcal{D}' iff there exists functions $\Delta : \mathcal{D}' \rightarrow \mathcal{D}$ and $\Lambda : \mathcal{L}' \rightarrow \mathcal{L}$ such that for all $m' \in \mathcal{D}'$ and $\varphi' \in \mathcal{L}$ we have:

\[
m' \models \varphi' \iff \Delta(m') \models \Lambda(\varphi')
\]
Decidability of $S_\omega S$

Every tree $t : \mathbb{N}^* \rightarrow \Sigma$ can be encoded as $t' : \{0, 1\}^* \rightarrow \Sigma$.

Let $D = \{\epsilon\} \cup \{1^{n_1+1}01^{n_2+1}0 \ldots 1^{n_k+1}0 \mid k \geq 1, \ n_i \in \mathbb{N}, \ 1 \leq i \leq k\}$.

Embedding the domain of $S_\omega S$ into $S2S$:

$$D(x) \quad : \quad \exists z \forall y . \ z \leq y \land x = z \lor \forall y . \ s_0(y) \leq x \rightarrow \exists y' . \ y = s_1(y')$$
Decidability of $S\omega S$

If $p = 1^{n_1+1}01^{n_2+1}0 \ldots 1^{n_k+1}0$, let

$$f_i(p) = p \cdot 1^{i+1}0 = 1^{n_1+1}01^{n_2+1}0 \ldots 1^{n_k+1}01^{i+1}0$$

$$x \leq_D y : D(x) \land D(y) \land x \leq y$$

Define the relation $x \leq^3_D y$ iff $x \in D$ and $y = x \cdot 1^{n+1}0$, for some $n \in \mathbb{N}$:

$$x \leq^3_D y : \exists z . y = s_0(z) \land \forall z' . x \leq z \land z' < z \rightarrow s_1(z') \leq y$$

Define f_0, f_1, f_2, \ldots by induction:

$$f_0(x) = y : D(x) \land D(y) \land \exists z . y = s_0(z) \land z = s_1(x)$$

$$f_{i+1}(x) = y : D(x) \land D(y) \land x \leq^3_D y \land \forall z . x \leq^3_D z \land$$

$$\land_{0 \leq k \leq i} z \neq f_k(x) \rightarrow y \leq_D z$$