The McNaughton Theorem
McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω-recognizable subset of Σ^ω can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that ω-recognizable languages are closed under complement.
Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions $t = \langle l, s \rangle$:

- $l : \mathbb{N} \rightarrow \Sigma$ denotes the labels of the nodes
- $s : \mathbb{N} \rightarrow \mathbb{N}^*$ gives the ordered list of children of each node

\[\text{dom}(l) = \text{dom}(s) \overset{\text{def}}{=} \text{dom}(t) \]

$p \leq q$: q is a successor of p in t

$p \preceq_{\text{left}} q$: p is to the left of q in t ($p \leq q$ and $p \not\preceq q$)
Safra Trees

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

A Safra tree is a pair $\langle t, m \rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq \text{dom}(t)$ is the set of marked positions, such that:

- each marked position is a leaf
- for each $p \in \text{dom}(t)$, the union of labels of its children is a strict subset of $t(p)$
- for each $p, q \in \text{dom}(t)$, if $p \not\leq q$ and $q \not\leq p$ then $t(p) \cap t(q) = \emptyset$

Proposition 1 A Safra tree has at most $\|S\|$ nodes.

$$r(p) = t(p) \setminus \bigcup_{p < q} t(q)$$

$$\|\text{dom}(t)\| = \sum_{p \in \text{dom}(t)} 1 \leq \sum_{p \in \text{dom}(t)} \|r(p)\| \leq \|S\|$$
Initial State

We build a Rabin automaton \(B = \langle S_B, i_B, T_B, \Omega_B \rangle \), where:

- \(S_B \) is the set of all Safra trees \(\langle t, m \rangle \) labeled with subsets of \(S \)
- \(i_B = \langle t, m \rangle \) is the Safra tree defined as either:
 - \(\text{dom}(t) = \{1\}, t(1) = I \) and \(m = \emptyset \) if \(I \cap F = \emptyset \)
 - \(\text{dom}(t) = \{1\}, t(1) = I \) and \(m = \{1\} \) if \(I \subseteq F \)
 - \(\text{dom}(t) = \{1, 2\}, t(1) = I, t(2) = I \cap F \) and \(m = \{2\} \) if \(I \cap F \neq \emptyset \)
[Step 1] \(\langle t_1, m_1 \rangle \) is the tree with \(\text{dom}(t_1) = \text{dom}(t), m_1 = \emptyset \), and \(t_1(p) = \{ s' \mid s \xrightarrow{\alpha} s', s \in t(p) \} \), for all \(p \in \text{dom}(t) \).
Spawn New Children

[Step 2] \(\langle t_2, m_2 \rangle \) is the tree such that, for each \(p \in \text{dom}(t_1) \), if \(t_1(p) \cap F \neq \emptyset \) we add a new child to the right, identified by the first available id, and labeled \(t_1(p) \cap F \), and \(m_2 \) is the set of all such children.
Horizontal Merge

[Step 3] \(\langle t_3, m_3 \rangle \) is the tree with \(\text{dom}(t_3) = \text{dom}(t_2), \ m_3 = m_2 \), such that, for all \(p \in \text{dom}(t_3) \), \(t_3(p) = t_2(p) \setminus \bigcup_{q \preceq \text{left } p} t_2(q) \)
Delete Empty Nodes

[Step 4] \(\langle t_4, m_4 \rangle \) is the tree such that \(\text{dom}(t_4) = \text{dom}(t_3) \setminus \{ p \mid t_3(p) = \emptyset \} \) and \(m_4 = m_3 \setminus \{ p \mid t_3(p) = \emptyset \} \)
Vertical Merge

[Step 5] \(\langle t_5, m_5 \rangle \) is \(m_5 = m_4 \cup V \), \(\text{dom}(t_5) = \text{dom}(t_4) \setminus \{q \mid p \in V, \; p < q\} \),

\(V = \{p \in \text{dom}(t_4) \mid t_4(p) = \bigcup_{p < q} t_4(q)\} \)
Accepting Condition

The Rabin accepting condition is defined as
\[\Omega_B = \{ (N_q, P_q) \mid q \in \bigcup_{(t,m) \in S_B} \text{dom}(t) \} \], where:

- \[N_q = \{ \langle t, m \rangle \in S_B \mid q \notin \text{dom}(t) \} \]
- \[P_q = \{ \langle t, m \rangle \in S_B \mid q \in m \} \]

\[\Omega_B = \{ (\{R_1\}, \{R_2\}), (\{R_2\}, \{R_1\}) \} \]
Intuition
Correctness of Safra Construction

Lemma 1 For $0 \leq i \leq n - 1$, $S_{i+1} \subseteq T(S_i, \alpha_{i+1})$. Moreover, for every $q \in S_n$, there is a path in A starting in some $q_0 \in S_0$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König’s Lemma)
Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u = \alpha_0\alpha_1\alpha_2\ldots$

$$\pi: q_0 \xrightarrow{\alpha_0} q_1 \xrightarrow{\alpha_1} q_2 \ldots$$

corresponds to a unique infinite path of B:

$$i_B = R_0 \xrightarrow{\alpha_0} R_1 \xrightarrow{\alpha_1} R_2 \ldots$$

where each q_i belongs to the root of R_i

If the root is marked infinitely often, then u is accepted. Otherwise, let n_0 be the largest number such that the root is marked in R_{n_0}. Let $m > n_0$ be the smallest number such that $q_m \in F$ is repeated infinitely often in π.

Since $q_m \in F$ it appears in a child of the root. If it appears always on the same position p_m and the node is marked infinitely often, then the path is accepting. Otherwise it appears to the left of p_m from some n_1 on (horizontal merge). This left switch can occur a finite number of times.
Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an equivalent Rabin automaton?

- The upper bound is $2^{O(n \log n)}$ states
- The lower bound is of at least $n!$ states
Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree $\langle t, m \rangle$ can be uniquely described by the functions:

- $S \rightarrow \{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in \text{dom}(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow \{0, 1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n + 1)^n \cdot 2^n \cdot (n + 1)^n \cdot (n + 1)^n \leq (n + 1)^{4n}$ Safra trees, hence the upper bound is $2^{O(n \log n)}$.
The Language L_n

$\Sigma = \{1, \ldots, n, \#\}$

$\omega \in L_3$
$(3\#32\#21\#1)^\omega \in L_3$

$(312\#)^\omega \not\in L_3$

$\alpha \in L_n$ if there exist $i_1, \ldots, i_n \in \{1, \ldots, n\}$ such that

- $\alpha_k = i_1$ is the first occurrence of i_1 in α and $q_0 \xrightarrow{\alpha_0 \ldots \alpha_k} q_{i_1}$
- the pairs $i_1i_2, i_2i_3, \ldots, i_ni_1$ appear infinitely often in α.
The Language L_n

Lemma 2 *(Permutation)* For each permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$, the infinite word $(i_1i_2\ldots i_n\#)^\omega \not\in L_n$.

Lemma 3 *(Union)* Let $A = (S, i, T, \Omega)$ be a Rabin automaton with $\Omega = \{\langle N_1, P_1 \rangle, \ldots, \langle N_k, P_k \rangle\}$ and ρ_1, ρ_2, ρ be runs of A such that

$$\inf(\rho_1) \cup \inf(\rho_2) = \inf(\rho)$$

If ρ_1 and ρ_2 are not successful, then ρ is not successful either.
Proving the $n!$ Lower Bound

Suppose that A recognizes L_n. We need to show that A has $\geq n!$ states.

Let $\alpha = i_1, i_2, \ldots, i_n$ and $\beta = j_1, j_2, \ldots, j_n$ be two permutations of $1, 2, \ldots, n$. Then the words $(i_1i_2\ldots i_n\#)^\omega$ and $(j_1j_2\ldots j_n\#)^\omega$ are not accepted.

Let ρ_α, ρ_β be the non-accepting runs of A over α and β, respectively.

Claim 1 $\inf(\rho_\alpha) \cap \inf(\rho_\beta) = \emptyset$

Then A must have $\geq n!$ states, since there are $n!$ permutations.
Proving the $n!$ Lower Bound

By contradiction, assume $q \in \inf(\rho_\alpha) \cap \inf(\rho_\beta)$. Then we can build a run ρ such that $\inf(\rho) = \inf(\rho_1) \cup \inf(\rho_2)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

\[
\begin{array}{cccccccc}
i_1 & \ldots & i_{k-1} & i_k & i_{k+1} & \ldots & i_{l-1} & i_l & \ldots & i_n \\
= & = & \neq \\
\hat{j}_1 & \ldots & \hat{j}_{k-1} & \hat{j}_k & \hat{j}_{k+1} & \ldots & \hat{j}_{r-1} & \hat{j}_r & \ldots & \hat{j}_n \\
\end{array}
\]

The new word is accepted since the pairs $i_k i_{k+1}, \ldots, i_l = \hat{j}_k \hat{j}_{k+1}, \ldots, \hat{j}_{r-1} j_r = i_k$ occur infinitely often. Contradiction with the fact that ρ is not accepting.
The Big Picture

EXP

NBA

P

DBA

McNaughton

2^{O(n \log n)}

MA

EXP

RA

EXP

EXP
Linear Temporal Logic
Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
 - Partial Correctness:
 \[\{ \varphi \} P \{ \psi \} \text{ iff for any } s \models \varphi, \text{ if } P \text{ terminates on } s, \text{ then } P(s) \models \psi \]
 - Total Correctness:
 \[\{ \varphi \} P \{ \psi \} \text{ iff for any } s \models \varphi, P \text{ terminates on } s \text{ and } P(s) \models \psi \]
 - Termination:
 \[P \text{ terminates on } s \]

- Need to reason about infinite computations:
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. “every request is eventually answered”
Safety vs. Liveness

- **Safety**: *something bad never happens*

 A counterexample is a **finite** execution leading to something bad happening (e.g., an assertion violation).

- **Liveness**: *something good eventually happens*

 A counterexample is a **infinite** execution on which nothing good happens (e.g., the program does not terminate).
Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states.
- Each state in the sequence gives an interpretation to the atomic propositions.
- Temporal operators indicate in which states a formula should be interpreted.

Example 1 Consider the sequence of states:

\[
\{p, q\} \{\neg p, \neg q\} (\{\neg p, q\} \{p, q\})^\omega
\]

Starting from position 2, \(q\) holds forever. □
Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of atomic propositions.

A Kripke structure is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of states,
- $s_0 \in S$ a designated initial state,
- $\rightarrow : S \times S$ is a transition relation,
- $L : S \rightarrow 2^\mathcal{P}$ is a labeling function.
Paths in Kripke Structures

A path in K is an infinite sequence $\pi : s_0, s_1, s_2 \ldots$ such that, for all $i \geq 0$, we have $s_i \rightarrow s_{i+1}$.

By $\pi(i)$ we denote the i-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2} \ldots$.

$$\text{inf}(\pi) = \{s \in S \mid s \text{ appears infinitely often on } \pi\}$$

If S is finite and π is infinite, then $\text{inf}(\pi) \neq \emptyset$.
Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots,
- boolean connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$,
- temporal connectives $\Diamond, \Box, \lozenge, U, R$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\Diamond \varphi$, $\Box \varphi$, $\lozenge \varphi$, $\varphi U \psi$ and $\varphi R \psi$ are formulae,
- nothing else is a formula.
Temporal Operators

• \bigcirc is read at the next time (in the next state)

• \square is read always in the future (in all future states)

• \Diamond is read eventually (in some future state)

• \mathcal{U} is read until

• \mathcal{R} is read releases
Linear Temporal Logic: Semantics

\[K, \pi \models p \iff p \in L(\pi(0)) \]
\[K, \pi \models \neg \varphi \iff K, \pi \not\models \varphi \]
\[K, \pi \models \varphi \land \psi \iff K, \pi \models \varphi \text{ and } K, \pi \models \psi \]
\[K, \pi \models \Box \varphi \iff K, \pi_1 \models \varphi \]
\[K, \pi \models \varphi \mathcal{U} \psi \iff \text{there exists } k \in \mathbb{N} \text{ such that } K, \pi_k \models \psi \text{ and } K, \pi_i \models \varphi \text{ for all } 0 \leq i < k \]

Derived meanings:

\[K, \pi \models \Diamond \varphi \iff K, \pi \models \top \mathcal{U} \varphi \]
\[K, \pi \models \Box \neg \varphi \iff K, \pi \models \neg \Diamond \neg \varphi \]
\[K, \pi \models \varphi \mathcal{R} \psi \iff K, \pi \models \neg (\neg \varphi \mathcal{U} \neg \psi) \]
Examples

• p holds throughout the execution of the system (p is invariant) : $\square p$

• whenever p holds, q is bound to hold in the future : $\square(p \rightarrow \Diamond q)$

• p holds infinitely often : $\Box \Diamond p$

• p holds forever starting from a certain point in the future : $\Diamond \Box p$

• $\Box(p \rightarrow \Diamond (\neg q U r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.

• pRq : q is true unless this obligation is released by p being true in a previous state.
LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

\[
\begin{align*}
Tr(q) &= p_q(t) \\
Tr(\neg \varphi) &= \neg Tr(\varphi) \\
Tr(\varphi \land \psi) &= Tr(\varphi) \land Tr(\psi) \\
Tr(\Box \varphi) &= Tr(\varphi)[t/t + 1] \\
Tr(\varphi U \psi) &= \exists x \cdot Tr(\psi)[t/x] \land \forall y \cdot y < x \rightarrow Tr(\varphi)[t/y]
\end{align*}
\]

The direction from FOL to LTL is known as Kamp’s Theorem.
The Big Picture

Schutzenberger’s Theorem

Kamp’s Theorem
LTL Model Checking
System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often).

- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_φ that accepts all sequences over $2^\mathcal{P}$ satisfying φ.

Q: Since LTL \subseteq S1S, this automaton can be built, so why bother?

- Check whether $\mathcal{L}(A_\varphi) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.
Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$\inf(\pi) \cap F_i \neq \emptyset$$
GBA and BA are equivalent

Let $A = \langle S, I, T, \mathcal{F} \rangle$, where $\mathcal{F} = \{F_1, \ldots, F_k\}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $S' = S \times \{1, \ldots, k\}$,
- $I' = I \times \{1\}$,
- $(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$ iff $(s, t) \in T$ and:
 - $j = i$ if $s \notin F_i$,
 - $j = (i \mod k) + 1$ if $s \in F_i$.
- $F' = F_1 \times \{1\}$.
The idea of the construction

Let $K = \langle S, s_0, \rightarrow, L \rangle$ be a Kripke structure over a set of atomic propositions \mathcal{P}, $\pi : \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula. To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.
Closure

Let φ be an LTL formula written in negation normal form.

The *closure* of φ is the set $\text{Cl}(\varphi) \in 2^{\mathcal{L}(\text{LTL})}$:

- $\varphi \in \text{Cl}(\varphi)$
- $\bigcirc \psi \in \text{Cl}(\varphi) \Rightarrow \psi \in \text{Cl}(\varphi)$
- $\psi_1 \bullet \psi_2 \in \text{Cl}(\varphi) \Rightarrow \psi_1, \psi_2 \in \text{Cl}(\varphi)$, for all $\bullet \in \{\land, \lor, \mathcal{U}, \mathcal{R}\}$.

Example 2 $\text{Cl}(\Diamond p) = \text{Cl}(\top \mathcal{U} p) = \{\Diamond p, p, \top\} \square$

Q: What is the size of the closure relative to the size of φ?
Labeling rules

Given $\pi : \mathbb{N} \rightarrow 2^P$ and φ, we define $\tau : \mathbb{N} \rightarrow 2^{Cl(\varphi)}$ as follows:

- for $p \in P$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$

- if $\psi_1 \land \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$

- if $\psi_1 \lor \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$
Labeling rules

\[\phi U \psi \iff \psi \lor (\phi \land \Box(\phi U \psi)) \]
\[\phi R \psi \iff \psi \land (\phi \lor \Box(\phi R \psi)) \]

- if \(\Box \psi \in \tau(i) \) then \(\psi \in \tau(i + 1) \)

- if \(\psi_1 U \psi_2 \in \tau(i) \) then either \(\psi_2 \in \tau(i) \), or \(\psi_1 \in \tau(i) \) and \(\psi_1 U \psi_2 \in \tau(i + 1) \)

- if \(\psi_1 R \psi_2 \in \tau(i) \) then \(\psi_2 \in \tau(i) \) and either \(\psi_1 \in \tau(i) \) or \(\psi_1 R \psi_2 \in \tau(i + 1) \)
Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above

- $\varphi \in \tau(0)$, and

- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$, then for some $j \geq i$, $\psi_2 \in \tau(j)$ (the eventuality condition)
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

The automaton A_φ is the set of labeling rules + the eventuality condition(s) !

- $\Sigma = 2^P$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s$ and $\varphi_2 \in s$
 - $\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s$ or $\varphi_2 \in s$
- $I = \{s \in S \mid \varphi \in s\}$,
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in P$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \not\in \alpha$,
 - $\Diamond \psi \in s \Rightarrow \psi \in t$,
 - $\psi_1 \mathcal{U} \psi_2 \in s \Rightarrow \psi_2 \in s$ or $[\psi_1 \in s$ and $\psi_1 \mathcal{U} \psi_2 \in t]$
 - $\psi_1 \mathcal{R} \psi_2 \in s \Rightarrow \psi_2 \in s$ and $[\psi_1 \in s$ or $\psi_1 \mathcal{R} \psi_2 \in t]$
Building the GBA $A_{\varphi} = \langle S, I, T, F \rangle$

- for each eventuality $\phi U \psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ

- it is sufficient to ensure that, for each $\phi U \psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi U \psi$ and ψ appear

- let $\phi_1 U \psi_1, \ldots \phi_n U \psi_n$ be the “until” subformulae of φ

$F = \{F_1, \ldots, F_n\}$, where:

$$F_i = \{s \in S \mid \phi_i U \psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i U \psi_i \notin s\}$$

for all $1 \leq i \leq n$.