The McNaughton Theorem
McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω-recognizable subset of Σ^ω can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that ω-recognizable languages are closed under complement.
Oriented Trees

Let Σ be an alphabet of labels.

An **oriented tree** is a pair of partial functions $t = \langle l, s \rangle$:

- $l : \mathbb{N} \rightarrow \Sigma$ denotes the labels of the nodes
- $s : \mathbb{N} \rightarrow \mathbb{N}^*$ gives the **ordered** list of children of each node

$$\text{dom}(l) = \text{dom}(s) \overset{\text{def}}{=} \text{dom}(t)$$

$p \leq q$: q is a successor of p in t

$p \preceq_{\text{left}} q$: p is **to the left** of q in t ($p \leq q$ and $p \not\preceq q$)
Safra Trees

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

A *Safra tree* is a pair $\langle t, m \rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq \text{dom}(t)$ is the set of *marked positions*, such that:

- each marked position is a leaf
- for each $p \in \text{dom}(t)$, the union of labels of its children is a strict subset of $t(p)$
- for each $p, q \in \text{dom}(t)$, if $p \not\leq q$ and $q \not\leq p$ then $t(p) \cap t(q) = \emptyset$

Proposition 1 A Safra tree has at most $\|S\|$ nodes.

$$r(p) = t(p) \setminus \bigcup_{q < p} t(q)$$

$$\|\text{dom}(t)\| = \sum_{p \in \text{dom}(t)} 1 \leq \sum_{p \in \text{dom}(t)} \|r(p)\| \leq \|S\|$$
Intuition
Initial State

We build a Rabin automaton $B = \langle S_B, i_B, T_B, \Omega_B \rangle$, where:

- S_B is the set of all Safra trees $\langle t, m \rangle$ labeled with subsets of S
- $i_B = \langle t, m \rangle$ is the Safra tree defined as either:
 - $\text{dom}(t) = \{1\}, t(1) = I$ and $m = \emptyset$ if $I \cap F = \emptyset$
 - $\text{dom}(t) = \{1\}, t(1) = I$ and $m = \{1\}$ if $I \subseteq F$
 - $\text{dom}(t) = \{1, 2\}, t(1) = I, t(2) = I \cap F$ and $m = \{2\}$ if $I \cap F \neq \emptyset$
Classical Subset Move

[Step 1] $\langle t_1, m_1 \rangle$ is the tree with $\text{dom}(t_1) = \text{dom}(t)$, $m_1 = \emptyset$, and $t_1(p) = \{ s' \mid s \xrightarrow{\alpha} s', s \in t(p) \}$, for all $p \in \text{dom}(t)$
Spawn New Children

[Step 2] \(\langle t_2, m_2 \rangle \) is the tree such that, for each \(p \in \text{dom}(t_1) \), if \(t_1(p) \cap F \neq \emptyset \) we add a new child to the right, identified by the first available id, and labeled \(t_1(p) \cap F \), and \(m_2 \) is the set of all such children.
Horizontal Merge

[Step 3] \(\langle t_3, m_3 \rangle \) is the tree with \(\text{dom}(t_3) = \text{dom}(t_2), \ m_3 = m_2 \), such that, for all \(p \in \text{dom}(t_3) \), \(t_3(p) = t_2(p) \setminus \bigcup_{q \prec_{\text{left}} p} t_2(q) \)
Delete Empty Nodes

[Step 4] \(\langle t_4, m_4 \rangle\) is the tree such that \(\text{dom}(t_4) = \text{dom}(t_3) \setminus \{p \mid t_3(p) = \emptyset\}\) and \(m_4 = m_3 \setminus \{p \mid t_3(p) = \emptyset\}\)
Vertical Merge

[Step 5] \(\langle t_5, m_5 \rangle \) is \(m_5 = m_4 \cup V \), \(dom(t_5) = dom(t_4) \setminus \{ q \mid p \in V, \ p < q \} \),

\(V = \{ p \in dom(t_4) \mid t_4(p) = \bigcup_{p < q} t_4(q) \} \)
Accepting Condition

The Rabin accepting condition is defined as
\[\Omega_B = \{(N_q, P_q) \mid q \in \bigcup_{(t,m) \in S_B} \text{dom}(t)\}, \]
where:
- \(N_q = \{(t,m) \in S_B \mid q \notin \text{dom}(t)\}\)
- \(P_q = \{(t,m) \in S_B \mid q \in m\}\)

\[\Omega_B = \{(\{R_1\}, \{R_2\}), (\{R_2\}, \{R_1\})\} \]
Correctness of Safra Construction

Lemma 1 For $0 \leq i \leq n - 1$, $S_{i+1} \subseteq T(S_i, \alpha_{i+1})$. Moreover, for every $q \in S_n$, there is a path in A starting in some $q_0 \in S_0$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König’s Lemma)
Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u = \alpha_0\alpha_1\alpha_2 \ldots$

$$\pi : q_0 \xrightarrow{\alpha_0} q_1 \xrightarrow{\alpha_1} q_2 \ldots$$

corresponds to a unique infinite path of B:

$$i_B = R_0 \xrightarrow{\alpha_0} R_1 \xrightarrow{\alpha_1} R_2 \ldots$$

where each q_i belongs to the root of R_i

If the root is marked infinitely often, then u is accepted. Otherwise, let n_0 be the largest number such that the root is marked in R_{n_0}. Let $m > n_0$ be the smallest number such that $q_m \in F$ is repeated infinitely often in π.

Since $q_m \in F$ it appears in a child of the root. If it appears always on the same position p_m and the node is marked infinitely often, then the path is accepting. Otherwise it appears to the left of p_m from some n_1 on (horizontal merge). This left switch can occur a finite number of times.
Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states do we need for an equivalent Rabin automaton?

- The **upper bound** is $2^{O(n \log n)}$ states.
- The **lower bound** is of at least $n!$ states.
Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree $\langle t, m \rangle$ can be uniquely described by the functions:

- $S \rightarrow \{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in \text{dom}(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow \{0, 1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n + 1)^n \cdot 2^n \cdot (n + 1)^n \cdot (n + 1)^n \leq (n + 1)^{4n}$ Safra trees, hence the upper bound is $2^{O(n \log n)}$.
The Language L_n

$\Sigma = \{1, \ldots, n, \#\}$

$\alpha \in L_n$ if there exist $i_1, \ldots, i_n \in \{1, \ldots, n\}$ such that

- $\alpha_k = i_1$ is the first occurrence of i_1 in α and $q_0 \xrightarrow{\alpha_0 \ldots \alpha_k} q_{i_1}$
- the pairs $i_1i_2, i_2i_3, \ldots, i_ni_1$ appear infinitely often in α.

$(3\#32\#21\#1)^\omega \in L_3$

$(312\#)^\omega \not\in L_3$
The Language L_n

Lemma 2 (Permutation) For each permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$, the infinite word $(i_1i_2\ldots i_n\#)\omega \notin L_n$.

Lemma 3 (Union) Let $A = (S, i, T, \Omega)$ be a Rabin automaton with $\Omega = \{\langle N_1, P_1 \rangle, \ldots, \langle N_k, P_k \rangle\}$ and ρ_1, ρ_2, ρ be runs of A such that

\[
\inf(\rho_1) \cup \inf(\rho_2) = \inf(\rho)
\]

If ρ_1 and ρ_2 are not successful, then ρ is not successful either.
Proving the $n!$ Lower Bound

Suppose that A recognizes L_n. We need to show that A has $\geq n!$ states.

Let $\alpha = i_1, i_2, \ldots, i_n$ and $\beta = j_1, j_2, \ldots, j_n$ be two permutations of $1, 2, \ldots, n$. Then the words $(i_1i_2\ldots i_n\#)^\omega$ and $(j_1j_2\ldots j_n\#)^\omega$ are not accepted.

Let ρ_α, ρ_β be the non-accepting runs of A over α and β, respectively.

Claim 1 $\inf(\rho_\alpha) \cap \inf(\rho_\beta) = \emptyset$

Then A must have $\geq n!$ states, since there are $n!$ permutations.
Proving the $n!$ Lower Bound

By contradiction, assume $q \in \inf(\rho_\alpha) \cap \inf(\rho_\beta)$. Then we can build a run ρ such that $\inf(\rho) = \inf(\rho_1) \cup \inf(\rho_2)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

\[
\begin{align*}
i_1 & \ldots \ i_{k-1} \ i_k \ i_{k+1} \ \ldots \ i_{l-1} \ i_l \ \ldots \ i_n \\
\neq & \neq \neq \\
\hat{j}_1 & \ldots \ \hat{j}_{k-1} \ \hat{j}_k \ \hat{j}_{k+1} \ \ldots \ \hat{j}_{r-1} \ \hat{j}_r \ \ldots \ \hat{j}_n
\end{align*}
\]

\[
\begin{align*}
i_k & \ i_{k+1}, \ \ldots \ i_l = \hat{j}_k \ \hat{j}_{k+1}, \ \ldots \ \hat{j}_{r-1}, \ \hat{j}_r = i_k
\end{align*}
\]

The new word is accepted since the pairs $i_ki_{k+1}, \ldots, j_kj_{k+1}, \ldots, j_{r-1}i_k$ occur infinitely often. Contradiction with the fact that ρ is not accepting.
The Big Picture

NBA \rightarrow EXP \rightarrow MA \rightarrow EXP \rightarrow RA

P \rightarrow NBA \rightarrow EXP \rightarrow MA \rightarrow EXP \rightarrow RA

DBA \rightarrow EXP \rightarrow MCNAUGHTON \rightarrow RA

2^{O(n \log n)}
Linear Temporal Logic
Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
 - **Partial Correctness** :
 \[
 \{ \varphi \} P \{ \psi \} \text{ iff for any } s \models \varphi, \text{ if } P \text{ terminates on } s, \text{ then } P(s) \models \psi
 \]
 - **Total Correctness** :
 \[
 \{ \varphi \} P \{ \psi \} \text{ iff for any } s \models \varphi, P \text{ terminates on } s \text{ and } P(s) \models \psi
 \]
 - **Termination** :
 \[
 P \text{ terminates on } s
 \]

- Need to reason about **infinite computations** :
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. “every request is eventually answered”
Safety vs. Liveness

- **Safety**: *something bad never happens*

 A counterexample is an **finite** execution leading to something bad happening (e.g. an assertion violation).

- **Liveness**: *something good eventually happens*

 A counterexample is an **infinite** execution on which nothing good happens (e.g. the program does not terminate).
Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

\[
\{p, q\} \{\neg p, \neg q\} (\{\neg p, q\} \{p, q\})^\omega
\]

Starting from position 2, \(q\) holds forever. \(\square\)
Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of atomic propositions.

A *Kripke structure* is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of *states*,
- $s_0 \in S$ a designated *initial state*,
- $\rightarrow : S \times S$ is a *transition relation*,
- $L : S \rightarrow 2^\mathcal{P}$ is a *labeling function*.
Paths in Kripke Structures

A path in \(K \) is an infinite sequence \(\pi : s_0, s_1, s_2 \ldots \) such that, for all \(i \geq 0 \), we have \(s_i \rightarrow s_{i+1} \).

By \(\pi(i) \) we denote the \(i \)-th state on the path.

By \(\pi_i \) we denote the suffix \(s_i, s_{i+1}, s_{i+2} \ldots \).

\[
\text{inf}(\pi) = \{ s \in S \mid s \text{ appears infinitely often on } \pi \}
\]

If \(S \) is finite and \(\pi \) is infinite, then \(\text{inf}(\pi) \neq \emptyset \).
Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots,
- boolean connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$,
- temporal connectives $\bigcirc, \Box, \Diamond, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi$, $\Box \varphi$, $\Diamond \varphi$, $\varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.
Temporal Operators

- ⃝ is read **at the next time** (in the next state)

- ✷ is read **always in the future** (in all future states)

- ◊ is read **eventually** (in some future state)

- \mathcal{U} is read **until**

- \mathcal{R} is read **releases**
Linear Temporal Logic: Semantics

$$K, \pi \models p \iff p \in L(\pi(0))$$
$$K, \pi \models \neg \varphi \iff K, \pi \not\models \varphi$$
$$K, \pi \models \varphi \land \psi \iff K, \pi \models \varphi \text{ and } K, \pi \models \psi$$
$$K, \pi \models \lozenge \varphi \iff K, \pi \models \top \land \varphi$$
$$K, \pi \models \square \varphi \iff K, \pi_1 \models \varphi$$
$$K, \pi \models \varphi \land \psi \iff \text{there exists } k \in \mathbb{N} \text{ such that } K, \pi_k \models \psi$$
and $$K, \pi_i \models \varphi \text{ for all } 0 \leq i < k$$

Derived meanings:

$$K, \pi \models \lozenge \varphi \iff K, \pi \models \top \land \varphi$$
$$K, \pi \models \square \varphi \iff K, \pi \models \neg \lozenge \neg \varphi$$
$$K, \pi \models \varphi \land \psi \iff K, \pi \models \neg \neg \varphi \land \psi$$
Examples

- p holds throughout the execution of the system (p is invariant): $\square p$
- Whenever p holds, q is bound to hold in the future: $\square (p \rightarrow \Diamond q)$
- p holds infinitely often: $\square \Diamond p$
- p holds forever starting from a certain point in the future: $\Diamond \square p$
- $\square (p \rightarrow \bigcirc (\neg q U r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- $p R q$: q is true unless this obligation is released by p being true in a previous state.
LTL vs. FOL

Theorem 2 *LTL and FOL on infinite words have the same expressive power.*

From LTL to FOL:

\[
\begin{align*}
Tr(q) & = p_q(t) \\
Tr(\neg \varphi) & = \neg Tr(\varphi) \\
Tr(\varphi \land \psi) & = Tr(\varphi) \land Tr(\psi) \\
Tr(\bigcirc \varphi) & = Tr(\varphi)[t + 1/t] \\
Tr(\varphi U \psi) & = \exists x . Tr(\psi)[x/t] \land \forall y . y < x \rightarrow Tr(\varphi)[y/t]
\end{align*}
\]

The direction from FOL to LTL is known as Kamp’s Theorem.
The Big Picture

- SF
- Schützenberger’s Theorem
- Kamp’s Theorem
- FOL
- AP
- LTL
- APLTL
LTL Model Checking
System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often).

- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_φ that accepts all sequences over $2^\mathcal{P}$ satisfying φ.

Q: Since LTL \subseteq S1S, this automaton can be built, so why bother?

- Check whether $\mathcal{L}(A_\varphi) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.
Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, \mathcal{F} \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $\mathcal{F} = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$\inf(\pi) \cap F_i \neq \emptyset$$
GBA and BA are equivalent

Let $A = \langle S, I, T, F \rangle$, where $F = \{F_1, \ldots, F_k\}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $S' = S \times \{1, \ldots, k\}$,
- $I' = I \times \{1\}$,
- $(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$ iff $(s, t) \in T$ and:
 - $j = i$ if $s \not\in F_i$,
 - $j = (i \mod k) + 1$ if $s \in F_i$.
- $F' = F_1 \times \{1\}$.
The idea of the construction

Let $K = \langle S, s_0, \rightarrow, L \rangle$ be a Kripke structure over a set of atomic propositions \mathcal{P}, $\pi : \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.
Closure

Let φ be an LTL formula written in negation normal form.

The closure of φ is the set $Cl(\varphi) \in 2^{L(LTL)}$:

- $\varphi \in Cl(\varphi)$
- $\Box \psi \in Cl(\varphi) \Rightarrow \psi \in Cl(\varphi)$
- $\psi_1 \cdot \psi_2 \in Cl(\varphi) \Rightarrow \psi_1, \psi_2 \in Cl(\varphi)$, for all $\cdot \in \{\land, \lor, \cup, \Rightarrow\}$.

Example 2 $Cl(\Diamond p) = Cl(\top \cup p) = \{\Diamond p, p, \top\}$

Q: What is the size of the closure relative to the size of φ?
Labeling rules

Given \(\pi : \mathbb{N} \to 2^\mathcal{P} \) and \(\varphi \), we define \(\tau : \mathbb{N} \to 2^{\text{Cl}(\varphi)} \) as follows:

- for \(p \in \mathcal{P} \), if \(p \in \tau(i) \) then \(p \in \pi(i) \), and if \(\neg p \in \tau(i) \) then \(p \notin \pi(i) \)

- if \(\psi_1 \land \psi_2 \in \tau(i) \) then \(\psi_1 \in \tau(i) \) and \(\psi_2 \in \tau(i) \)

- if \(\psi_1 \lor \psi_2 \in \tau(i) \) then \(\psi_1 \in \tau(i) \) or \(\psi_2 \in \tau(i) \)
Labeling rules

\[\varphi \cup \psi \iff \psi \lor (\varphi \land \circ (\varphi \cup \psi)) \]
\[\varphi \cap \psi \iff \psi \land (\varphi \lor \circ (\varphi \cap \psi)) \]

- if \(\circ \psi \in \tau(i) \) then \(\psi \in \tau(i + 1) \)
- if \(\psi_1 \cup \psi_2 \in \tau(i) \) then either \(\psi_2 \in \tau(i) \), or \(\psi_1 \in \tau(i) \) and \(\psi_1 \cup \psi_2 \in \tau(i + 1) \)
- if \(\psi_1 \cap \psi_2 \in \tau(i) \) then \(\psi_2 \in \tau(i) \) and either \(\psi_1 \in \tau(i) \) or \(\psi_1 \cap \psi_2 \in \tau(i + 1) \)
Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above

- $\varphi \in \tau(0)$, and

- if $\psi_1 \cup \psi_2 \in \tau(i)$, then for some $j \geq i$, $\psi_2 \in \tau(j)$ (the eventuality condition)
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

The automaton A_φ is the set of labeling rules + the eventuality condition(s)!

- $\Sigma = 2^P$ is the alphabet

- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s$ and $\varphi_2 \in s$
 - $\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s$ or $\varphi_2 \in s$

- $I = \{ s \in S \mid \varphi \in s \}$,

- $(s, \alpha, t) \in T$ iff:
 - for all $p \in P$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
 - $\bigcirc \psi \in s \Rightarrow \psi \in t$,
 - $\psi_1 \mathbf{U} \psi_2 \in s \Rightarrow \psi_2 \in s$ or $[\psi_1 \in s$ and $\psi_1 \mathbf{U} \psi_2 \in t]$
 - $\psi_1 \mathbf{R} \psi_2 \in s \Rightarrow \psi_2 \in s$ and $[\psi_1 \in s$ or $\psi_1 \mathbf{R} \psi_2 \in t]$
Building the GBA $A_\varphi = \langle S, I, T, F \rangle$

- for each eventuality $\phi U \psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ

- it is sufficient to ensure that, for each $\phi U \psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi U \psi$ and ψ appear

- let $\phi_1 U \psi_1, \ldots \phi_n U \psi_n$ be the “until” subformulae of φ

$F = \{F_1, \ldots, F_n\}$, where:

$$F_i = \{s \in S \mid \phi_i U \psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i U \psi_i \not\in s\}$$

for all $1 \leq i \leq n$.