
8 Nondeterministic Tree Automata

Frank Nießner

Institut für Informatik
Johann Wolfgang Goethe-Universität Frankfurt am Main

8.1 Introduction

The automaton models introduced so far mainly differ in their acceptance con-
ditions. However, they all consume infinite sequences of alphabet symbols, i.e.,
they consume ω-words. We therefore call these automata word automata. In
this chapter we define finite-state automata which process infinite trees instead
of infinite words and consequently we call them tree automata.

Automata on infinite objects, in general, play an important role in those ar-
eas of computer science where nonterminating systems are investigated. System
specifications can be translated to automata and thus questions about systems
are reduced to decision problems in automata theory. Tree automata are more
suitable than words when nondeterminism needs to be modelled.

Furthermore, there are close connections between tree automata and logical
theories, which allow to reduce decision problems in logic to decision problems
for automata. Such reductions will be thoroughly discussed in Chapter 11. Ra-
bin [148] showed decidability of monadic second-order logic using tree automata
which process infinite binary trees. The crucial part in his paper is a comple-
mentation theorem for nondeterministic finite-state automata on infinite trees.
The proof of this theorem implicitly entails determinacy of parity games. How-
ever, Büchi [21] observed that this proof can be much simplified when games
are applied explicitly. This approach was successfully implemented by numerous
authors, see for instance [77, 55]. Here, we present a game-theoretically based
proof of Rabin’s theorem according to Thomas [183] and Zielonka [203]. For this
purpose we use some results introduced in the previous chapters about infinite
games, especially the determinacy theorem for parity games.

Moreover, we consider the emptiness problem for finite-state automata on
infinite trees in terms of decidability and efficiency. These observations will be
useful in the subsequent chapter about monadic second-order logic.

The chapter is structured as follows. In Section 8.2 we introduce notations
and definitions. Section 8.3 introduces two tree automaton models which differ
in their acceptance conditions but recognize the same classes of tree languages.
We merely sketch the proof of equivalence between the two models. A game-
theoretical view on tree automata and their acceptance conditions, together
with the main results is given in Section 8.4. Then we are prepared to restate
the above-mentioned complementation theorem. The last section, Section 8.5,
discusses decidability questions of tree automata. We show that for a particular
class of tree automata it is decidable whether their recognized language is empty
or not.

E. Grädel et al. (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp. 135-152, 2002.
 Springer-Verlag Berlin Heidelberg 2002

136 Frank Nießner

8.2 Preliminaries

The infinite binary tree is the set Tω = {0, 1}∗ of all finite words on {0, 1}.
The elements u ∈ Tω are the nodes of Tω where ε is the root and u0, u1 are the
immediate (say) left and right successors of node u.

We restrict ourselves to binary trees, since they are sufficient for most appli-
cations, see, for instance, Chapter 12.

Let u, v ∈ Tω, then v is a successor of u, denoted by u < v, if there exists a
w ∈ Tω such that v = uw.

An ω-word π ∈ {0, 1}ω is called a path of the binary tree Tω. The set
Pre<(π) ⊂ {0, 1}∗ of all prefixes of path π (linearly ordered by <) describes the
set of nodes which occur in π.

For sets Θ, Σ and a mapping µ : Θ→ Σ, we define the infinity set Inf(µ) =
{σ ∈ Σ | µ−1(σ) is an infinite set}.

We consider here trees where the nodes are labeled with a symbol of an
alphabet. A mapping t : Tω → Σ labels trees with symbols of Σ. The set of all
Σ-labeled trees is denoted by TωΣ (or TΣ for simplicity, if no confusion occurs).
Sometimes we are only interested in the labeling of a path π through t. Hence
let t|π : Pre<(π)→ Σ denote the restriction of the mapping t to π.

For n an integer and 1 ≤ i ≤ n, the projection onto the i-th coordinate
is the mapping pi : Σn → Σ such that pi((σ1,σ2, . . . ,σn)) = σi. We extend
projections to labeled infinite trees. For a Σ1 × Σ2-labeled tree t ∈ TωΣ1×Σ2

,
let p1(t) ∈ TωΣ1

be the corresponding tree labeled exclusively with elements of
Σ1. Projections can be applied to sets as well. Thus a projection p1(Θ) of a set
Θ ⊆ TωΣ1×Σ2

is defined as p1(Θ) = {p1(t) | t ∈ Θ}.

Example 8.1. Let Σ = {a, b}, t(ε) = a, t(w0) = a and t(w1) = b, w ∈ {0, 1}∗.

T ω : t :ε a

0 1 a b

00 01 10 11 a b a b

Fig. 8.1. A tree with corresponding labeling

Exercise 8.1. Prove the above-mentioned assertion that binary trees suffice to
describe the general case, i.e., describe an encoding of trees with arbitrary finite
branching as binary trees.

8 Nondeterministic Tree Automata 137

8.3 Finite-State Tree Automata

The automata seen so far processed finite or infinite sequences of alphabet sym-
bols. They consume one input symbol at a time and thereby enter a successor
state determined by a transition relation. It is obvious that we somehow have to
modify the automaton models in order to make them running on infinite trees.
Since each position in a binary tree has two successors (rather than one successor
as in infinite words) it is natural to define for a state out of a set Q and an input
symbol from Σ two successor states in the transition relation, that is, transitions
are now elements of Q × Σ × Q × Q. Computations then start at the root of
an input tree and work through the input on each path in parallel. A transition
(q, a, q1, q2) allows to pass from state q at node u with input-tree label a to the
states q1, q2 at the successor nodes u0, u1. Afterwards there may be transitions
which allow to continue from q1 and from q2, and so on. This procedure yields a
Q-labeled tree which we call the run of an automaton on an input tree. Such a
run is successful if all the state sequences along the paths meet an acceptance
condition similar to the types of acceptance conditions known already from
sequential ω-automata.

We start with the description of a Muller tree automaton.

Definition 8.2. A Muller tree automaton is a quintuple A = (Q,Σ,∆, qI,F)
where Q is a finite state set, Σ is a finite alphabet,∆ ⊆ Q×Σ×Q×Q denotes the
transition relation, qI is an initial state and F ⊆ P (Q) is a set of designated state
sets. A run of A on an input tree t ∈ TΣ is a tree (∈ TQ, satisfying ((ε) = qI and
for all w ∈ {0, 1}∗ : (((w), t(w), ((w0), ((w1)) ∈ ∆. It is called successful if for
each path π ∈ {0, 1}ω the Muller acceptance condition is satisfied, that is,
if Inf((|π) ∈ F . We refer to Section 1.3.2 for a thorough definition of the Muller
acceptance condition. A accepts the tree t if there is a successful run of A on t.
The tree language recognized by A is the set T (A) = {t ∈ TωA | A accepts t}.

Example 8.3. We consider the tree language T = {t ∈ T{a,b} | there is a path π
through t such that t|π ∈ (a + b)∗(ab)ω}. The language can be recognized by a
Muller tree automaton A that guesses a path through t and checks, if the label of
this path belongs to (a+ b)∗(ab)ω. For this purpose A memorizes in its state the
last read input symbol. If in the next step the current input symbol varies from
that in the state memory, then it gets noticed in A’s successor state, otherwise A
switches back to the initial state qI. Hence a path label in (a + b)∗(ab)ω involves
an infinite alternation between a state qa memorizing input symbol a and a state
qb memorizing b. Therefore F includes the acceptance set {qa, qb}. It remains to
be explained how A can guess a path. Guessing a path means to decide whether
the left or the right successor node of the input tree belongs to the path. In
the corresponding run this node obtains the label qa or qb, depending on the
current input symbol. The remaining node gets the label qd which signals that
it is outside the guessed path.

Formally, A = ({qI, qa, qb, qd}, {a, b},∆, qI, {{qa, qb}, {qd}}). Transition re-
lation ∆ includes the following initial transitions (qI, a, qa, qd), (qI, a, qd, qa),

138 Frank Nießner

(qI, b, qb, qd), (qI, b, qd, qb). Since we do not care about the situation outside
the path guessed, i.e, in a run the left and right successors of a node labeled
by qd will get the label qd as well, independently of the current input sym-
bol, it follows (qd, a, qd, qd) ∈ ∆ and (qd, b, qd, qd) ∈ ∆. If for a node with
label qa the corresponding input label is b, then the automaton enters state
qb, formally (qa, b, qb, qd), (qa, b, qd, qb) ∈ ∆. Reading an a instead means that
there have been two consecutive a’s, i.e., we are still checking the label prefix
(a + b)∗. In this case A reenters qI, that is, (qa, a, qI, qd),(qa, a, qd, qI) ∈ ∆. Since
the case for node label qb is symmetrical, (qb, a, qa, qd),(qb, a, qd, qa) ∈ ∆ and
(qb, b, qI, qd),(qb, b, qd, qI) ∈ ∆.

On the input tree t of Example 8.1 there exists a successful run (that could
start with the transitions depicted in Figure 8.2.

t : " :a qI

a b qd qa

a b a b qd qd qb qd

Fig. 8.2. First transitions of "

Exercise 8.2. Define a Muller tree automaton recognizing the language T = {t ∈
T{a,b} | there is a path π through t such that after any occurrence of letter a in
π there is some occurrence of letter b}.

In a similar way we can define parity tree automata, that is, we adopt the
parity condition, introduced in [55], to tree automata. It will turn out that this
automaton model is particularly useful for the solution of the complementation
problem for automata on infinite trees.

Definition 8.4. A parity tree automaton is a quintuple A = (Q,Σ,∆, qI, c)
where Q is a finite state set, Σ is a finite alphabet, ∆ ⊆ Q×Σ×Q×Q denotes
the transition relation, qI is an initial state, and c : Q → {0, ..., k}, k ∈ IN is
a function which assigns an index value out of a finite index set to each state
of the automaton. Sometimes the index values are called colors where c is the
corresponding coloring function. Again, a run of A on an input tree t ∈ TΣ is a
tree (∈ TQ, satisfying ((ε) = qI and ∀w ∈ {0, 1}∗ : (((w), t(w), ((w0), ((w1)) ∈
∆. We call it successful if for each path π ∈ {0, 1}ω the parity acceptance
condition is satisfied, that is, if min{c(q) | q ∈ Inf((|π)} is even. The tree
language recognized by A is the set T (A) = {t ∈ TωA | A accepts t}.

Example 8.5. We consider the tree language T = {t ∈ T{a,b} | for each path π
through t holds t|π ∈ aω ∪ (a + b)∗bω}. The language can be recognized by a

8 Nondeterministic Tree Automata 139

parity tree automaton A that checks simultaneously whether the labels of all
paths belong to aω ∪ (a + b)∗bω or not. Hence there is no necessity to guess a
correct path, i.e, for each state the left and right successor states will be identical.

The automaton starts in the initial state qI and changes to successor states
qb, qb if an alphabet symbol b was read and remains in qI for a symbol a, respec-
tively. We observe that reading a symbol b means we cannot have a label aω

on the corresponding path. The following initial transitions (qI, b, qb, qb), (qI, a,
qI, qI) belong to the transition relation ∆ of A. The automaton remains in qb if
the corresponding input is a b, i.e., (qb, b, qb, qb) ∈ ∆, otherwise it switches both
successor states and thus (qb, a, qa, qa) ∈ ∆. A behaves symmetrically when its
current state is qa, that is, (qa, a, qa, qa), (qa, b, qb, qb) ∈ ∆.

While reading a’s, A labels the nodes of his run on t with qI. An alphabet
symbol b signals that from now on the automaton has to verify (a+b)∗bω. This is
done by using the states qa and qb which indicate that the symbol last read was
a or b, respectively. On paths which labels belong to (a + b)∗bω the automaton
remains, from some point of time, in state qb and consumes b’s exclusively. Thus,
if we index the states by c(qa) = 1 and c(qb) = 2 = c(qI), we can ensure that
only the desired trees are accepted.

Exercise 8.3. Define a Muller and a parity tree automaton recognizing the lan-
guage T = {t ∈ T{a,b} | any path through t carries only finitely many b}.

Büchi, Rabin and Streett tree automata are defined analogously, i.e., we
provide the tree automata with a Büchi, Rabin or Streett acceptance condition.
For a thorough definition of these acceptance conditions see Chapter 1. Hence
a run of one of these automata is successful if and only if for each path of the
run the corresponding acceptance condition is satisfied. Büchi tree automata
differ from the other automaton models in terms of their generative capacity,
i.e., they differ in terms of the language class recognized. We state this fact in
the following theorem.

Theorem 8.6. Büchi tree automata are strictly weaker than Muller tree au-
tomata in the sense that there exists a Muller tree automaton recognizable lan-
guage which is not Büchi tree automaton recognizable [149].

Proof. The language T = {t ∈ T{a,b} | any path through t carries only finitely
many b} can obviously be recognized by a Muller tree automaton with transitions
(qI, a, qI, qI), (q1, a, qI, qI), (qI, b, q1, q1), (q1, b, q1, q1) and the designated set F =
{{qI}}. (This solves one part of the above exercise.) However, it can not be
recognized by any Büchi tree automaton.

Assume for contradiction that T is recognized by a Büchi tree automaton B =
(Q,Σ,∆, qI, F) such that card(Q) = n. Consider the input tree tn ∈ T{a,b} which
has a label b exactly at the nodes 1+0, 1+01+0, . . . , (1+0)n, i.e., at positions that
we reach by choosing the left successor after a sequence of right successors, but
only for at most n left choices. It is obvious that tn ∈ T . Thus there is a successful
run (of B on tn. On path 1ω a final state is visited infinitely often, hence there
must be a natural number m0 so that ((1m0) ∈ F . The same observation holds

140 Frank Nießner

for path 1m001ω with m1 and ((1m001m1) ∈ F . Proceeding in this way we obtain
n + 1 positions 1m0 , 1m001m1, . . . , 1m001m10 . . . 1mn on which (runs through a
final state. This means that there must be positions, say u and v, where u < v
and ((u) = ((v) = f ∈ F . We consider the finite path πu in tn from u to v.
By construction this path performs at least one left turn and thus it contains a
node with label b. Now we construct another input tree t′n by infinite repetition
of πu. This tree contains an infinite path which carries infinitely many b’s, thus
t′n)∈ T , but we can easily construct a successful run on t′n by copying the actions
of (to πu infinitely often, hence getting a contradiction. *+

One can show that Muller, parity, Rabin and Streett tree automata all ac-
cept the same class of languages. The proofs are similar to those for sequential
automata from the first chapter. This is not a surprising fact because for tree
automata the appropriate acceptance condition is applied to each path of a run
separately, i.e., to a sequence of states.

Theorem 8.7. Muller, parity, Rabin and Streett tree automata all recognize the
same tree languages.

Proof. We sketch the transformations of tree automata according to those for
word automata described in Chapter 1.

We start with transforming Muller acceptance to parity acceptance. This
transformation reuses the modified LAR construction already introduced in
Section 1.4.2. Let A = ({1, 2, . . . , n},Σ, 1,∆,F) be a Muller tree automaton.
The states of the parity tree automaton A′ are permutations of subsets of A’s
states together with a marker) that indicates the position of the last change in
the record. If (i, a, i′, i′′) ∈ ∆, then for all states u)v where i is the rightmost
symbol we have to add transitions (u)v, a, u′)v′, u′′)v′′) to the transition relation
set of A′. The states u′)v′ and u′′)v′′ are the successor states determined by the
rules described in Section 1.4.2. If the states out of

{ u)v | |u| < i } ∪ { u)v | |u| = i ∧ { a ∈ Σ | a - v })∈ F }

are colored by 2i− 1 and the states out of

{ u)v | |u| = i ∧ { a ∈ Σ | a - v } ∈ F }

are colored by 2i then T (A) = T (A′).
Next we transform parity acceptance to a Streett acceptance condition. Let

A = (Q,Σ,∆, qI, c) be a parity tree automaton where c : Q → {0, ..., k},
k ∈ IN. An equivalent Streett tree automaton is defined by A′ = (Q,Σ,∆, qI,Ω)
where Ω := {(E0, F0), . . . , (Er, Fr)}, r :=

⌊
k
2

⌋
and for all i ∈ {0, . . . , r} the sets

Ei and Fi are determined by Ei := {q ∈ Q | c(q) < 2i + 1} and Fi := {q ∈ Q |
c(q) = 2i + 1}.

Next, we transform parity acceptance to a Rabin acceptance condition. Let
A = (Q,Σ,∆, qI, c) be a parity tree automaton where c : Q → {0, ..., k},
k ∈ IN. An equivalent Rabin tree automaton is defined by A′ = (Q,Σ,∆, qI,Ω)
where Ω := {(E0, F0), . . . , (Er, Fr)}, r :=

⌊
k
2

⌋
and for all i ∈ {0, . . . , r} the sets

8 Nondeterministic Tree Automata 141

Ei and Fi are determined by Ei := {q ∈ Q | c(q) < 2i} and Fi := {q ∈ Q |
c(q) = 2i}.

Next, we transform Streett acceptance to a Muller acceptance condition. Let
A = (Q,Σ,∆, qI,Ω) be a Streett tree automaton. We define an equivalent Muller
tree automaton by A′ = ({1, 2, . . . , n},Σ, 1,∆,F) where

F := {G ∈ (Q) | ∀(E, F) ∈ Ω . G ∩ E)= ∅ ∨G ∩ F = ∅ }.

Our final transformation transforms Rabin acceptance to Muller acceptance.
Let A = (Q,Σ,∆, qI,Ω) be a Rabin tree automaton. We define an equivalent
Muller tree automaton by A′ = ({1, 2, . . . , n},Σ, 1,∆,F) where

F := {G ∈ (Q) | ∃(E, F) ∈ Ω . G ∩ E = ∅ ∧G ∩ F)= ∅ }. *+

Exercise 8.4. Give an example that shows that the straight-forward conversion
of Muller ω-automata to Büchi ω-automata from Chapter 1 does not work for
tree automata.

8.4 The Complementation Problem for Automata on
Infinite Trees

It is not difficult to prove closure under union, intersection and projection for
finite tree automata languages. We leave this as an exercise.

Exercise 8.5. Prove closure under union, intersection and projection for the class
of Muller tree automaton recognizable languages.

As already mentioned in the introduction, complementation is the essential
problem. We will now show closure under complementation for tree languages
acceptable by parity tree automata (and hence acceptable by Muller tree au-
tomata).

To simplify the proof we use a game-theoretical approach. We identify a
parity tree automaton A = (Q,Σ,∆, qI, c) and an input tree t with an infinite
two-person game GA,t having Player 0 and Player 1 playing the game on t. The
rules of the game are the following ones. The Players move alternately. Player
0 starts a game by picking an initial transition from ∆ such that the alphabet
symbol of this transition equals that at the root of t. Player 1 determines whether
to proceed with the left or the right successor. His opponent reacts by again
selecting a transition from ∆ where the alphabet symbol now must equal the
input symbol of the left or right successor node in t and the current transition
state has to match the left or right successor state of the previous transition,
depending on Player 1’s selection. So in general, it is the task of Player 0 to pick
transitions and it is the task of Player 1 to determine a direction. Hence, due
to Gurevich and Harrington [77], Player 0 and Player 1 are sometimes called
automaton and pathfinder. The sequence of actions represents a play of the
game and induces an infinite sequence of states visited along the path across

142 Frank Nießner

t. Player 0 wins the play if this infinite state sequence satisfies the acceptance
condition of A, otherwise Player 1 wins. Player 0’s goal is it to show that the state
sequences for all paths of the corresponding run meet the acceptance condition,
i.e., that A accepts t. Player 1 tries to prevent Player 0 from being the winner,
his goal is to verify the existence of a path such that the corresponding state
sequence violates the acceptance condition of A, i.e., the rejection of t by A.

Example 8.8. For our input tree t and the parity tree automaton A introduced
in Example 8.5, Figure 8.3 shows the first moves in a play of GA,t. Each arrow
is labeled with that player whose decision determines the succeeding position.

ε, a, qI ε, a, qI

a b 0, a, qI 1, b, qI

a b a b a b a b

−→ −→
Player 0: Player 1:

ε, a, qI ε, a, qI

0, a, qI 1, b, qI 0, a, qI 1, b, qI

a b a b a b 10, a, qb 11, bqb

−→ −→
Player 0: Player 1:

Fig. 8.3. First moves in a play of GA,t

The positions from where on Player 0 or Player 1 have to react are called
game positions. Thus a play is an infinite sequence of game positions which
alternately belong to Player 0 or Player 1. A game can be considered as an
infinite graph which consists of all game positions as vertices. Edges between
different positions indicate that the succeeding position is reachable from the
preceding one by a valid action of Player 0 or Player 1, respectively. The game
positions of Player 0 are defined by

V0 := {(w, q) | w ∈ {0, 1}∗, q ∈ Q}.

8 Nondeterministic Tree Automata 143

Player 1’s game positions are given by

V1 := {(w, τ) | w ∈ {0, 1}∗, τ ∈ ∆t(w)},

where for each a ∈ Σ,

∆a := {τ ∈ ∆ | ∃q, q′0, q′1 ∈ Q, τ = (q, a, q′0, q
′
1)}.

In a game position u = (w, q), Player 0 chooses a transition τ = (q, t(w), q′0,
q′1) and thus determines the states belonging to the successors of w. Further-
more, by this decision a game position v = (w, τ) of Player 1 is established. The
edge (u, v) then represents a valid move of Player 0. Now Player 1 chooses a di-
rection i ∈ {0, 1} and determines from where to proceed, i.e., Player 1 determines
wi and thus establishes u′ = (wi, q′i) which is again a game position of Player 0.
The edge (v, u′) represents a valid move of Player 1. The usual starting position
of a play is (ε, qI) and thus belongs to Player 0. Now we index the game posi-
tions with the colors of the states belonging to them, i.e., c((w, q)) = c(q) and
c((w, (q, t(w), q′0 , q′1))) = c(q). The games GA,t then meet exactly the definition
of min-parity games given in Chapter 4.

Furthermore the notions of a strategy, a memoryless strategy and a
winning strategy as defined in Section 2.4 apply to the games GA,t as well. A
winning strategy of a game GA,t and a successful run (∈ TQ of the corresponding
automaton A = (Q,Σ,∆, qI, c) are closely related.

The run (keeps track of all transitions that have to be chosen in order
to accept the input tree t. For any of the nodes (w, q), w ∈ {0, 1}∗, q ∈ Q,
where (w0, q′0) and (w1, q′1) are the immediate successors, we can derive the
corresponding transition τ = (q, t(w), q′0, q′1) ∈ ∆. In other words, we know for
each node w in each path π through (which transition to apply. Each of these
paths is an infinite sequence of states that corresponds to a particular play of
the game GA,t. This play is won by Player 0, since the infinite state sequence
is a path of the successful run (. The decisions of Player 1 determine the path
generated by the current play. Since (determines for each node and each path the
correct transition, Player 0 can always choose the right transition, independently
of Player 1’s decisions, i.e., Player 0 has a winning strategy. Thus if there exists
a successful run of A on t, then Player 0 has a winning strategy.

Conversely, we can use a winning strategy f0 for Player 0 in GA,t to construct
a successful run (of A on t. For each game position (w, q) of Player 0, f0

determines the correct transition τ = (q, t(w), q′0, q′1). Player 0 must be prepared
to proceed at game position (w0, q′0) or at game position (w1, q′1) since he can not
predict Player 1’s decision. However, for both positions the winning strategy can
determine correct transitions such that the play can be continued to a winning
play for Player 0. Hence in (we label w by q, w0 by q′0 and w1 by q′1. Proceeding
in this way we obtain the entire run (which is successful since it is determined
by a winning strategy of Player 0. Thus, if Player 0 has a winning strategy in
GA,t, then there exists a successful run of A on t.

We summarize these observations in the following lemma.

144 Frank Nießner

Lemma 8.9. A tree automaton A accepts an input tree t if and only if there is
a winning strategy for Player 0 from position (ε, qI) in the game GA,t.

As already mentioned, a game GA,t which is identified with a parity tree
automaton A and an input tree t meets the definition of parity games. So we
can make use of central results about parity games. As is done in Theorem 6.6,
it can be shown that these games are determined and that memoryless winning
strategies suffice to win a game. Thus from any game position in GA,t, either
Player 0 or Player 1 has a memoryless winning strategy.

We are now prepared to focus on our original problem, namely the comple-
mentation of finite tree automata languages. Given a parity tree automaton A,
we have to specify a tree automaton B that accepts all input trees rejected by
A. Rejection means not accepting an input tree t, or in our game theoretical
notation, following Lemma 8.9, there is no winning strategy for Player 0 from
position (ε, qI) in the game GA,t. However, the above-mentioned results about
parity games guarantee the existence of a memoryless winning strategy starting
at (ε, qI) for Player 1. We will construct an automaton that checks exactly this.

First of all we observe that a memoryless strategy of Player 1 is a function
f : {0, 1}∗ × ∆ → {0, 1} determining a direction 0 (left successor) or 1 (right
successor). But there is a natural isomorphism between such functions and func-
tions {0, 1}∗ → (∆ → {0, 1}), which, by our definition, are trees. So we can
identify memoryless strategies for Player 1 and such trees. We call such trees
strategy trees, and if the corresponding strategy is winning for Player 1 in the
game GA,t, we say it is a winning tree for t.

Remark 8.10. Let A be a parity tree automaton and t be an input tree. There
exists a winning tree for Player 1 if and only if A does not accept t.

Given a parity tree automaton A and an input t we decide whether a tree
s is not a winning tree t using an ω-automaton M with parity acceptance con-
dition that checks for each path π of t and possible move by Player 0 sep-
arately whether the acceptance condition of A is met. If at least once A’s
acceptance condition is met, then s cannot be a winning tree for t and vice
versa. Clearly, the automaton M needs to handle all ω-words of the form u =
(s(ε), t(ε),π1)(s(π1), t(π1),π2) Let L(s, t) be the language of all these words.

Example 8.11. Consider a path π = 01100 · · · through the tree t. An ω-word
u ∈ L(s, t) determined by π could look like the one depicted in Figure 8.4. Here,
every box represents a single alphabet symbol.

fε

t(ε)
0

f0

t(0)
1

f01

t(01)
1

f011

t(011)
0

f0110

t(0110)
0

. . .u:

Fig. 8.4. An ω-word determined by π

8 Nondeterministic Tree Automata 145

Let A be as usual. The automaton M = (Q,Σ′,Λ, qI, c) is designed to handle
any trees s and t. So M’s alphabet is defined by Σ′ = {(f, a, i) | f : ∆ →
{0, 1}, a ∈ Σ, i ∈ {0, 1}}. So A and M have the same acceptance condition. The
automaton M has to check for each possible move of Player 0 if the outcome
is winning for Player 0. This is done nondeterministically: for (f, a, i) ∈ Σ′,
f ∈ mapa, and τ = (q, a, q′0, q

′
1) ∈ ∆a such that f(τ) = i, M has a transition

(q, (f, a, i), q′i). Here, for a ∈ Σ, mapa denotes the set of all mappings from ∆a

to {0, 1}.

Lemma 8.12. The tree s is a winning tree for t if and only if L(s, t)∩L(M) = ∅.

Proof. “If”: Let s be a winning tree. We assume the existence of a path π =
π1π2 . . . such that the corresponding ω-word

u = (s(ε), t(ε),π1)(s(π1), t(π1),π2) . . .

determined by π is an element of L(M). So there is a successful run (= qIq1q2 . . .
of M on u. This implies for each transition

(qj , (s(π1 . . .πj), t(π1 . . .πj),πj+1), qj+1)

that occurs in (the existence of an appropriate transition τj = (qj , t(π1 . . .πj),
q′0, q

′
1) of A such that s(π1 . . .πj) = fπ1...πj where fπ1...πj (τj) = πj+1. If πj+1 = 0

then qj+1 = q′0 otherwise qj+1 = q′1 holds. Now we let these transitions τj be
Player 0’s choices in a play of GA,t where Player 1 reacts by choosing s(π1 . . .πj).
The sequence of states visited along this play is (= qIq1q2 . . . and satisfies M’s
acceptance condition. Hence Player 1 loses even though he played according to
s. So s cannot be a winning tree for t.

“Only if”: Let L(s, t)∩L(M) = ∅. We consider any play of the game GA,t and
assume (qj , t(π1 . . .πj), q′0, q′1) ∈ ∆ to be Player 0’s choice when π1 . . .πj is the
current node. Player 1 plays according to s. The successor state is determined by
s(π1 . . .πj) as is described above, i.e., qj+1 ∈ {q′0, q′1}. Then we obtain an infinite
sequence (= qIq1q2 . . . of states visited along the play. This sequence is as well
the run of M on the corresponding ω-word u = (s(ε), t(ε),π1)(s(π1), t(π1),π2) . . .
∈ L(s, t). Since L(s, t)∩L(M) = ∅, (is not accepting. The run (is a particular
path of A’s run on t which is determined by Player 0’s choices. This implies that
A cannot accept t by this run. However, these observations hold for any run,
thus t)∈ T (A). *+

The word automaton M accepts all sequences over Σ′ which satisfy A’s
acceptance condition. However, we are actually interested in a tree automaton
B which recognizes T (B) = TωΣ′ \ T (A). Thus in order to construct B, we first
of all generate a word automaton S such that L(S) = Σ′ \ L(M). For this
we apply Safra’s determinization construction to M as described in Chapter 3.
Actually Safra’s algorithm applies to nondeterministic Büchi-automata hence, by
the methods specified in Chapter 1, we transform M to a Büchi-automaton. Now
Safra’s construction yields a deterministic Rabin automaton that accepts L(M).
Since a Streett condition is dual to a Rabin condition, we equip the outcome of

146 Frank Nießner

Safra’s algorithm with a Streett condition instead of a Rabin condition to obtain
the desired word automaton S = (Q′,Σ′, δ, q′I,Ω) such that L(S) = Σ′ \ L(M).
Note that due to the determinization process, the number of S’s states can only
be bounded by 2O(n log(n)).

Now we are able to construct the desired tree automaton B = (Q′,Σ,∆′, qI),
which runs S in parallel along each path of an input tree. The transition rela-
tion of B is defined by: (q, a, q1, q2) ∈ ∆′ if and only if there exist transitions
δ(q, (f, a, 0)) = q1 and δ(q, (f, a, 1)) = q2 where f ∈ mapa. Then T (B) accepts
TωΣ′ \ T (A), as we will prove next.

Theorem 8.13. The class of languages recognized by finite-state tree automata
is closed under complementation.

Proof. We make use of the constructions given above. It remains to be shown
that indeed T (B) = TωΣ \ T (A).

We assume t ∈ T (B), i.e., there exists an accepting run (of B on t. Hence
for each path π = π1π2 · · · ∈ {0, 1}ω the corresponding state sequence satisfies
Ω and for each node w ∈ {0, 1}∗ there are transitions δ(q, (s(w), t(w), 0) = q1

and δ(q, (s(w), t(w), 1) = q2 of S where s(w) ∈ mapt(w) and the corresponding
transition of B is (q, t(w), q1, q2). This implies that all words u ∈ L(s, t) are
accepted by S and, since L(S) = Σ′ \ L(M), L(s, t) ∩ L(M) = ∅. Due to
Lemma 8.12 and Remark 8.10, s is a winning tree for Player 1 and A does not
accept t.

Now let t)∈ T (A). This implies the existence of a winning tree s for Player
1 (cf. Lemma 8.10) such that L(s, t) ∩ L(M) = ∅ (cf. Lemma 8.12) where M is
the nondeterministic word automaton over alphabet Σ′ as is constructed above.
It follows L(s, t) ⊆ S, i.e., for each path π = π1π2 · · · ∈ {0, 1}ω there exists a
run on the ω-word u = (s(ε), t(ε),π1)(s(π1), t(π1),π2) · · · ∈ L(s, t) that satisfies
Ω. Hence by construction of B there exists an accepting run (of B on t, that is,
t ∈ T (B). *+

Even though the proof of closure under complement is somewhat lengthy due
to some technical details, it should be much easier to understand than the original
one presented by Rabin [148]. The proof given above highly benefits from a
game theoretical view, especially from the observation, that computations of tree
automata can be interpreted as parity games. Specifically, it is the determinacy
result for this class of games that induces the aforementioned simplification.

8.5 The Emptiness Problem for Automata on Infinite
Trees

Beside the closure properties of sets that are recognizable by nondeterministic
finite tree automata, algorithmic properties of the automata themselves are of
particular interest. In this section, we present an algorithm that decides whether
the language accepted by a parity tree automaton is empty or not. Furthermore,
we study the complexity of the algorithm.

8 Nondeterministic Tree Automata 147

In order to prove the decidability result we first of all introduce input-free
tree automata. As the name suggests, this class of tree automata is defined
to operate without any input trees. More precisely, an input-free tree automa-
ton is of the form (Q,∆, qI, Acc) where Q is a finite state set, qI a designated
initial state, ∆ ⊆ Q × Q × Q a transition relation, and an acceptance condi-
tion. For instance, in case of an input-free parity tree automaton A, a coloring
function c would be added. Input-free tree automata can also be defined even
without having an acceptance condition. If so, the automata merely consist of
Q, a designated initial state and a transition relation ∆ ⊆ Q×Q×Q.

We call an input-free tree automaton deterministic if and only if for all pairs
(q, q′, q′′), (q, p′, p′′) ∈ ∆, q′ = p′ and q′′ = p′′ holds.

A run of an input-free tree automaton is still a tree t ∈ TQ, defined in a
straightforward manner. If the automaton is deterministic, then t is unique and
belongs to a particular class of trees, the so-called regular trees. A tree is called
regular if and only if it has only a finite number of non-isomorphic subtrees.
Formally, this can be defined as follows. Given a tree t and a word u ∈ {0, 1}∗,
let tu be the tree defined by tu(v) = t(uv). Then t is called regular if the set
{ tu | u ∈ {0, 1}∗ } is finite.

Exercise 8.6. Prove the above claim that the unique run of a deterministic input-
free automaton is a regular tree.

Regular trees can be generated by deterministic finite automata via an addi-
tional output function with alphabet {0, 1}. Let A = (Q, {0, 1}, δ, qI, f) be such
an automaton where f : Q→ Σ′ is an additional output function. This automa-
ton generates the tree t ∈ TΣ′ defined by t(w) = f(δ(qI, w)), i.e., the label at
node w is A’s output after it has processed w. Note that the root label t(ε) is
the output of A in its initial state.

Example 8.14. In Figure 8.5 we present a deterministic finite automaton A =
({qI, qb, qd}, {0, 1}, δ, f), where for each state the output function f has the state’s
index as output, thus generating the regular tree t.

qI

qd

qb

t:

0

0

1 1

0

1

b

I

dd bb

d

Fig. 8.5. Finite automaton A generating t

148 Frank Nießner

Exercise 8.7. Prove the above claim that a tree is regular if and only if it is
generated by a deterministic finite automaton with output function as described
above.

Deterministic input-free tree automata without acceptance conditions and
deterministic finite-state automata on a binary alphabet are closely related. To
see this, we define the state-output pairs (q, f(q)) of a deterministic finite au-
tomaton A = (Q, {0, 1}, δ, qI, f : Q → Σ′) to be the states of an input-free tree
automaton B = (Q × Σ′,∆, (qI, f(qI))). Furthermore, we identify the inputs
0, 1 for A with the left and right branching of B, i.e., for all q ∈ Q, we let
((q, f(q)), (δ(q, 0), f(δ(q, 0))), (δ(q, 1), f(δ(q, 1)))) ∈ ∆. So B is deterministic and
a run of B generates in the second component of its states exactly the same tree
that A generates. Hence, in this sense both automaton models have the same
expressive power.

Example 8.15. Figure 8.6 presents a run (of the input-free tree automaton
B where {(qI, I), (qb, b), (qd, d)} is the state set, ∆ = (((qI, I), (qd, d), (qb, b)),
((qd, d), (qd, d), (qb, b)), ((qb, b), (qb, b), (qd, d))) and (qI, I) is the initial state.

" : t :(qI, I) I

(qd, d) (qb, b) d b

(qd, d) (qb, b) (qb, b) (qd, d) d b b d

Fig. 8.6. A run " of B generating t

With respect to the emptiness problem, we now prove the following crucial
lemma.

Lemma 8.16. For each parity tree automaton A there exists an input-free tree
automaton A′ such that Tω(A))= ∅ if and only if A′ admits a successful run.

Proof. Given a parity tree automaton A = (Q,Σ,∆, qI, c) we construct an
input-free tree automaton A′ = (Q × Σ,∆′, {qI} × Σ, c′) which has the re-
quired property and behaves as follows. A′ guesses an input tree t in the second
component of its states nondeterministically. This can be realized by a suitable
modification of A’s transition relation. To be more exact, for each transition
(q, a, q′, q′′) ∈ ∆ we generate transitions ((q, a), (q′, x), (q′′, y)) ∈ ∆′ if there
exist (q′, x, p, p′), (q′′, y, r, r′) ∈ ∆. Furthermore, for all states of A′ we define
c′(q, a) = c(q). So the behavior of A′ on the guessed input t is identical to that
of A running on t. Hence, if A′ has a successful run, then Tω(A))= ∅ and vice
versa. *+

8 Nondeterministic Tree Automata 149

With every input-free tree automaton A = (Q,∆, qI, c), we associate a parity
game GA which is won by Player 0 if and only if A has an accepting run. Clearly,
we do not have to keep track of input symbols and tree nodes in the corresponding
parity game GA. The game positions are states from the state set Q of A and
transitions over Q×Q×Q. More precisely, V0 = Q, V1 = ∆, and there are two
types of transitions. For every q ∈ Q, and (q, q′, q′′) ∈ ∆, we have (q, (q, q′, q′′)) ∈
∆; for every (q, q′, q′′) ∈ ∆, we have ((q, q′, q′′), q′), ((q, q′, q′′), q′′) ∈ ∆. The
coloring function maps q and (q, q′, q′′) to c(q).

Clearly, every strategy for Player 0 corresponds to a run and vice versa, and
every winning strategy corresponds to a successful run and vice versa.

Remark 8.17. An input-free tree automaton A admits a successful run if and
only if Player 0 wins GA.

Example 8.18. Consider an input-free tree automaton with state set Q = {qI, qa,
qb, qd}, initial state qI and transition relation ∆ = {(qI, qa, qd), (qI, qd, qb), (qa, qa,
qI), (qa, qd, qa), (qd, qd, qb), (qb, qb, qd)}. The corresponding game graph is depicted
in Figure 8.7.

qa

qI

qd

qI

qd qb

qI

qa qd

qd

qd qb

qb

qb

qb qd
qa

qaqd

qa

qa qI

Fig. 8.7. A finite game graph

Since the state set of a tree automaton is finite, the game graph of GA is
finite as well and, according to Sections 6.3 and 6.4, the winning strategies for
both players are effectively computable. This allows us to solve the emptiness
problem.

Theorem 8.19. For parity tree automata it is decidable whether their recognized
language is empty or not.

150 Frank Nießner

Proof. Given a parity tree automaton A, we assume A′ to be an input-free tree
automaton that has a successful run iff Tω(A))= ∅. Due to Lemma 8.16, such
an automaton exists. Now we identify A′ with the parity game GA′ and keep in
mind that the corresponding game graph is finite because A′ is input-free. From
our game-theoretical considerations we know that there is a successful run of A′

if and only if in GA′ Player 0 wins from some initial position (qI, a). Since we
can effectively compute the winning regions for Player 0 when the game graph
is finite, we are able to decide whether there exists a successful run of A′. *+

Corollary 8.20. If the language of a parity tree automaton is not empty, then
it contains a regular tree.

Proof. We let A and A′ be defined as in the proof of Theorem 8.19. Now we
assume to have a successful run of A′ and a memoryless winning strategy for
Player 0 in GA′ from some starting position (qI, a). This strategy determines
a subgraph of the game graph which is in fact a deterministic input-free tree
automaton without acceptance condition. To see this, we just extract the transi-
tions out of the subgraph’s game positions for Player 1. The tree automaton can
be considered as a part of A′ and generates a regular tree in the second com-
ponent of its states. Clearly, this regular tree is in Tω(A) because A′ behaves
exactly like A does. *+

Figure 8.8 shows an illustrative example of the situation described in the
proof above.

Example 8.21. Consider the finite game graph GA′ depicted in Figure 8.7. We
observe the absence of second components in our illustration; just consider the
second entry to be the index of the corresponding state. Furthermore, assume the
coloring c(qI, I) = 1, c(qb, b) = 2, c(qa, a) = 3 and c(qd, d) = 4. Thus a winning
strategy could determine the subgraph emphasized by solid arcs in Figure 8.8.
The regular tree generated by the subgraph is the one depicted in Figure 8.6.

To conclude we give time bounds for solving the emptiness problem.

Corollary 8.22. (1) The emptiness test for parity tree automata can be carried
out in time

O

(

d · r2m

(
rn

3d/24

)%d/2&
)

where d ≥ 2 is the number of priorities used in the coloring function.
(2) The emptiness test for parity tree automata is in UP ∩ co-UP.

Proof. We analyze the proof of Theorem 8.19. Let A = (Q,Σ,∆, qI, c) be a parity
tree automaton. Furthermore, let |∆| = m, |Q| = n, and |Σ| = r. In a first step
we have to construct the input-free tree automaton A′ = (Q×Σ,∆′, {qI}×Σ, c′).
So this automaton has at most rn states with at most r2m transitions. Next
we identify A′ with the parity game GA′ and observe that there exist at most
rn + r2m vertices and at most 3r2m edges in this game. The last step invokes

8 Nondeterministic Tree Automata 151

qa

qI

qd

qI

qa qd

qd

qd qb

qb

qb

qb qd
qa

qa qI

aq

dq aq

Iq

qd qb

Fig. 8.8. Subgraph determined by Player 0’s memoryless winning strategy

an algorithm that computes the winning regions and the winning strategy for
Player 0. Here we should apply the best algorithm for the problem known so
far (Jurdziński’s algorithm [93]) which is thoroughly discussed in Section 7.5.
Chapter 6 also presents tight time bounds for this problem, depending on the
number of edges, vertices and colors in the game graph. Using this, we get the
above bound.

Furthermore, in Chapter 6 it is shown that solving finite parity games lies in
the complexity theoretic class UP ∩ co-UP. This proves the second claim. *+

Exercise 8.8. Use the above corollary to provide upper bounds for the complexity
of the emptiness problem for Rabin tree automata.

8.6 Conclusions

In this chapter we have introduced finite-state automata that are able to consume
input trees instead of unidimensional structures. We have applied the acceptance
conditions presented in Chapter 1 to our tree automata and have obtained that
the resulting models are all equivalent with regard to their acceptance capa-
bilities. Büchi tree automata are an exception; they are weaker, even in their
nondeterministic version.

Subsequently we have identified a tree automaton and its input tree with an
infinite two-person game. This was significant, since it has allowed us to benefit
from various results about infinite games, especially in the proof of closure under

152 Frank Nießner

complementation for sets which are recognizable by finite tree automata. This
complementation result is essential to prove the decidability of monadic second-
order logic and thus demonstrates the importance of tree automaton concepts.
More about this will be presented in the Chapter 12.

We have next studied the algorithmic properties of finite tree automata and
have shown decidability of the emptiness problem for parity tree automata by
again utilizing results about infinite games on finite graphs.

