Automata on Finite Trees
Preliminaries
Trees

A tree over Σ is a partial function $t : \mathbb{N}^* \rightarrow \Sigma$ such that $\text{dom}(t)$ is a prefix-closed set:

- for each $p \in \text{dom}(t)$ for all $q \leq p$ we have $q \in \text{dom}(t)$.

A word $p \in \text{dom}(t)$ is called a position.

If $p, q \in \text{dom}(t)$ such that $p \cdot n = q$ for some $n \in \mathbb{N}$:

- p is the parent of q,
- q is the n-th child of p.

Trees

Given a finite tree \(t \in \mathcal{T}(\Sigma) \), the \textit{frontier} of \(t \) is the set

\[
fr(t) = \{ p \in \text{dom}(t) \mid \text{for all } n \in \mathbb{N} \text{ } pn \notin \text{dom}(t) \}\]

A \textit{path} in \(t \) is a \textbf{maximal subset} \(\pi \) of \(\text{dom}(t) \) linearly ordered by \(\leq \).

Given \(p \in \text{dom}(t) \), the \textit{subtree} \(t_p \) is defined as

\[
t_p : \{ q \in \mathbb{N}^* \mid pq \in \text{dom}(t) \} \rightarrow \Sigma
\]

such that \(t_p(q) = t(pq) \), for all \(q \in \text{dom}(t_p) \).

\textbf{Lemma 1 (König)} A finitely branching tree is infinite if and only if it has an infinite path.
Coding ω-branching trees as binary trees

Let $t : \mathbb{N}^* \rightarrow \Sigma$ be a tree of arbitrary (possibly infinite) branching.

Define $t' : \{0, 1\}^* \rightarrow \Sigma \cup \{\bullet\}$ as follows:

- $t'(\varepsilon) = t(\varepsilon)$
- for all $n_1n_2\ldots n_k \in dom(t)$, with $k > 0$, let
 \[t'(01^{n_1}01^{n_2}\ldots01^{n_k}) = t(n_1n_2\ldots n_k) \]
- for all other p let $t'(p) = \bullet$
Tree Concatenation

Let $\sigma \in \Sigma$ and $T, T' \subseteq \mathcal{T}(\Sigma)$.

By $T \cdot \sigma T'$ we denote the set of trees obtained from some $t \in T$ by replacing each occurrence of σ on $fr(t)$ by a tree in T'.

If $\vec{\sigma} = \langle \sigma_1, \ldots, \sigma_n \rangle$, let $T \cdot \vec{\sigma} \langle T_1, \ldots, T_m \rangle$ be the set of trees obtained from some $t \in T$ by replacing each occurrence of σ_i on $fr(t)$ by a tree in T_i.

We denote by $T \cdot \vec{\sigma} \langle T_1, \ldots, T_m \rangle^{\omega \vec{\sigma}}$ the set of infinite trees obtained by the infinite unfolding of the concatenation operation.
Terms

A ranked alphabet $\langle \Sigma, \# \rangle$ is a set of symbols together with a function $\# : \Sigma \rightarrow \mathbb{N}$. For $f \in \Sigma$, the value $\#(f)$ is said to be the arity of f.

Zero-arity symbols are called constants, and denoted by a, b, c, \ldots.

A term t over Σ is a partial function $t : \mathbb{N}^* \rightarrow \Sigma$:

- $\text{dom}(t)$ is a finite prefix-closed subset of \mathbb{N}^*, and

- for each $p \in \text{dom}(t)$, if $\#(t(p)) = n > 0$ then $
\{i \mid pi \in \text{dom}(t)\} = \{1, \ldots, n\}$.\n
Contexts

Let $X = \{x_1, \ldots, x_n\}$ be a finite set of variables, interpreted over terms.

A term $t \in \mathcal{T}(\Sigma \cup X)$ is said to be linear if each variable occurs in t at most once.

A context is a linear term $C[x_1, \ldots, x_n]$, and $C[t_1, \ldots, t_n]$ denotes the result of replacing x_i with the term t_i, for all $1 \leq i \leq n$.

A context is said to be trivial if it is reduced to a variable, and non-trivial otherwise.
Bottom Up Tree Automata
Definition

Let $\Sigma = \{f, g, h, \ldots\}$ be a finite *ranked alphabet*. A *bottom-up tree automaton* is a tuple $A = \langle S, T, F \rangle$ where:

- S is a finite set of *states*,
- T is a set of *transition rules* of the form:
 \[
 f(q_1, \ldots, q_n) \rightarrow q
 \]
 where $f \in \Sigma$, $\#(f) = n$, and $q_1, \ldots, q_n, q \in S$.
- $F \subseteq S$ is a set of *final states*.

Notice that there are no initial states.

If $\#(f) = 0$ we have rules of the form $f \rightarrow q$.
Runs

A *run* of A over a tree $t : \mathbb{N}^* \to \Sigma$ is a mapping $\pi : \text{dom}(t) \to S$ such that, for each position $p \in \text{dom}(t)$, where $q = \pi(p)$:

- if $\#(t(p)) = n$ and $q_i = \pi(p_i)$, $1 \leq i \leq n$, then T has a rule

$$t(p)(q_1, \ldots, q_n) \to q$$

A run π is said to be *accepting*, if and only if $\pi(\varepsilon) \in F$.

The *language* of A, denoted as $\mathcal{L}(A)$ is the set of all trees over which A has an accepting run.

A set of trees $L \subseteq \mathcal{T}(\Sigma)$ is said to be *recognizable* iff there exists a bottom-up tree automaton A such that $\mathcal{L}(A) = L$.
Examples

1. Let $\Sigma = \{f, g, a\}$, where $\#(f) = 2$, $\#(g) = 1$ and $\#(a) = 0$.

Let $A = \langle S, T, F \rangle$, where:

- $S = \{q_f, q_g, q_a\}$,
- $F = \{q_f\}$,
- $T = \{a \rightarrow q_a, g(q_a) \rightarrow q_g, g(q_g) \rightarrow q_g, f(q_g, q_g) \rightarrow q_f\}$

2. Let $\Sigma = \{\text{red}, \text{black}, \text{nil}\}$ with $\#(\text{red}) = \#(\text{black}) = 2$ and $\#(\text{nil}) = 0$.

Let $A_{rb} = \langle \{q_b, q_r\}, T, \{q_b\} \rangle$ with

$$T = \{\text{nil} \rightarrow q_b, \text{black}(q_b/r, q_b/r) \rightarrow q_b, \text{red}(q_b, q_b) \rightarrow q_r\}$$
Determinism

A tree automaton is said to be *deterministic* iff there are no two transition rules with the same left-hand side.

Proposition 1 A *deterministic* tree automaton has at most one run for each input tree.

A tree automaton is said to be *complete* iff there exists at least one transition rule \(f(q_1, \ldots, q_n) \rightarrow q \), for each \(f \in \Sigma \), \(\#(f) = n \) and \(q_1, \ldots, q_n \in S \).

Proposition 2 A *complete* tree automaton has at least one run for each input tree.
Determinism

Theorem 1 Let L be a recognizable tree language. Then there exists a complete deterministic tree automaton A such that $\mathcal{L}(A) = L$.

We define $A_d = \langle S_d, T_d, F_d \rangle$ where $S_d = 2^S$, $F_d = \{ s \subseteq S \mid s \cap F \neq \emptyset \}$ and:

$$f(s_1, \ldots, s_n) \rightarrow s \iff s = \{ q \in S \mid \exists q_1 \in s_1, \ldots, \exists q_n \in s_n. f(q_1, \ldots, q_n) \rightarrow q \}$$

$$a \rightarrow s \iff s = \{ q \in S \mid a \rightarrow q \}$$

To prove $\mathcal{L}(A_d) = \mathcal{L}(A)$, we prove:

$$t \xrightarrow{A_d}^* s \iff s = \{ q \in S \mid t \xrightarrow{A}^* q \}$$
Determinism

By induction on the structure of t.

If $t = a$, by definition we have $a \rightarrow s \iff s = \{q \in S \mid a \rightarrow q\}$

If $t = f(t_1, \ldots, t_n)$, by ind. hyp. $t_i \xrightarrow{A_d} s_i \iff s_i = \{q \in S \mid t_i \xrightarrow{A} q\}$

“\Rightarrow” if $t \xrightarrow{A_d} f(s_1, \ldots, s_n) \xrightarrow{A_d} s$ we show:

$\exists q_i \in s_i \cdot f(q_1, \ldots, q_n) \xrightarrow{A} q \iff t \xrightarrow{A} q$
Determinism

“⇐” Let $s_i = \{ q \mid t_i \xrightarrow{A} q \}, \ i = 1, \ldots, n$ and

$$s' = \{ q \mid \exists q_i \in s_i \cdot f(q_1, \ldots, q_n) \xrightarrow{A} q \}$$

We conclude by showing $s = s'$ □
Closure Properties

Theorem 2 The class of recognizable tree languages is closed under union, complementation and intersection.

Union Let $A_i = \langle S_i, T_i, F_i \rangle$ for $i = 1, 2$. Suppose that $S_1 \cap S_2 = \emptyset$. Let $A_\cup = \langle S_1 \cup S_2, T_1 \cup T_2, F_1 \cup F_2 \rangle$.

Complementation Let $A = \langle S, T, F \rangle$ be a complete deterministic tree automaton such that $\mathcal{L}(A) = L$. Define $\bar{A} = \langle S, T, S \setminus F \rangle$.

Intersection We use the fact that $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$.
Projection

Let $\Sigma = \Sigma_1 \times \Sigma_2 = \{(\sigma_1, \sigma_2) \mid \sigma_1 \in \Sigma_1, \sigma_2 \in \Sigma_2, \#(\sigma_1) = \#(\sigma_2)\}$

We define $pr_1(t) : \mathbb{N}^* \rightarrow \Sigma_1$, where $pr_1(t)(p) = \sigma_1$ iff there exist $\sigma_2 \in \Sigma_2$ such that $t(p) = \langle \sigma_1, \sigma_2 \rangle$.

$pr_2(t)$ is defined in a similar way.

Theorem 3 If $L \subseteq \mathcal{T}(\Sigma_1 \times \Sigma_2)$ is a recognizable tree language, then so are the projections $pr_1(L)$ and $pr_2(L)$.
Minimization

A relation $\equiv \subseteq \mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma)$ is a congruence on $\mathcal{T}(\Sigma)$ iff for every context $C[x_1, \ldots, x_n]$:

$$\forall 1 \leq i \leq n . \ u_i \equiv v_i \Rightarrow C[u_1, \ldots, u_n] \equiv C[v_1, \ldots, v_n]$$

For a given tree language L, we define \equiv_L:

$$u \equiv_L v \text{ iff for all contexts } C[x] \text{ we have } C[u] \in L \iff C[v] \in L$$

Exercise 1 Show that \equiv_L is a congruence. □
A Myhill-Nerode Theorem for Tree Languages

Theorem 4 (Myhill-Nerode) A tree language is recognizable iff the congruence \(\equiv_L \) is of finite index.

“\(\Rightarrow \)” Let \(A = \langle S, T, F \rangle \) be a complete TA such that \(L = \mathcal{L}(A) \).

Let \(u \equiv_A v \) iff \(u \xrightarrow{\ast} q \iff v \xrightarrow{\ast} q \), for all \(q \in S \). We have \(u \equiv_A v \Rightarrow u \equiv_L v \).

“\(\Leftarrow \)” Define \(A_{\min} = \langle S_{\min}, T_{\min}, F_{\min} \rangle \), where:

- \(S_{\min} = \{ [u]_L \mid u \in \mathcal{T}(\Sigma) \} \)
- \(T_{\min} = \{ f([u_1]_L, \ldots, [u_n]_L) = [f(u_1, \ldots, u_n)]_L \mid u_1, \ldots, u_n, u \in \mathcal{T}(\Sigma) \} \)
- \(F_{\min} = \{ [u]_L \mid u \in L \} \)
Pumping Lemma for Recognizable Tree Languages

Lemma 2 (Pumping) Let L be a recognizable tree language. Then there exists a constant $N > 0$ such that, for every $t \in L$ with $\text{height}(t) > N$, there exists a context C, a non-trivial context D and a tree u such that $C[D[u]] \in L$, and, for all $n \geq 0$ we have $C[D^n[u]] \in L$.

Corollary 1 Let $A = \langle S, T, F \rangle$ be a tree automaton.

1. $\mathcal{L}(A) \neq \emptyset$ iff there exists $t \in \mathcal{L}(A)$ with $\text{height}(t) < \|S\|$,
2. $\|\mathcal{L}(A)\| = \omega$ iff there exists $t \in \mathcal{L}(A)$ with $\|S\| < \text{height}(t) < 2\|S\|$.
Pumping Lemma for Recognizable Tree Languages

Exercise 2 Show that \(\{ f(g^n(a), g^n(a)) \mid n \geq 0 \} \) is not recognizable. □

Exercise 3 (Homework) Let \(L \) be a recognizable tree language over the alphabet \(\Sigma = \{ f, a, b \} \), where \(\#(f) = 2 \) and \(\#(a) = \#(b) = 0 \). Let \(L^{ac} \supseteq L \) be the smallest tree language which is closed by the application of the two rules below:

- **commutativity**: for all context \(C \) and subtrees \(t_1, t_2 \):
 \[
 C[f(t_1, t_2)] \in L^{ac} \iff C[f(t_2, t_1)] \in L^{ac}
 \]

- **associativity**: for all context \(C \) and subtrees \(t_1, t_2, t_3 \):
 \[
 C[f(f(t_1, t_2), t_3)] \in L^{ac} \iff C[f(t_1, f(t_2, t_3))] \in L^{ac}
 \]

Show that there exists a recognizable tree language \(L \) for which \(L^{ac} \) is not recognizable. □
Decidability

- **Emptiness** $\mathcal{L}(A) = \emptyset$?
- **Equality** $\mathcal{L}(A) = \mathcal{L}(B)$?
- **Infinity** $\|\mathcal{L}(A)\| < \infty$?
- **Universality** $\mathcal{L}(A) = \mathcal{T}(\Sigma)$?

Theorem 5 *The emptiness, equality, infinity and universality problems on tree automata are decidable. In particular, emptiness is decidable in time polynomial in the size (number of states) of automata.*
Top Down Tree Automata
Definition

A top-down tree automaton is a tuple $A = \langle S, I, T, F \rangle$ where:

- S is a set of states,
- $I \subseteq S$ is a set of initial states,
- T is a set of transition rules of the form
 \[q(f) \rightarrow \langle q_1, \ldots, q_n \rangle \]
 where $\#(f) = n > 0$.
- F is a set of final states

Notice that, for $\#(f) = 0$ there are no rules in T.
Runs

A *run* of A over a tree $t : \mathbb{N}^* \to \Sigma$ is a mapping $\pi : \text{dom}(t) \to S$ such that, for each position $p \in \text{dom}(t)$, where $q = \pi(p)$, we have:

- if $p = \epsilon$ then $q \in I$, and
- if $#(t(p)) = n$ and $q_i = \pi(p_i)$, $1 \leq i \leq n$, then T has a rule

 $$q(t(p)) \rightarrow \langle q_1, \ldots, q_n \rangle$$

A run π is said to be *accepting*, if and only if $\pi(p) \in F$, for all $p \in \text{fr}(t)$.
Top Down vs. Bottom Up

Theorem 6 Bottom up and top down tree automata recognize the same languages.

A top down tree automaton is said to be deterministic if it has one initial state and no two rules with the same left-hand side.

Proposition 3 A deterministic top down tree automaton has at most one run for each input tree.

Proposition 4 There exists a recognizable tree language that is not accepted by any top down deterministic tree automaton.

Proof: \(L = \{ f(g(a), h(a)), f(g(a), h(a)) \} \) □
Tree Automata and WSkS
MSOL on Trees: (W)S\omega S

Let $\Sigma = \{a, b, \ldots\}$ be a tree alphabet. The alphabet of (W)S\omega S is:

- the function symbols $\{s_i \mid i \in \mathbb{N}\}$; $s_i(x)$ denotes the i-th successor of x
- the set constants $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a
- the first and second order variables and connectives.
Examples

Let us consider binary trees, i.e. the alphabet of WS2S.

- The formula

\[\text{closed}(X) : \forall x . X(x) \rightarrow X(s_0(x)) \land X(s_1(x)) \]

denotes the fact that \(X \) is a downward-closed set.

- The prefix ordering on tree positions is defined by

\[x \leq y : \forall X . \text{closed}(X) \land X(x) \rightarrow X(y) \]
Examples

- The formula $\text{path}(X)$ denotes the fact that X is a path in the tree:

 \[
 \text{total}(X) : \forall x, y . X(x) \land X(y) \rightarrow x \leq y \lor y \leq x
 \]

 \[
 \text{path}(X) : \text{total}(X) \land \forall Y . \text{total}(Y) \land X \subseteq Y \rightarrow X = Y
 \]

- A leaf is defined by the formula:

 \[
 \text{leaf}(x) : \exists X . \text{path}(X) \land X(x) \land \forall y . X(y) \rightarrow y \leq x
 \]

- A tree is finite iff:

 \[
 \forall X . \text{path}(X) \rightarrow \exists x . X(x) \land \forall y . X(y) \rightarrow y \leq x
 \]
From Automata to Formulae

Let $X_1, \ldots X_k, x_{k+1}, \ldots, x_m$, and $\Sigma = \{0, 1\}^m$.

Let $A = \langle S, I, T, F \rangle$ be a non-deterministic top-down tree automaton, where $S = \{s_1, \ldots, s_p\}$.
Coding of Σ

Let $\sigma \in \{0, 1\}^m$ and $\vec{X} = \langle X_1, \ldots, X_m \rangle$.

We define the formula $\Phi_\sigma(x, \vec{X})$ as the conjunction of:

- $X_i(x)$, $1 \leq i \leq m$, if $\sigma_i = 1$,
- $\neg X_i(x)$, $1 \leq i \leq m$, if $\sigma_i = 0$.

It follows, that for any $t \in \mathcal{T}(\Sigma)$, we have $t \models \forall x . \bigvee_{\sigma \in \Sigma} \Phi_\sigma(x, \vec{X})$.
Coding of S

Let $\vec{Y} = \{Y_1, \ldots, Y_p\}$ be set variables.

Intuitively, the set variable Y_i, $1 \leq i \leq p$ contains all tree positions labeled by A with state s_i during the run on some tree.

$$\Phi_S(\vec{Y}) : \forall z . \bigvee_{1 \leq i \leq p} Y_i(z) \land \bigwedge_{1 \leq i < j \leq p} \neg \exists z . Y_i(z) \land Y_j(z)$$
Coding of I, T and F

Every run starts from an initial state:

$$\Phi_I(\vec{Y}) : \exists x \forall y . x \leq y \land \bigvee_{s_i \in I} Y_i(x)$$

If A is at position x and $t(x) \in \{0, 1\}^m$, A moves on $\langle s_0(x), s_1(x) \rangle$:

$$\Phi_T(\vec{X}, \vec{Y}) : \bigwedge_{i=1}^p \forall x . Y_i(x) \land \bigvee \Phi_\sigma(x, \vec{X}) \rightarrow \bigvee_{s_i(\sigma) \rightarrow \langle s_j, s_k \rangle} Y_j(s_0(x)) \land Y_k(s_1(x))$$

If A is at a frontier position it must be in an accepting state:

$$\Phi_F(\vec{X}, \vec{Y}) : \forall x . \text{leaf}(x) \rightarrow \bigvee_{s_i \in F} Y_i(x)$$
From Formulae to Automata

Let $\varphi : x_2 \in X_1$.

We define $A_\varphi = \langle \{s_0, s_1\}, s_0, T, \{s_1\} \rangle$, where:

\[
\begin{align*}
\langle 0, 0 \rangle(s_0) &\rightarrow \{\langle s_0, s_1 \rangle, \langle s_1, s_0 \rangle\} \\
\langle 1, 0 \rangle(s_0) &\rightarrow \{\langle s_0, s_1 \rangle, \langle s_1, s_0 \rangle\} \\
\langle 1, 1 \rangle(s_0) &\rightarrow \langle s_1, s_1 \rangle \\
\langle 0, 0 \rangle(s_1) &\rightarrow \langle s_1, s_1 \rangle \\
\langle 1, 0 \rangle(s_1) &\rightarrow \langle s_1, s_1 \rangle
\end{align*}
\]
From Formulae to Automata

Let $\varphi : s_0(x_1) = x_2$.

We define $A_\varphi = \langle\{s_0, s_1, s_2\}, T, \{s_0\}\rangle$, where:

\[
\begin{align*}
\langle 0, 0 \rangle & \rightarrow s_2 \\
\langle 0, 1 \rangle & \rightarrow s_1 \\
\langle 0, 0 \rangle(s_2, s_2) & \rightarrow s_2 \\
\langle 0, 1 \rangle(s_2, s_2) & \rightarrow s_1 \\
\langle 1, 0 \rangle(s_1, s_2) & \rightarrow s_0 \\
\langle 0, 0 \rangle(s_0, s_2) & \rightarrow s_0 \\
\langle 0, 0 \rangle(s_2, s_0) & \rightarrow s_0
\end{align*}
\]
From Formulae to Automata

As in the case of automata on words, A_Φ can be effectively constructed, for any formula Φ of $WSkS$.

Theorem 7 Given a ranked alphabet Σ, a tree language $L \subseteq T(\Sigma)$ is definable in $WSkS$ iff it is recognizable.

Corollary 2 The SAT problem for $WSkS$ is decidable.