
6 Memoryless Determinacy of Parity Games

Ralf Küsters

Institut für Informatik und Praktische Mathematik
Christian-Albrechts-Universität zu Kiel

6.1 Introduction

In Chapter 2, parity games were introduced and it was claimed that these games
are determined and that both players have memoryless winning strategies. The
main purpose of this chapter is to provide proofs for this claim.

The determinacy and the memorylessness of parity games is exploited in
various areas inside and outside of game theory. For the purpose of this book,
automata theory, modal logics, and monadic second-order logics are the most
interesting among them.

More specifically, the word and emptiness problem for alternating tree au-
tomata as well as model checking and satisfiability in modal µ-calculus [100]
can be reduced to deciding the winner of a parity game. In fact, model checking
µ-calculus is equivalent via linear time reduction to this problem [56, 55, 202].
In Chapter 9 and 10, these reductions are presented.

In addition, parity games provide an elegant means to simplify the most diffi-
cult part of Rabin’s proof of the decidability of the monadic second-order theory
of the binary infinite tree [148], the complementation lemma for automata on
infinite trees. Although, from Rabin’s proof the determinacy of parity games fol-
lows implicitly, Rabin did not explicitly use games to show his result. The idea
to use games is due to Büchi [21] and it was applied successfully by Gurevich
and Harrington [77]. In turn, their paper has been followed by numerous other
attempts to clarify and simplify the proof of the complementation lemma; see,
for instance, a paper by Emerson and Jutla [55]. For the proof of the complemen-
tation lemma see Chapter 8. We refer to Part VI and VII for more on monadic
second-order logics.

The determinacy of parity games follows from a result due to Martin [119],
who has shown that Borel games, a class of games much larger than the class
of parity games we consider here, are determined. For our purpose, however,
this result does not suffice since the strategies employed there require to store
the complete history of a play, and thus, they require infinite memory. Gurevich
and Harrington [77] showed that finite-memory strategies suffice to win Muller
games, a class more general than parity games, but smaller than Borel games
(see Chapter 2).1 Later, it turned out that for parity games the winner only
needs a memoryless strategy. This was proved for the first time independently
by Emerson and Jutla [55] and Mostowski [132]. While these proofs were quite

1 Apparently, Büchi was the first to prove the existence of finite-memory strategies in
a manuscript sent to Gurevich and Harrington.

E. Grädel et al. (Eds.): Automata, Logics, and Infinite Games, LNCS 2500, pp. 95-106, 2002.
 Springer-Verlag Berlin Heidelberg 2002

96 Ralf Küsters

involved and non-constructive in the sense that the proofs did not exhibit memo-
ryless winning strategies, McNaughton [126] proposed a simpler and constructive
proof for Muller games played on finite graphs, from which he could derive an
exponential-time algorithm for computing finite-memory strategies. His results
also establish the existence of memoryless winning strategies for parity games
on finite graphs.

In the present chapter, we follow a proof proposed by Zielonka [203] to show
that parity games (on possibly infinite graphs) are determined and that the
winner of a game has a memoryless winning strategy. We present both a con-
structive and a non-constructive proof. In addition, we sketch algorithmic and
complexity-theoretic issues. We show that the problem of deciding the winner
of a parity game belongs to the complexity classes NP and co-NP. Based on
the constructive proof of determinacy, a simple deterministic exponential-time
algorithm is derived to compute the winning positions of players along with their
memoryless strategies. Jurdziński [92, 93] proved tighter complexity results and
developed more efficient algorithms. An in-depth treatment of his results and
other approaches for computing winning regions is provided in Chapter 7.

The present chapter is structured as follows. In Section 6.2, some basic no-
tions are introduced. They prepare for the proof of the main theorem of this
chapter, which is shown in Section 6.3. Finally, in Section 6.4 the mentioned
complexity-theoretic and algorithmic issues are discussed.

We assume that the reader is familiar with the notions introduced in Chap-
ter 2, such as parity games, (memoryless) strategies, determinacy, etc.

Throughout this chapter let G = (A,χ) denote a parity game with arena
A = (V0, V1, E) and colouring function χ. The set of vertices of G will be denoted
by V := V0 ∪ V1.

6.2 Some Useful Notions

In this section we introduce and discuss different notions that are used later to
show memoryless determinacy of parity games.

6.2.1 Subgames

Let U ⊆ V be any subset of V . The subgraph of G induced by U is denoted

G[U] = (A|U ,χ|U)

where A|U = (V0 ∩ U, V1 ∩ U, E ∩ (U × U)) and χ|U is the restriction of χ to U .
The graph G[U] is a subgame of G if every dead end in G[U] is also a dead

end in G. In other words, in a subgame no new dead ends may be introduced.
Otherwise, winning regions could change. Let us look at an example.

Example 6.1. Figure 6.1 depicts a simple parity game, subsequently called Gex,
with the vertices v0, . . . , v7 and colours 0, 1, 2. As in Chapter 2, circles denote
0-vertices and boxes 1-vertices. In this game, G[{v5, v6}] is a subgame of G.

6 Memoryless Determinacy of Parity Games 97

However, the subgraph G[{v5, v6, v7}] of G is not a subgame of G since, in this
subgraph, v7 is a dead end, whereas it is not a dead end in G.

v0 v1 v2

v3

v4v5v6

v7

1 1

0 1

1 2

0

2

Fig. 6.1. A parity game

One easily shows the following lemma.

Lemma 6.2. Let U and U ′ be subsets of V such that G[U] is a subgame of G
and (G[U])[U ′] is a subgame of G[U]. Then, G[U ′] is a subgame of G.

Proof. Exercise.

6.2.2 σ-Traps

The notion of a σ-trap was introduced in Chapter 2. Recall that if a token is
in a σ-trap U , then Player σ can play a strategy consisting in choosing always
successors inside of U . On the other hand, since all successors of σ-vertices in U
belong to U , Player σ has no possibility to force the token outside of U . In our
example, the set {v0, v7} is a 1-trap, while the set {v0, v1, v2, v3, v7} is a 0-trap.
We summarize some simple properties of σ-traps.

Lemma 6.3. (1) For every σ-trap U in G, G[U] is a subgame.
(2) For every family {Ui}i∈I of σ-traps Ui, the union

⋃
i∈I Ui is a σ-trap as well.

(3) If X is a σ-trap in G and Y is a subset of X, then Y is a σ-trap in G iff Y
is a σ-trap in G[X].

Proof. Exercise.

Note that the converse of (1) is not true. In our example, the set {v3, v4, v5, v6}
induces a subgame in G, but it is neither a 0-trap nor a 1-trap. Also observe that
the equivalence in (3) does not hold for nested traps of different types: If X is a
σ-trap in G and Y is a σ-trap in G[X], then, in general, Y is not a trap of any
kind (neither σ nor σ) in G.

98 Ralf Küsters

6.2.3 Attractors and Attractor Sets

Attractors and attractor sets were introduced in Chapter 2. Recall that the
attractor set Attrσ(G, X) ⊆ V for Player σ and set X is the set of vertices
from which Player σ has a strategy — and according to Proposition 2.18 a
memoryless strategy — to attract the token to X or a dead end in Vσ in a finite
(possibly 0) number of steps. In our example, Attr1(Gex, {v2}) = {v1, v2} and
Attr0(Gex, {v2}) contains all vertices of Gex.

We summarize relevant relationships between attractors and traps in the
following lemma.

Lemma 6.4. (1) The set V \ Attrσ(G, X) is a σ-trap in G.
(2) If X is a σ-trap in G, then so is Attrσ(G, X).
(3) X is a σ-trap in G iff Attrσ(G, V \ X) = V \ X.
(4) Attrσ(G, X) = V \ U where U is the greatest (w.r.t. set inclusion) σ-trap

contained in V \ X; U exists since ∅ is a σ-trap, and by Lemma 6.3, the
union of σ-traps is a σ-trap.

Proof. ad (1): See Exercise 2.7.
ad (2): Let X be a σ-trap. From every vertex in Attrσ(G, X), Player σ has a

strategy to force the token into X or a dead end in Vσ . In either case, from then
on there is no way for σ to choose a vertex outside of Attrσ(G, X). Note that all
dead ends in Vσ belong to σ’s attractor set.

ad (3): Assume that X is a σ-trap. This means that, starting from some
vertex in X , σ has a strategy to keep the token inside X and that X does not
contain a dead end in Vσ. Thus, Attrσ(G, V \X) ⊆ V \X , for otherwise σ would
have a way to force the token from some vertex in X into V \ X . The inclusion
in the other direction is trivial.

Conversely, assume Attrσ(G, V \X) = V \X . By (1), V \Attrσ(G, V \X) is
a σ-trap. Then, V \ (V \ X) = X shows that X is a σ-trap.

ad (4): By definition of U , X ⊆ V \U . Hence, Attrσ(G, X) ⊆ Attrσ(G, V \U)
(Exercise 2.5). Because U is a σ-trap, (3) implies Attrσ(G, X) ⊆ V \ U . For the
converse inclusion, we show that V \ Attrσ(G, X) ⊆ U . By (1), V \ Attrσ(G, X)
is a σ-trap. Moreover, X ⊆ Attrσ(G, X) implies V \Attrσ(G, X) ⊆ V \X . Since
U is the biggest σ-trap with U ⊆ V \ X , it follows V \ Attrσ(G, X) ⊆ U . &'

6.2.4 σ-Paradise

Intuitively, a σ-paradise in a game G is a region (a set of vertices) from which
σ cannot escape and σ wins from all vertices of this region using a memoryless
strategy.

Formally, a set U ⊆ V is a σ-paradise if

• U is a σ-trap, and
• there exists a memoryless winning strategy fσ for σ on U , i.e.,

– fσ is a total mapping from U ∩ Vσ into U such that, for all v ∈ U ∩ Vσ,
fσ(v) ∈ vE; and

6 Memoryless Determinacy of Parity Games 99

– for every v ∈ U and every play p in (G, v) conform with fσ, p is winning
for σ. (Note that since U is a σ-trap, p only contains nodes in U .)

Note that a σ-paradise is a subset of σ’s winning region Wσ. The following
lemma shows that the set of σ-paradises is closed under the attractor operation
and closed under union.

Lemma 6.5. (1) If U is a σ-paradise, then so is Attrσ(G, U).
(2) Let {Ui}i∈I be a family of σ-paradises. Then, U =

⋃
i∈I Ui is a σ-paradise.

Proof. ad (1): By Lemma 6.4, Attrσ(G, U) is a σ-trap. A memoryless winning
strategy for σ on this attractor set can be obtained as follows: For the vertices
v ∈ Attrσ(G, U) \ U , σ has a memoryless strategy to force the token into U or
to a dead end in Vσ. In the latter case, σ wins. In the former case, once in U , σ
plays according to the memoryless winning strategy for U and wins as well.

ad (2): First note that U is a σ-trap as the union of σ-traps (Lemma 6.3). Let
wi denote the memoryless winning strategy on Ui for σ. A memoryless strategy
w on U for σ is constructed in the following way: Fix a well-ordering relation
< on I (here we use the axiom of choice to guarantee the existence of such an
ordering). Then for v ∈ U ∩Vσ, we set w(v) = wi(v), where i is the least element
of I (w.r.t. <) such that v ∈ Ui. We need to show that w is a winning strategy
on U .

Let p = v0v1v2 · · · be an infinite play conform with w and let, for all k,
ik = min{ i ∈ I | vk ∈ Ui }. Obviously, vk ∈ Uik . More importantly, the successor
vertex vk+1 belongs to Uik as well (either vk is an σ-vertex and then all its
successors, in particular vk+1, belong to the σ-trap Uik , or vk is a σ-vertex
and then vk+1 = w(vk) = wik (vk) ∈ Uik). Moreover, vk+1 ∈ Uik implies that
ik+1 ≤ ik. Since an infinite non-increasing sequence of elements of a well-ordered
set is ultimately constant, we conclude that some suffix of p is conform with one
of the strategies wi. Thus, σ wins p.

Let p be a finite play. The dead end, say v, in p belongs to some Ui. Since
all vertices of Ui are winning for σ, we can conclude that v ∈ Vσ. Thus, σ wins
p. &'

6.3 Determinacy

Following Zielonka [203] in this section we show that parity games are deter-
mined and that the winner of a parity game has a memoryless winning strategy.
Formally, the main theorem of this chapter reads as follows.

Theorem 6.6. The set of vertices of a parity game is partitioned into a 0-
paradise and a 1-paradise.

Note that the 0- and 1-paradises are the winning regions of the players. We
provide two proofs of this theorem. The first proof is non-constructive, whereas
the second one is constructive. For parity games on finite graphs, the latter proof
can even be turned into a recursive algorithm for computing the winning regions
of the players, along with their memoryless winning strategies (see Section 6.4)

100 Ralf Küsters

Attrσ(G[Xσ], N)

Zσ
Zσ

Z

︸ ︷︷ ︸
Xσ

︸ ︷︷ ︸
Xσ

N

Fig. 6.2. Construction of Xσ and Xσ

Both proofs are carried by induction on the maximum parity occurring in G.
The core of the two proofs is summarized in the following three lemmas. The
first lemma is the induction basis and the other two lemmas form the main part
of the induction hypothesis.

Lemma 6.7. If the maximum parity of G is 0, then V is partitioned into a 0-
and a 1-paradise.

Proof. Since the maximum priority of G is 0, Player 1 can only win G on dead
ends in V0 or vertices from which he can force the token to such a dead end.
That is, the 1-paradise is the set Attr1(G, ∅) with attr1(G, ∅) as a memoryless
winning strategy. Since V \ Attr1(G, ∅) is a 1-trap and the maximum priority of
G is 0, it es easy to see that V \ Attr1(G, ∅) is a 0-paradise. &'

We will now assume that the maximum parity n of G is at least 1. By induction
and Lemma 6.7, we may assume that Theorem 6.6 holds for every parity game
with maximum parity less than n. Let

σ ≡ n mod 2 (6.1)

be the player that wins if the token visits infinitely often the maximum priority
n. Let Xσ be a σ-paradise such that Xσ := V \ Xσ is a σ-trap. Finally, let

N = { v ∈ Xσ | χ(v) = n } and Z = Xσ \ Attrσ(G[Xσ], N). (6.2)

Note that since Xσ is a σ-trap, G[Xσ] is a subgame of G. Moreover, as a comple-
ment of an attractor set, Z is a σ-trap in G[Xσ], and thus, G[Xσ][Z] is a subgame
of G[Xσ]. By Lemma 6.2, G[Z] is a subgame of G. The priorities of G[Z] are ele-
ments of {0, . . . , n−1}. Thus, by the induction hypothesis, Z is partitioned into
a 0-paradise, Z0, and a 1-paradise, Z1, say with memoryless winning strategies
z0 and z1, respectively. The situation described so far is depicted in Figure 6.2.

The set Zσ is a σ-trap in G[Z] and Z is a σ-trap in G[Xσ]. Thus, according
to Lemma 6.3, Zσ is a σ-trap in G[Xσ]. Consequently, Xσ ∪ Zσ is a σ-trap in

6 Memoryless Determinacy of Parity Games 101

G: Once in Xσ, σ cannot move the token outside this set; although from Zσ, σ
can move the token inside Xσ, σ cannot move it outside Zσ in G[Xσ]. Moreover,
when playing according to xσ in Xσ and according to zσ in Zσ two cases can
occur:

(1) At some moment in a play the token hits the set Xσ. Then, from this moment
on, σ plays according to xσ and wins the play.

(2) The token stays forever in Zσ. Since in this set, σ plays according to zσ, σ
wins as well.

This shows:

Lemma 6.8. The union Xσ ∪ Zσ is a σ-paradise.

This lemma will later allow us to extend σ-paradises. Conversely, if Xσ cannot
be extended in this way, one can show that it is not possible to extend Xσ at all
and that Xσ is a σ-paradise:

Lemma 6.9. If Zσ = ∅, then Xσ is a σ-paradise.

Proof. If Zσ = ∅, σ wins everywhere on G[Z] with zσ.
To win on Xσ, Player σ plays as follows on Xσ: If the token visits a vertex

v ∈ N , then σ moves it to any successor vertex v′ inside of his winning region
Xσ. Note that there is always at least one such successor vertex since Xσ is
a σ-trap. If the token visits Attrσ(G[Xσ], N) \ N , then σ attracts it in a finite
number of steps to N or a dead end in Vσ. If the token is in Z, then σ plays
according to the winning strategy zσ on Z.

Formally, the winning strategy xσ for σ on Xσ is defined as follows: for
v ∈ Xσ ∩ Vσ set

xσ(v) =

zσ(v) if v ∈ Z,
attrσ(G[Xσ], N)(v) if v ∈ Attrσ(G[Xσ], N) \ N,
v′ if v ∈ N and v′ ∈ vE ∩Xσ

(6.3)

Let p be any play conform with xσ starting at some vertex in Xσ. Then, three
cases can occur. First, from some moment on, the token stays forever inside of Z
and in this case some suffix of p is conform with zσ and Player σ wins. Second,
the token is moved to a dead end in Vσ ∩ (Attrσ(G[Xσ], N) \N), in which case σ
wins as well. Third, the token visits infinitely often the maximal priority n (i.e,
the set N) and σ wins by (6.1). &'

With these lemmas at hand, the non-constructive and the constructive proofs of
Theorem 6.6 are rather straightforward.

A non-constructive proof of Theorem 6.6. Let n be the maximum priority
occurring in G. If n=0, then Theorem 6.6 follows from Lemma 6.7.

Suppose that n ≥ 1 and let σ be defined as in (6.1). Let Wσ = {W q
σ}q∈Q

be the family of all σ-paradises. Because of Lemma 6.5 we know that Wσ =⋃
q∈Q W q

σ is the greatest among these σ-paradises, say with memoryless winning

102 Ralf Küsters

strategy wσ. If we now show that the complement Wσ = V \ Wσ of Wσ is a
σ-paradise, we are done.

We use Lemma 6.8 and 6.9. To this end, we first show that Wσ is a σ-
trap. Lemma 6.5 yields that Attrσ(G, Wσ) is a σ-paradise. But since Wσ is the
greatest such paradise, we know Attrσ(G, Wσ) = Wσ . Hence, Wσ is a σ-trap, as
a complement of a σ-attractor set (Lemma 6.4).

With Xσ := Wσ, Xσ := Wσ we can apply Lemma 6.8 and obtain that
Wσ ∪Zσ is a σ-paradise. However, since Wσ is the greatest σ-paradise it follows
Zσ = ∅. By Lemma 6.9, we conclude that Wσ is a σ-paradise, which concludes
the non-constructive proof of Theorem 6.6. &'

In the above proof, the winning region Wσ was defined in a non-constructive
manner. In the following proof it is shown how Wσ can be constructed by trans-
finite induction. The construction is mainly based on Lemma 6.8. The set Wσ

will be specified as before.

A constructive proof of Theorem 6.6. The base case, n = 0, again follows
from Lemma 6.7 and for the induction step we assume n ≥ 1 and define σ as in
(6.1).

We construct by transfinite induction an increasing sequences of σ-paradises
W ξ
σ . The corresponding memoryless winning strategies are denoted wξσ. For ν <

ξ, wξσ will be an extension of wνσ.
Initially, W 0

σ = ∅. For a limit ordinal ξ we set W ξ
σ =

⋃
ν<ξ W ν

σ . By Lemma 6.5,
W ξ
σ is a σ-paradise. Since, by induction hypothesis, for every ν < ν′ < ξ the

strategy wν
′

σ is an extension of wνσ , we can define wξσ to be the union of the
strategies wνσ with ν < ξ. Now, similar to the proof of Lemma 6.5, (2) one can
show that wξσ is a winning strategy on W ξ

σ .
For a nonlimit ordinal ξ+ 1, we define W ξ+1

σ using Lemma 6.8. But first, we
set

Xξ = Attrσ(G, W ξ
σ)

to be the attractor set for σ on W ξ
σ . Lemma 6.5 ensures that Xξ is a σ-paradise.

Moreover, the memoryless winning strategy on Xξ, call it xξ, extends wξσ.
Since Xξ is a σ-attractor set, V \Xξ is a σ-trap and we can apply Lemma 6.8.

We define
W ξ+1
σ := Xξ ∪ Zξ

σ.

The set W ξ+1
σ is a σ-paradise and wξ+1

σ , defined as in the proof of the Lemma 6.8,
is a winning strategy on W ξ+1

σ , and it extends wξσ.
This completes the construction of the increasing sequence of σ-paradises

W ξ
σ . Let ζ be the closure ordinal of the union of the W ξ

σ ’s, i.e., the smallest
ordinal such that

W ζ
σ = W ζ+1

σ

Let Wσ := W ζ
σ . We claim that Wσ = V \ Wσ is a σ-paradise. Since Wσ is a

σ-paradise, this would complete the constructive proof of Theorem 6.6.

6 Memoryless Determinacy of Parity Games 103

We know W ζ
σ ⊆ Xζ = Attrσ(G, W ζ

σ) ⊆ W ζ+1
σ = W ζ

σ , implying that Wσ =
Attrσ(G, Wσ). Thus, Wσ is a σ-trap, as a complement of a σ-attractor.

With Xσ := Wσ, Xσ := Wσ we can apply Lemma 6.8 and obtain that Wσ∪Zσ
is a σ-paradise. By construction of Wσ , it follows Wσ = Wσ ∪Zσ. Since Zσ and
Wσ are disjoint, we obtain that Zσ = ∅. Finally, Lemma 6.9 implies that Wσ is
a σ-paradise. &'

Alternative proofs. We conclude this section with some remarks on yet an-
other proof of determinacy. The proof presented by Emerson and Jutla [55] is
a non-inductive proof. The idea is that given a game the set W of winning po-
sitions of a player is expressed by a µ-calculus formula ϕ. Now it is possible to
deduce that the complement of W is indeed the set of winning positions for the
opponent from the fact that the negation of ϕ has the same form as ϕ after
exchanging the roles of both players. This shows that from every vertex one of
the players has a winning strategy, and thus, the game is determined. Note that
the µ-calculus formula and its negation, describing the winning positions of a
player and its adversary, respectively, allow to calculate the winning sets of both
players independently. In the non-constructive and constructive proofs presented
above, we first constructed Wσ, and depending on this set defined Wσ.

Finally, using a ranking argument, Emerson and Jutla proved (in a non-
constructive manner) the existence of memoryless winning strategies.

6.4 First Complexity and Algorithmic Results

In this section, we look at simple complexity-theoretic and algorithmic conse-
quences of Theorem 6.6 for deciding the winner of finite parity games, i.e.,
parity games on finite graphs. These results are presented here to give a feel-
ing for the complexity and algorithmic issues. They are, however, not optimal
compared to what is known from the literature. In fact, Jurdziński [92, 93] has
proved better results, which are discussed in detail in Chapter 7.

6.4.1 A Simple Complexity Result

Let Wins = { (G, v) | G is a finite parity game and v is a winning position of
Player 0 } be the problem of deciding whether, given an initialized finite parity
game, Player 0 wins.

As an easy consequence of Theorem 6.6, we obtain the following.

Corollary 6.10. Wins ∈ NP ∩ co-NP.

Proof. We first show that Wins ∈ NP. The following is a non-deterministic
polynomial-time algorithm for deciding Wins: (i) Given G and v, guess a mem-
oryless strategy w; (ii) check whether w is a memoryless winning strategy. We
need to show that the second step can be carried out in polynomial time.

The strategy w can be represented by a subgraph Gw of G. This subgraph
coincides with G except that all edges (v′, v′′) where v′ is a 0-vertex and v′′ -=

104 Ralf Küsters

w(v′) are eliminated, i.e., for a 0-vertex we only keep the outgoing edge referred
to by w.

Given Gw, we need to check whether there exists a vertex v′ reachable from
v in Gw such that a) χ(v′) is odd and b) v′ lies on a cycle in Gw containing only
vertices of priority less or equal χ(v′). If, and only if, such a vertex v′ does not
exist, w is a winning strategy for Player 0. Checking this can be carried out in
polynomial time. (We leave the proof as an exercise.) Thus, Wins ∈ NP.

We now show Wins ∈ co-NP. By Theorem 6.6, deciding (G, v) -∈Wins means
deciding whether v is a winning position for Player 1. This can be achieved by
the above algorithm if we require χ(v′) to be even. (Alternatively, one can apply
the above NP-algorithm to the dual game, i.e., the one where 0-vertices and
1-vertices are switched and the priorities are increased by 1). Consequently,
Wins ∈ co-NP. &'

Exercise 6.1. Complete the proof of Corollary 6.10.

The result just proved also follows from the work by Emerson, Jutla, and Sistla
[56], who showed that the modal µ-calculus model checking problem is in NP ∩
co-NP. This problem is equivalent via linear time reduction to Wins. Jurdziński
[92] has proved the even stronger result that Wins ∈ UP ∩ co-UP, where UP
is the class of languages recognizable by unambiguous polynomial-time non-
deterministic Turing machines, i.e., those with at most one accepting computa-
tion of length polynomially bounded in the size of the input; as usual, co-UP
denotes the problems whose complement is in UP.

6.4.2 Computing Winning Regions

We now present a deterministic algorithm, called winning-regions, for computing
the winning regions (and corresponding winning strategies) of the two players
of a finite parity game. This algorithm is derived in a straightforward manner
from the constructive proof of Theorem 6.6, and therefore, its correctness follows
immediately.

The algorithm is depicted in Figure 6.3. It uses the function win-opponent
(cf. Figure 6.4) as a subroutine. Given a finite parity game, winning-regions re-
turns the tuple ((W0, w0), (W1, w1)) where Wσ, σ ∈ {0, 1}, is the winning region
for Player σ and wσ is the corresponding memoryless winning strategy.

Following the constructive proof of Theorem 6.6, winning-regions first deter-
mines the highest priority n occurring in the game. If this priority is 0, paradises
as specified in the base case of the constructive proof are returned. Otherwise, for
σ ≡ n mod 2, Wσ along with the strategy wσ is computed using the subroutine
win-opponent (explained below). Finally, Wσ and wσ are determined according
to (6.3).

The procedure win-opponent exactly mimics the inductive definition of Wσ.
First, W is set to the empty set (corresponding to W 0

σ = ∅) and w is the empty
strategy, i.e., the strategy with empty domain. The loop body of win-opponent
follows the definition of W ξ+1

σ ; since here we deal with finite parity games, nat-
ural induction suffices to construct Wσ.

6 Memoryless Determinacy of Parity Games 105

winning-regions(G)
n := max{χ(v) | v ∈ V }
If n = 0 then return ((V \ Attr1(G, ∅), w0), (Attr1(G, ∅), attr1(G, ∅)))

// w0 is some memoryless strategy for Player 0

// otherwise
σ := n mod 2

// compute Wσ, wσ

(Wσ, wσ) :=win-opponent(G,σ, n)

// compute Wσ, wσ

Wσ := V \ Wσ

N := { v ∈ Wσ | n ∈ χ(v) } // see (6.2)
Z := Wσ \ Attrσ(G[Wσ], N) // see (6.2)
((Z0, z0), (Z1, z1)) :=winning-regions(G[Z])

∀v ∈ Wσ ∩ Vσ: // see (6.3)

wσ(v) =
zσ(v) if v ∈ Z,
attrσ(G[Wσ], N)(v) if v ∈ Attrσ(G[Wσ], N) \ N,
v′ if v ∈ N and v′ ∈ vE ∩ Wσ

return ((W0, w0), (W1, w1))

Fig. 6.3. A deterministic algorithm computing the winning regions of a parity game

To analyze the runtime of winning-regions, let l be the number of vertices,
m the number of edges, and n the maximum priority in G. Note that, w.l.o.g.,
we may assume n ≤ l. We also assume that every vertex has at least one in- or
outgoing edge. Thus, l ≤ 2m.

It is easy to see that all assignments, except for those involving recursive
function calls, in winning-regions and win-opponent can be carried out in time c·m
where c is some fixed (and big enough) constant: Recall from Exercise 2.6 that
attractor sets can be computed in time O(l+m). If we now denote by T (l, m, n)
the worst-case runtime of winning-regions on all inputs G, with G having the
parameters l, m, and n as specified before, and similarly, by S(l, m, n) the worst-
case runtime of win-opponent, we obtain the following inequalities:

T (l, m, 0) ≤ c · m
T (l, m, n + 1) ≤ c · m + S(l, m, n + 1)
S(l, m, n + 1) ≤ c · m + (l + 1) · T (l, m, n)

Note that win-opponent is only invoked in case n ≥ 1, thus we do not need
to consider S(l, m, 0). More importantly, the recursive call winning-regions(G[Z])
in winning-regions is not necessary, since the result of this call coincides with
the result of winning-regions(G[Z]) in the last iteration step of win-opponent.
Consequently, in the inequality for T (l, m, n + 1) we can omit the runtime for
this call. Solving the above inequality system yields that T (l, m, n) ∈ O(m · ln).
This proves the following corollary.

106 Ralf Küsters

win-opponent(G,σ, n)

(W, w) := (∅, ∅) // corresponds to W 0
σ := ∅

Repeat
(W ′, w′) := (W, w)
X := Attrσ(G, W)
∀v ∈ X ∩ Vσ:

x(v) =
w(v) if v ∈ W,
attrσ(G, W)(v) if v ∈ X \ W.

Y := V \ X;
N := { v ∈ Y | n = χ(v) } // see (6.2)
Z := Y \ Attrσ(G[Y], N) // see (6.2)
((Z0, z0), (Z1, z1)) =winning-regions(G[Z])
W := X ∪ Zσ

∀v ∈ W :

w(v) =
x(v) if v ∈ X,
zσ(v) if v ∈ Zσ.

Until W ′ = W

return (W, w)

Fig. 6.4. A subroutine for winning-regions computing Wσ and wσ

Corollary 6.11. Computing the winning regions of finite parity games and the
corresponding memoryless winning strategies can be carried out in time O(m·ln).

The best known deterministic algorithm for computing winning regions is due
to Jurdzińzski [93] and is discussed in Chapter 7 (see Theorem 7.25). Unlike the
algorithm presented here, Jurdzińzski’s algorithm only needs polynomial space.
The following chapter also includes other up-to-date approaches to the problem
of deciding the winner of a parity game.

