Infinite Games: Motivation

Barbara Jobstmann

Cadence Design Systems
Ecole Polytechnique Fédérale de Lausanne

Grenoble, December 2018
Build Correct HW/SW Systems

- Use logic to specify correctness properties, e.g.:
 - every job sent to the printer is eventually printed
 - two jobs do not overlap (only one job is printed at a time)
 - a job that is canceled will be interrupted

These are conditions on infinite sequences (system runs), and can be specified by automata and logical formulas.
Build Correct HW/SW Systems

- Use **logic** to specify correctness properties, e.g.:
 - *every job sent to the printer is eventually printed*
 - *two jobs do not overlap (only one job is printed at a time)*
 - *a job that is canceled will be interrupted*

These are conditions on infinite sequences (system runs), and can be specified by automata and logical formulas.

- Given a **logical specification**, we can do either:
 - **VERIFICATION**: prove that a given system satisfies the specification
 - **SYNTHESIS**: build a system that satisfies the specification
Example: Elevator

- **Aim:** build controller that moves elevator of 10 floor building
- **Environment:** Passengers pressing buttons to (1) call elevator and (2) request floor
- **System state:**
 1. Set of requested floor numbers: $\{0, 1\}^{10}$
 2. Current position of lift: $\{1, \ldots, 10\}$
 3. Indicator whose turn is next (assuming lift and passengers act in alternation) $\{0, 1\}$
Infinite Games

Two players:

1. Controller is Player 0
2. Passengers are Player 1

A play of a game is an infinite sequence of states of elevator transition system, where the two players choose moves alternatively.

How does the transition system look like?

- State space: \(\{0, 1\}^{10} \times \{1, \ldots, 10\} \times \{0, 1\} \)
- Transitions:
 - Player 0: \((r_1 \ldots r_{10}, j, 0) \rightarrow [r'_1 \ldots r'_{10}, j', 1]\) s.t. \(r_j = 0, \forall i \neq j r_i = r'_i\)
 - Actions: open/closes doors and move lift
 - Player 1: \([r_1 \ldots r_{10}, j, 1] \rightarrow (r'_1 \ldots r'_{10}, j', 0)\) s.t. \(j = j', \forall i : r_i \leq r'_i\)
 - Actions: request floors
Desired Properties

- Every requested floor is eventually reached
- Floors along the way are severed if requested
- If no floor is requested, elevator goes to ground floor
- ...

These are conditions on infinite sequences!

Player 0 (controller) wins the play if all conditions are satisfied independent of the choices Player 1 makes. This corresponds to finding a winning strategy for Player 0 in an infinite game.
Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy - Realizability Problem
2. If “yes”, then construct the system - Synthesis Problem

Main result:
The synthesis problem is algorithmically solvable for finite-state systems with respect to specifications given as ω-automata or linear-time temporal logic.
Other Applications of Games

- Program repair or program sketching
- Nicer and more intuitive proofs for logics over trees
- Verification for logics over trees
Model Checking versus Repair
An Example
Lock Example

...
1 while(...) {
2 if (...) {
3 lock();
4 gotlock++;
 }
5 if (gotlock!=0)
6 unlock();
7 gotlock--;
8 }
9 ...
Property

P1: do not acquire a lock twice
Transition System of P

Variables: line, gotlock

l=1, gl=0
l=2, gl=0
l=3, gl=0
l=4, gl=0
l=5, gl=0
l=6, gl=0
l=7, gl=0
l=8, gl=0

l=1, gl=-1
l=2, gl=-1
l=3, gl=-1
l=4, gl=-1
l=5, gl=-1
l=6, gl=-1
l=7, gl=-1
l=8, gl=-1
Recall LTL

Boolean Operators: \(\neg, \land, \lor, \rightarrow, \ldots \)

Temporal Operators:

- **next**: \(\bigcirc \varphi \) ... in the next step \(\varphi \) holds
- **until**: \(\varphi_1 \mathsf{U} \varphi_2 \) ... at some point in the future \(\varphi_2 \) holds and until then \(\varphi_1 \) holds

Useful abbreviations:

- **eventually**: \(\Diamond \varphi = \text{true} \mathsf{U} \varphi \)
- **always**: \(\square \varphi = \neg \Diamond \neg \varphi \)
- **weakuntil**: \(\varphi_1 \mathsf{W} \varphi_2 = (\varphi_1 \mathsf{U} \varphi_2) \lor \square \neg \varphi_1 \)

Note that
\[
\neg (\varphi_1 \mathsf{U} \varphi_2) = (\neg \varphi_2 \mathsf{U} \neg \varphi_1 \land \neg \varphi_2) \lor \square \neg \varphi_2 = \neg \varphi_2 \mathsf{W}(\neg \varphi_1 \land \neg \varphi_2).
\]
Our Property in LTL

P1: do not acquire a lock twice
Whenever we have called lock, we are not allowed to call it again before calling unlock.
Our Property in LTL

P1: do not aquire a lock twice
Whenever we have called lock, we are not allowed to call it again before calling unlock. $\Box((l = 3) \rightarrow \bigcirc(\neg(l = 3) W(l = 6)))$
\[L(\text{Program}) \subseteq L(P1) \]

\[L(\text{Program}) \cap L(\neg P1) = \emptyset \]
Automaton for \(\neg P1 \)

\[
\neg P1 = \neg \Box (l_3 \rightarrow \bigcirc (\neg l_3 \mathcal{W} l_6))
\]

\[
\neg P1 = \Diamond (l_3 \land \bigcirc (\neg l_6 \mathcal{U} l_3))
\]

Simplified version:
Product of Program and Property

\[
\begin{array}{c}
l=1, gl=-1, s_1 \\
l=2, gl=-1, s_1 \\
l=3, gl=-1, s_1 \\
l=4, gl=-1, s_2 \\
\end{array}
\quad
\begin{array}{c}
l=1, gl=-1, s_0 \\
l=2, gl=-1, s_0 \\
l=3, gl=-1, s_0 \\
l=4, gl=-1, s_1 \\
\end{array}
\quad
\begin{array}{c}
l=1, gl=0, s_0 \\
l=2, gl=0, s_0 \\
l=3, gl=0, s_0 \\
l=4, gl=0, s_1 \\
\end{array}
\quad
\begin{array}{c}
l=1, gl=0, s_0 \\
l=2, gl=0, s_0 \\
l=3, gl=0, s_0 \\
l=4, gl=0, s_1 \\
\end{array}
\quad
\begin{array}{c}
l=5, gl=0, s_0 \\
l=5, gl=0, s_0 \\
l=5, gl=1, s_1 \\
l=6, gl=1, s_1 \\
\end{array}
\quad
\begin{array}{c}
l=7, gl=0, s_1 \\
l=7, gl=0, s_0 \\
\end{array}
\]
Counterexample

1. Line 1: enter while loop
2. Line 2: skip over if
3. ...
4. Line 1: enter while loop
5. Line 2: enter if (call lock)
6. ...
7. Line 1: enter while loop
8. Line 2: enter if (call lock again)

```c
... 1 while(...) {
    2 if (...) {
        3 lock();
        4 gotlock++;
    }
... 5 if (gotlock!=0)
    6 unlock();
    7 gotlock--;
} 8 ...
```
Repair
Repair: Step 1 - Free variables

1 while(...) {
2 if (...) {
3 lock();
4 gotlock=?;
5 }
6 ...
7 ...
8 ...
9 if (gotlock!=0)
10 unlock();
11 gotlock=?;
12 }
13 ...
14 ...
Game on P

Variables: line, gotlock

\[
\begin{align*}
&l=1, gl=-1 \\
&l=2, gl=-1 \\
&l=3, gl=0 \\
&l=4, gl=-1 \\
&l=5, gl=-1 \\
&l=6, gl=-1 \\
&l=7, gl=0 \\
&l=8, gl=-1
\end{align*}
\]
Repair: Winning Condition

Note in MC: non-determinism due to input and due to automaton are treated the same way!

In Game: non-determinism may cause troubles.
Add Automaton to Game on P

Variables: line, gotlock

\[
\begin{array}{l}
\text{l=1, gl=-1} \\
\text{l=2, gl=-1} \\
\text{l=3, gl=-1} \\
\text{l=4, gl=-1} \\
\text{l=5, gl=-1} \\
\text{l=6, gl=-1} \\
\text{l=7, gl=-1} \\
\text{l=8, gl=-1} \\
\end{array}
\]

\[
\begin{array}{l}
\text{l=1, gl=0} \\
\text{l=2, gl=0} \\
\text{l=3, gl=0} \\
\text{l=4, gl=0} \\
\text{l=5, gl=0} \\
\text{l=6, gl=0} \\
\text{l=7, gl=0} \\
\text{l=8, gl=0} \\
\end{array}
\]

\[
\begin{array}{l}
\text{l=1, gl=1} \\
\text{l=2, gl=1} \\
\text{l=3, gl=1} \\
\text{l=4, gl=1} \\
\text{l=5, gl=1} \\
\text{l=6, gl=1} \\
\text{l=7, gl=1} \\
\end{array}
\]

Variables: line, gotlock

\[
\begin{array}{l}
-s_0 \\
-s_1 \\
-s_2
\end{array}
\]

\[
\begin{array}{l}
l_3 \rightarrow s_0 \\
-l_3 \wedge -l_6 \rightarrow s_1 \\
l_3 \rightarrow s_2
\end{array}
\]

\[
\begin{array}{l}
l_6 \rightarrow l_3 \\
l_3 \rightarrow l_6
\end{array}
\]
A Winning Strategy

l=1, gl=0
l=2, gl=0
l=3, gl=0
l=4, gl=0
l=5, gl=0
l=5, gl=1
l=6, gl=0
l=6, gl=1
l=7, gl=0
l=7, gl=1
l=8, gl=0
l=5, gl=1

Variables: line, gotlock
A Correct Program

while(...)
{
 if (...)
 {
 lock();
 gotlock=1;
 }
...
...
...

 if (gotlock!=0)
 {
 unlock();
 gotlock=0;
 }
}
...
...