The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω-recognizable subset of Σ^{ω} can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that ω-recognizable languages are closed under complement.

Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions $t=\langle l, s\rangle$:

- $l: \mathbb{N} \mapsto \Sigma$ denotes the labels of the nodes
- $s: \mathbb{N} \mapsto \mathbb{N}^{*}$ gives the ordered list of children of each node
$\operatorname{dom}(l)=\operatorname{dom}(s) \stackrel{\text { def }}{=} \operatorname{dom}(t)$
$p \leq q: q$ is a successor of p in t
$p \preceq_{l e f t} q: p$ is to the left of q in $t(p \preceq q$ and $p \not \leq q)$

Safra Trees

Let $A=\langle S, I, T, F\rangle$ be a Büchi automaton.
A Safra tree is a pair $\langle t, m\rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq \operatorname{dom}(t)$ is the set of marked positions, such that:

- each marked position is a leaf
- for each $p \in \operatorname{dom}(t)$, the union of labels of its children is a strict subset of $t(p)$
- for each $p, q \in \operatorname{dom}(t)$, if $p \not \leq q$ and $q \not \leq p$ then $t(p) \cap t(q)=\emptyset$

Proposition 1 A Safra tree has at most $\|S\|$ nodes.

$$
\begin{aligned}
r(p) & =t(p) \backslash \bigcup_{q<p} t(q) \\
\|\operatorname{dom}(t)\| & =\sum_{p \in \operatorname{dom}(t)} 1 \leq \sum_{p \in \operatorname{dom}(t)}\|r(p)\| \leq\|S\|
\end{aligned}
$$

Intuition

Initial State

We build a Rabin automaton $B=\left\langle S_{B}, i_{B}, T_{B}, \Omega_{B}\right\rangle$, where:

- S_{B} is the set of all Safra trees $\langle t, m\rangle$ labeled with subsets of S
- $i_{B}=\langle t, m\rangle$ is the Safra tree defined as either:
$-\operatorname{dom}(t)=\{1\}, t(1)=I$ and $m=\emptyset$ if $I \cap F=\emptyset$
$-\operatorname{dom}(t)=\{1\}, t(1)=I$ and $m=\{1\}$ if $I \subseteq F$
$-\operatorname{dom}(t)=\{1,2\}, t(1)=I, t(2)=I \cap F$ and $m=\{2\}$ if $I \cap F \neq \emptyset$

Classical Subset Move

[Step 1] $\left\langle t_{1}, m_{1}\right\rangle$ is the tree with $\operatorname{dom}\left(t_{1}\right)=\operatorname{dom}(t), m_{1}=\emptyset$, and $t_{1}(p)=\left\{s^{\prime} \mid s \xrightarrow{\alpha} s^{\prime}, s \in t(p)\right\}$, for all $p \in \operatorname{dom}(t)$

Spawn New Children

[Step 2] $\left\langle t_{2}, m_{2}\right\rangle$ is the tree such that, for each $p \in \operatorname{dom}\left(t_{1}\right)$, if $t_{1}(p) \cap F \neq \emptyset$ we add a new child to the right, identified by the first available id, and labeled $t_{1}(p) \cap F$, and m_{2} is the set of all such children

Horizontal Merge

[Step 3] $\left\langle t_{3}, m_{3}\right\rangle$ is the tree with $\operatorname{dom}\left(t_{3}\right)=\operatorname{dom}\left(t_{2}\right), m_{3}=m_{2}$, such that, for all $p \in \operatorname{dom}\left(t_{3}\right), t_{3}(p)=t_{2}(p) \backslash \bigcup_{q \prec l_{\text {eft }} p} t_{2}(q)$

Delete Empty Nodes

[Step 4] $\left\langle t_{4}, m_{4}\right\rangle$ is the tree such that $\operatorname{dom}\left(t_{4}\right)=\operatorname{dom}\left(t_{3}\right) \backslash\left\{p \mid t_{3}(p)=\emptyset\right\}$ and $m_{4}=m_{3} \backslash\left\{p \mid t_{3}(p)=\emptyset\right\}$

Vertical Merge

[Step 5] $\left\langle t_{5}, m_{5}\right\rangle$ is $m_{5}=m_{4} \cup V, \operatorname{dom}\left(t_{5}\right)=\operatorname{dom}\left(t_{4}\right) \backslash\{q \mid p \in V, p<q\}$, $V=\left\{p \in \operatorname{dom}\left(t_{4}\right) \mid t_{4}(p)=\bigcup_{p<q} t_{4}(q)\right\}$

b
1

Accepting Condition

The Rabin accepting condition is defined as
$\Omega_{B}=\left\{\left(N_{q}, P_{q}\right) \mid q \in \bigcup_{\langle t, m\rangle \in S_{B}} \operatorname{dom}(t)\right\}$, where:

- $N_{q}=\left\{\langle t, m\rangle \in S_{B} \mid q \notin \operatorname{dom}(t)\right\}$
- $P_{q}=\left\{\langle t, m\rangle \in S_{B} \mid q \in m\right\}$

$$
\Omega_{B}=\left\{\left(\left\{R_{1}\right\},\left\{R_{2}\right\}\right),\left(\left\{R_{2}\right\},\left\{R_{1}\right\}\right)\right\}
$$

Correctness of Safra Construction

Lemma 1 For $0 \leq i \leq n-1, S_{i+1} \subseteq T\left(S_{i}, \alpha_{i+1}\right)$. Moreover, for every $q \in S_{n}$, there is a path in A starting in some $q_{0} \in S_{0}$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König's Lemma)

Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u=\alpha_{0} \alpha_{1} \alpha_{2} \ldots$

$$
\pi: q_{0} \xrightarrow{\alpha_{0}} q_{1} \xrightarrow{\alpha_{1}} q_{2} \ldots
$$

corresponds to a unique infinite path of B :

$$
i_{B}=R_{0} \xrightarrow{\alpha_{0}} R_{1} \xrightarrow{\alpha_{1}} R_{2} \ldots
$$

where each q_{i} belongs to the root of R_{i}
If the root is marked infinitely often, then u is accepted. Otherwise, let n_{0} be the largest number such that the root is marked in $R_{n_{0}}$. Let $m>n_{0}$ be the smallest number such that $q_{m} \in F$ is repeated infinitely often in π.

Since $q_{m} \in F$ it appears in a child of the root. If it appears always on the same position p_{m} and the node is marked infinitely often, then the path is accepting. Otherwise it appears to the left of p_{m} from some n_{1} on (horizontal merge). This left switch can occur a finite number of times.

Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an equivalent Rabin automaton?

- The upper bound is $2^{\mathcal{O}(n \log n)}$ states
- The lower bound is of at least n ! states

Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree $\langle t, m\rangle$ can be uniquely described by the functions:

- $S \rightarrow\{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in \operatorname{dom}(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow\{0,1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow\{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow\{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n+1)^{n} \cdot 2^{n} \cdot(n+1)^{n} \cdot(n+1)^{n} \leq(n+1)^{4 n}$ Safra trees, hence the upper bound is $2^{\mathcal{O}(n \log n)}$.

The Language L_{n}

$\Sigma=\{1, \ldots, n, \#\}$

$$
\begin{aligned}
(3 \# 32 \# 21 \# 1)^{\omega} & \in L_{3} \\
(312 \#)^{\omega} & \notin L_{3}
\end{aligned}
$$

$\alpha \in L_{n}$ if there exist $i_{1}, \ldots, i_{n} \in\{1, \ldots, n\}$ such that

- $\alpha_{k}=i_{1}$ is the first occurrence of i_{1} in α and $q_{0} \xrightarrow{\alpha_{0} \ldots \alpha_{k}} q_{i_{1}}$
- the pairs $i_{1} i_{2}, i_{2} i_{3}, \ldots, i_{n} i_{1}$ appear infinitely often in α.

The Language L_{n}

Lemma 2 (Permutation) For each permutation $i_{1}, i_{2}, \ldots, i_{n}$ of $1,2, \ldots, n$, the infinite word $\left(i_{1} i_{2} \ldots i_{n} \#\right)^{\omega} \notin L_{n}$.

Lemma 3 (Union) Let $A=(S, i, T, \Omega)$ be a Rabin automaton with $\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{k}, P_{k}\right\rangle\right\}$ and ρ_{1}, ρ_{2}, ρ be runs of A such that

$$
\inf \left(\rho_{1}\right) \cup \inf \left(\rho_{2}\right)=\inf (\rho)
$$

If ρ_{1} and ρ_{2} are not successful, then ρ is not successful either.

Proving the n ! Lower Bound

Suppose that A recognizes L_{n}. We need to show that A has $\geq n!$ states.

Let $\alpha=i_{1}, i_{2}, \ldots, i_{n}$ and $\beta=j_{1}, j_{2}, \ldots, j_{n}$ be two permutations of $1,2, \ldots, n$. Then the words $\left(i_{1} i_{2} \ldots i_{n} \#\right)^{\omega}$ and $\left(j_{1} j_{2} \ldots j_{n} \#\right)^{\omega}$ are not accepted.

Let $\rho_{\alpha}, \rho_{\beta}$ be the non-accepting runs of A over α and β, respectively.

Claim $1 \inf \left(\rho_{\alpha}\right) \cap \inf \left(\rho_{\beta}\right)=\emptyset$

Then A must have $\geq n!$ states, since there are $n!$ permutations.

Proving the n ! Lower Bound

By contradiction, assume $q \in \inf \left(\rho_{\alpha}\right) \cap \inf \left(\rho_{\beta}\right)$. Then we can build a run ρ such that $\inf (\rho)=\inf \left(\rho_{1}\right) \cup \inf \left(\rho_{2}\right)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

$$
\begin{array}{ccccccccccc}
i_{1} & \ldots & i_{k-1} & i_{k} & i_{k+1} & \ldots & i_{l-1} & i_{l} & \ldots & & i_{n} \\
= & & = & \neq & & & & & & & \\
j_{1} & \ldots & j_{k-1} & j_{k} & j_{k+1} & \ldots & & j_{r-1} & j_{r} & \ldots & j_{n}
\end{array}
$$

$$
\begin{array}{ccccccc}
i_{k} & i_{k+1}, & \ldots & i_{l}=j_{k} & j_{k+1}, & \ldots & j_{r-1}, \quad j_{r}=i_{k}
\end{array}
$$

The new word is accepted since the pairs $i_{k} i_{k+1}, \ldots, j_{k} j_{k+1}, \ldots, j_{r-1} i_{k}$ occur infinitely often. Contradiction with the fact that ρ is not accepting.

The Big Picture

Linear Temporal Logic

Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
- Partial Correctness :
$\{\varphi\} \mathbf{P}\{\psi\}$ iff for any $s \models \varphi$, if P terminates on s, then $P(s) \models \psi$
- Total Correctness :
$\{\varphi\} \mathbf{P}\{\psi\}$ iff for any $s \models \varphi, P$ terminates on s and $P(s) \models \psi$
- Termination :

$$
P \text { terminates on } s
$$

- Need to reason about infinite computations :
- systems that are in continuous interaction with their environment
- servers, control systems, etc.
- e.g. "every request is eventually answered"

Safety vs. Liveness

- Safety : something bad never happens

A counterexample is an finite execution leading to something bad happening (e.g. an assertion violation).

- Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens (e.g. the program does not terminate).

Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

$$
\{p, q\}\{\neg p, \neg q\}(\{\neg p, q\}\{p, q\})^{\omega}
$$

Starting from position 2, q holds forever. \square

Kripke Structures

Let $\mathcal{P}=\{p, q, r, \ldots\}$ be a finite alphabet of atomic propositions.

A Kripke structure is a tuple $K=\left\langle S, s_{0}, \rightarrow, L\right\rangle$ where:

- S is a set of states,
- $s_{0} \in S$ a designated initial state,
- \rightarrow : $S \times S$ is a transition relation,
- $L: S \rightarrow 2^{\mathcal{P}}$ is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence $\pi: s_{0}, s_{1}, s_{2} \ldots$ such that, for all $i \geq 0$, we have $s_{i} \rightarrow s_{i+1}$.

By $\pi(i)$ we denote the i-th state on the path.

By π_{i} we denote the suffix $s_{i}, s_{i+1}, s_{i+2} \ldots$.

$$
\inf (\pi)=\{s \in S \mid s \text { appears infinitely often on } \pi\}
$$

If S is finite and π is infinite, then $\inf (\pi) \neq \emptyset$.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots,
- boolean connectives $\neg, \vee, \wedge, \rightarrow, \leftrightarrow$,
- temporal connectives $\bigcirc, \square, \diamond, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi, \square \varphi, \diamond \varphi, \varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.

Temporal Operators

- \bigcirc is read at the next time (in the next state)
- \square is read always in the future (in all future states)
- \diamond is read eventually (in some future state)
- \mathcal{U} is read until
- \mathcal{R} is read releases

Linear Temporal Logic: Semantics

$$
\begin{array}{ccc}
K, \pi \models p & \Longleftrightarrow & p \in L(\pi(0)) \\
K, \pi \models \neg \varphi & \Longleftrightarrow & K, \pi \nLeftarrow \varphi \\
K, \pi \models \varphi \wedge \psi & \Longleftrightarrow & \\
K, \pi \models \bigcirc \varphi, \pi \models \varphi \text { and } K, \pi \models \psi \\
K & \Longleftrightarrow & K, \pi_{1} \models \varphi
\end{array}
$$

$\Longleftrightarrow \quad$ there exists $k \in \mathbb{N}$ such that $K, \pi_{k} \models \psi$ and $K, \pi_{i} \models \varphi$ for all $0 \leq i<k$

Derived meanings:

$$
\begin{array}{rlc}
K, \pi \models \diamond \varphi & \Longleftrightarrow & K, \pi \models \top \mathcal{U} \varphi \\
K, \pi \models \square \varphi & \Longleftrightarrow & K, \pi \models \neg \diamond \neg \varphi \\
K, \pi \models \varphi \mathcal{R} \psi & \Longleftrightarrow & K, \pi \models \neg(\neg \varphi \mathcal{U} \neg \psi)
\end{array}
$$

Examples

- p holds throughout the execution of the system (p is invariant) : $\square p$
- whenever p holds, q is bound to hold in the future : $\square(p \rightarrow \diamond q)$
- p holds infinitely often : $\square \diamond p$
- p holds forever starting from a certain point in the future : $\diamond \square p$
- $\square(p \rightarrow \bigcirc(\neg q \mathcal{U} r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- $p \mathcal{R} q: q$ is true unless this obligation is released by p being true in a previous state.

LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

$$
\begin{array}{ccc}
\operatorname{Tr}(q) & = & p_{q}(t) \\
\operatorname{Tr}(\neg \varphi) & = & \neg \operatorname{Tr}(\varphi) \\
\operatorname{Tr}(\varphi \wedge \psi) & = & \operatorname{Tr}(\varphi) \wedge \operatorname{Tr}(\psi) \\
\operatorname{Tr}(\bigcirc \varphi) & = & \operatorname{Tr}(\varphi)[t+1 / t] \\
\operatorname{Tr}(\varphi \mathcal{U} \psi) & = & \exists x \cdot \operatorname{Tr}(\psi)[x / t] \wedge \forall y \cdot y<x \rightarrow \operatorname{Tr}(\varphi)[y / t]
\end{array}
$$

The direction from FOL to LTL is known as Kamp's Theorem.

LTL Model Checking

System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often)
- Given an LTL formula φ over a set of atomic propositions \mathcal{P}, specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^{\mathcal{P}}$ satisfying φ.

Q: Since LTL $\subset S 1 S$, this automaton can be built, so why bother?

- Check whether $\mathcal{L}\left(A_{\varphi}\right) \cap \mathcal{L}(K)=\emptyset$. In case it is not, we obtain a counterexample.

Generalized Büchi Automata

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A=\langle S, I, T, \mathcal{F}\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\} \subseteq 2^{S}$ is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all $1 \leq i \leq k$, we have

$$
\inf (\pi) \cap F_{i} \neq \emptyset
$$

GBA and BA are equivalent

Let $A=\langle S, I, T, \mathcal{F}\rangle$, where $\mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\}$.

Build $A^{\prime}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right\rangle$:

- $S^{\prime}=S \times\{1, \ldots, k\}$,
- $I^{\prime}=I \times\{1\}$,
- $(\langle s, i\rangle, a,\langle t, j\rangle) \in T^{\prime}$ iff $(s, t) \in T$ and:
$-j=i$ if $s \notin F_{i}$,
$-j=(i \bmod k)+1$ if $s \in F_{i}$.
- $F^{\prime}=F_{1} \times\{1\}$.

The idea of the construction

Let $K=\left\langle S, s_{0}, \rightarrow, L\right\rangle$ be a Kripke structure over a set of atomic propositions $\mathcal{P}, \pi: \mathbb{N} \rightarrow S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

Closure

Let φ be an LTL formula written in negation normal form.

The closure of φ is the set $C l(\varphi) \in 2^{\mathcal{L}(L T L)}$:

- $\varphi \in C l(\varphi)$
- $\bigcirc \psi \in C l(\varphi) \Rightarrow \psi \in C l(\varphi)$
- $\psi_{1} \bullet \psi_{2} \in C l(\varphi) \Rightarrow \psi_{1}, \psi_{2} \in C l(\varphi)$, for all $\bullet \in\{\wedge, \vee, \mathcal{U}, \mathcal{R}\}$.

Example 2 $C l(\diamond p)=C l(T \mathcal{U} p)=\{\diamond p, p, \top\} \square$

Q: What is the size of the closure relative to the size of φ ?

Labeling rules

Given $\pi: \mathbb{N} \rightarrow 2^{\mathcal{P}}$ and φ, we define $\tau: \mathbb{N} \rightarrow 2^{C l(\varphi)}$ as follows:

- for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$
- if $\psi_{1} \wedge \psi_{2} \in \tau(i)$ then $\psi_{1} \in \tau(i)$ and $\psi_{2} \in \tau(i)$
- if $\psi_{1} \vee \psi_{2} \in \tau(i)$ then $\psi_{1} \in \tau(i)$ or $\psi_{2} \in \tau(i)$

Labeling rules

$$
\begin{aligned}
\varphi \mathcal{U} \psi & \Longleftrightarrow \psi \vee(\varphi \wedge \bigcirc(\varphi \mathcal{U} \psi)) \\
\varphi \mathcal{R} \psi & \Longleftrightarrow \psi \wedge(\varphi \vee \bigcirc(\varphi \mathcal{R} \psi))
\end{aligned}
$$

- if $\bigcirc \psi \in \tau(i)$ then $\psi \in \tau(i+1)$
- if $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i)$ then either $\psi_{2} \in \tau(i)$, or $\psi_{1} \in \tau(i)$ and $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i+1)$
- if $\psi_{1} \mathcal{R} \psi_{2} \in \tau(i)$ then $\psi_{2} \in \tau(i)$ and either $\psi_{1} \in \tau(i)$ or $\psi_{1} \mathcal{R} \psi_{2} \in \tau(i+1)$

Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above
- $\varphi \in \tau(0)$, and
- if $\psi_{1} \mathcal{U} \psi_{2} \in \tau(i)$, then for some $j \geq i, \psi_{2} \in \tau(j)$ (the eventuality condition)
$\underline{\text { Building the GBA } A_{\varphi}=\langle S, I, T, \mathcal{F}\rangle}$
The automaton A_{φ} is the set of labeling rules + the eventuality condition(s)!
- $\Sigma=2^{\mathcal{P}}$ is the alphabet
- $S \subseteq 2^{C l(\varphi)}$, such that, for all $s \in S$:
$-\varphi_{1} \wedge \varphi_{2} \in s \Rightarrow \varphi_{1} \in s$ and $\varphi_{2} \in s$
$-\varphi_{1} \vee \varphi_{2} \in s \Rightarrow \varphi_{1} \in s$ or $\varphi_{2} \in s$
- $I=\{s \in S \mid \varphi \in s\}$,
- $(s, \alpha, t) \in T$ iff:
- for all $p \in \mathcal{P}, p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
$-\bigcirc \psi \in s \Rightarrow \psi \in t$,
$-\psi_{1} \mathcal{U} \psi_{2} \in s \Rightarrow \psi_{2} \in s$ or $\left[\psi_{1} \in s\right.$ and $\left.\psi_{1} \mathcal{U} \psi_{2} \in t\right]$
$-\psi_{1} \mathcal{R} \psi_{2} \in s \Rightarrow \psi_{2} \in s$ and $\left[\psi_{1} \in s\right.$ or $\left.\psi_{1} \mathcal{R} \psi_{2} \in t\right]$
$\underline{\text { Building the GBA } A_{\varphi}=\langle S, I, T, \mathcal{F}\rangle}$
- for each eventuality $\phi \mathcal{U} \psi \in C l(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ
- it is sufficient to ensure that, for each $\phi \mathcal{U} \psi \in C l(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi \mathcal{U} \psi$ and ψ appear
- let $\phi_{1} \mathcal{U} \psi_{1}, \ldots \phi_{n} \mathcal{U} \psi_{n}$ be the "until" subformulae of φ
$\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$, where:

$$
F_{i}=\left\{s \in S \mid \phi_{i} \mathcal{U} \psi_{i} \in s \text { and } \psi_{i} \in s \text { or } \phi_{i} \mathcal{U} \psi_{i} \notin s\right\}
$$

for all $1 \leq i \leq n$.

