
The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω-recognizable subset of Σω can be

recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset

construction to obtain a Rabin automaton equivalent to a given Büchi

automaton. The Safra algorithm is optimal 2O(n logn).

This proves that ω-recognizable languages are closed under complement.

Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions t = 〈l, s〉:

• l : N 7→ Σ denotes the labels of the nodes

• s : N 7→ N
∗ gives the ordered list of children of each node

dom(l) = dom(s)
def
= dom(t)

p ≤ q: q is a successor of p in t

p �left q: p is to the left of q in t (p � q and p 6≤ q)

Safra Trees

Let A = 〈S, I, T, F 〉 be a Büchi automaton.

A Safra tree is a pair 〈t,m〉, where t is a finite oriented tree labeled with

non-empty subsets of S, and m ⊆ dom(t) is the set of marked positions,

such that:

• each marked position is a leaf

• for each p ∈ dom(t), the union of labels of its children is a strict

subset of t(p)

• for each p, q ∈ dom(t), if p 6≤ q and q 6≤ p then t(p) ∩ t(q) = ∅

Proposition 1 A Safra tree has at most ||S|| nodes.

r(p) = t(p) \
⋃

q<p

t(q)

||dom(t)|| =
∑

p∈dom(t)

1 ≤
∑

p∈dom(t)

||r(p)|| ≤ ||S||

Initial State

We build a Rabin automaton B = 〈SB, iB , TB ,ΩB〉, where:

• SB is the set of all Safra trees 〈t,m〉 labeled with subsets of S

• iB = 〈t,m〉 is the Safra tree defined as either:

– dom(t) = {1}, t(1) = I and m = ∅ if I ∩ F = ∅

– dom(t) = {1}, t(1) = I and m = {ǫ} if I ⊆ F

– dom(t) = {1, 2}, t(1) = I, t(2) = I ∩ F and m = {2} if I ∩ F 6= ∅

2
1

a, b a

2
b

1, 2

2

1

Classical Subset Move

[Step 1] 〈t1,m1〉 is the tree with dom(t1) = dom(t),m1 = ∅, and

t1(p) = {s′ | s
α
−→ s′, s ∈ t(p)}, for all p ∈ dom(t)

2

1

a, b a

2
b a

b

1, 2

2

1, 2

∅

1, 2

2

1

2

1

2

1

Spawn New Children

[Step 2] 〈t2,m2〉 is the tree such that, for each p ∈ dom(t1), if

t1(p) ∩ F 6= ∅ we add a new child to the right, identified by the first

available id, and labeled t1(p) ∩ F , and m2 is the set of all such children

3

1

a, b a

2
b a

b

1, 2

2

1, 2

∅

2

2

2

1, 2

22

1 1

2

1

2

3

4

Horizontal Merge

[Step 3] 〈t3,m3〉 is the tree with dom(t3) = dom(t2), m3 = m2, such that,

for all p ∈ dom(t3), t3(p) = t2(p) \
⋃

q≺leftp
t2(q)

4

1

a, b a

2
b a

b

1, 2

2

1, 2

∅

2

2

1, 2

2 ∅2

1 1

2

1

2

3

3

Delete Empty Nodes

[Step 4] 〈t4,m4〉 is the tree such that dom(t4) = dom(t3) \ {p | t3(p) = ∅}

and m4 = m3 \ {p | t3(p) = ∅}

3

1

a, b a

2
b a

b

1, 2

2

1, 2

2

2

1, 2

22

1 1

2

1

4

Vertical Merge

[Step 5] 〈t5,m5〉 is m5 = m4 ∪ V , dom(t5) = dom(t4) \ {q | p ∈ V, p < q},

V = {p ∈ dom(t4) | t4(p) =
⋃

p<q t4(q)}

3

1

a, b a

2
b a

b

1, 2

2

1, 2

2

1, 2

2

1

2

1

1

2

Accepting Condition

The Rabin accepting condition is defined as

ΩB = {(Nq, Pq) | q ∈
⋃

〈t,m〉∈SB
dom(t)}, where:

• Nq = {〈t,m〉 ∈ SB | q 6∈ dom(t)}

• Pq = {〈t,m〉 ∈ SB | q ∈ m}

3

1, 2

2

1, 2

2

R1 R2

b

b

1

a, b a

2
b

a a

1

2

1

ΩB = {({R1}, {R2}), ({R2}, {R1})}

Example

a

a a

a

a

1 2 3

1 1, 2

1, 21

1

1, 2, 31, 2, 3

Correctness of Safra Construction

Sn−1

p

R1

p

Rn−1

p

Rn

α1 α2 αn−1 αn
p

R0

S0 S1 Sn

. . .

Lemma 1 For 0 ≤ i ≤ n− 1, Si+1 ⊆ T (Si, αi+1). Moreover, for every

q ∈ Sn, there is a path in A starting in some q0 ∈ S0, ending in q and

visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path

in A (König’s Lemma)

Correctness of Safra Construction

Conversely, an infinite accepting path of A over u = α0α1α2 . . .

π : q0
α0−→ q1

α1−→ q2 . . .

corresponds to a unique infinite path of B:

iB = R0
α0−→ R1

α1−→ R2 . . .

where each qi belongs to the root of Ri

If the root is marked infinitely often, then u is accepted. Otherwise, let n0

be the largest number such that the root is marked in Rn0
. Let m > n0 be

the smallest number such that qm ∈ F is repeated infinitely often in π.

Since qm ∈ F it appears in a child of the root. If it appears always on the

same position pm, then the path is accepting. Otherwise it appears to the

left of pm from some n1 on (step 3). This left switch can only occur a

finite number of times.

Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an

equivalent Rabin automaton?

• The upper bound is 2O(n log n) states

• The lower bound is of at least n! states

Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree 〈t,m〉 can be uniquely described by the functions:

• S → {0, . . . , n} gives for each s ∈ S the characteristic position

p ∈ dom(t) such that s ∈ t(p), and s does not appear below p

• {1, . . . , n} → {0, 1} is the marking function

• {1, . . . , n} → {0, . . . , n} is the parent function

• {1, . . . , n} → {0, . . . , n} is the older brother function

Altogether we have at most (n+ 1)n · 2n · (n+ 1)n · (n+ 1)n ≤ (n+ 1)4n

Safra trees, hence the upper bound is 2O(n logn).

The Language Ln

Σ = {1, . . . , n,#}

q0 qnq2q1

1
2

n

1, . . . , n,# 1, . . . , n,# 1, . . . , n,#

(3#32#21#1)ω ∈ L3

(312#)ω 6∈ L3

α ∈ Ln if there exist i1, . . . , in ∈ {1, . . . , n} such that

• αk = i1 is the first occurrence of i1 in α and q0
α0...αk−−−−→ qi1

• the pairs i1i2, i2i3, . . . , ini1 appear infinitely often in α.

The Language Ln

Lemma 2 (Permutation) For each permutation i1, i2, . . . , in of

1, 2, . . . , n, the infinite word (i1i2 . . . in#)ω 6∈ Ln.

Lemma 3 (Union) Let A = (S, i, T,Ω) be a Rabin automaton with

Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉} and ρ1, ρ2, ρ be runs of A such that

inf(ρ1) ∪ inf(ρ2) = inf(ρ)

If ρ1 and ρ2 are not successful, then ρ is not successful either.

Proving the n! Lower Bound

Suppose that A recognizes Ln. We need to show that A has ≥ n! states.

Let α = i1, i2, . . . , in and β = j1, j2, . . . , jn be two permutations of

1, 2, . . . , n. Then the words (i1i2 . . . in#)ω and (j1j2 . . . jn#)ω are not

accepted.

Let ρα, ρβ be the non-accepting runs of A over α and β, respectively.

Claim 1 inf(ρα) ∩ inf(ρβ) = ∅

Then A must have ≥ n! states, since there are n! permutations.

Proving the n! Lower Bound

By contradiction, assume q ∈ inf(ρα) ∩ inf(ρβ). Then we can build a run ρ

such that inf(ρ) = inf(ρ1) ∪ inf(ρ2) and α, β appear infinitely often. By

the union lemma, ρ is not accepting.

i1 . . . ik−1 ik ik+1 . . . il−1 il . . . in

= = 6=

j1 . . . jk−1 jk jk+1 . . . jr−1 jr . . . jn

ik ik+1, . . . il = jk jk+1, . . . jr−1, jr = ik

The new word is accepted since the pairs ikik+1, . . . , jkjk+1, . . . , jr−1ik

occur infinitely often. Contradiction with the fact that ρ is not accepting.

The Big Picture

2O(n log n)

NBA MA

DBA RA

EXP

P
EXP EXP

EXP

McNaughton

Linear Temporal Logic

Safety vs. Liveness

• Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening (e.g. an assertion violation).

• Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good

happens (e.g. the program does not terminate).

Verification of Reactive Systems

• Classical verification à la Floyd-Hoare considered three problems:

– Partial Correctness :

{ϕ} P {ψ} iff for any s |= ϕ, if P terminates on s, then P (s) |= ψ

– Total Correctness :

{ϕ} P {ψ} iff for any s |= ϕ, P terminates on s and P (s) |= ψ

– Termination :

P terminates on s

• Need to reason about infinite computations :

– systems that are in continuous interaction with their environment

– servers, control systems, etc.

– e.g. “every request is eventually answered”

Reasoning about infinite sequences of states

• Linear Temporal Logic is interpreted on infinite sequences of states

• Each state in the sequence gives an interpretation to the atomic

propositions

• Temporal operators indicate in which states a formula should be

interpreted

Example 1 Consider the sequence of states:

{p, q} {¬p,¬q} ({¬p, q} {p, q})ω

Starting from position 2, q holds forever. ✷

Kripke Structures

Let P = {p, q, r, . . .} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = 〈S, s0,−→, L〉 where:

• S is a set of states,

• s0 ∈ S a designated initial state,

• −→ : S × S is a transition relation,

• L : S → 2P is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence π : s0, s1, s2 . . . such that, for all

i ≥ 0, we have si −→ si+1.

By π(i) we denote the i-th state on the path.

By πi we denote the suffix si, si+1, si+2

inf(π) = {s ∈ S | s appears infinitely often on π}

If S is finite and π is infinite, then inf(π) 6= ∅.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

• atomic proposition symbols p, q, r, . . .,

• boolean connectives ¬,∨,∧,→,↔,

• temporal connectives ©,✷,✸,U ,R.

The set of LTL formulae is defined inductively, as follows:

• any atomic proposition is a formula,

• if ϕ and ψ are formulae, then ¬ϕ and ϕ • ψ, for • ∈ {∨,∧,→,↔} are

also formulae.

• if ϕ and ψ are formulae, then ©ϕ, ✷ϕ, ✸ϕ, ϕUψ and ϕRψ are

formulae,

• nothing else is a formula.

Temporal Operators

• © is read at the next time (in the next state)

• ✷ is read always in the future (in all future states)

• ✸ is read eventually (in some future state)

• U is read until

• R is read releases

Linear Temporal Logic: Semantics

K,π |= p ⇐⇒ p ∈ L(π(0))

K,π |= ¬ϕ ⇐⇒ K,π 6|= ϕ

K, π |= ϕ ∧ ψ ⇐⇒ K,π |= ϕ and K,π |= ψ

K, π |= ©ϕ ⇐⇒ K,π1 |= ϕ

K, π |= ϕUψ ⇐⇒ there exists k ∈ N such that K,πk |= ψ

and K,πi |= ϕ for all 0 ≤ i < k

Derived meanings:

K,π |= ✸ϕ ⇐⇒ K,π |= ⊤Uϕ

K, π |= ✷ϕ ⇐⇒ K,π |= ¬✸¬ϕ

K, π |= ϕRψ ⇐⇒ K,π |= ¬(¬ϕU¬ψ)

Examples

• p holds throughout the execution of the system (p is invariant) : ✷p

• whenever p holds, q is bound to hold in the future : ✷(p→ ✸q)

• p holds infinitely often : ✷✸p

• p holds forever starting from a certain point in the future : ✸✷p

• ✷(p→ ©(¬qUr)) holds in all sequences such that if p is true in a

state, then q remains false from the next state and until the first state

where r is true, which must occur.

• pRq : q is true unless this obligation is released by p being true in a

previous state.

LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive

power.

From LTL to FOL:

Tr(q) = pq(t)

Tr(¬ϕ) = ¬Tr(ϕ)

Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ)

Tr(©ϕ) = Tr(ϕ)[t+ 1/t]

Tr(ϕUψ) = ∃x . Tr(ψ)[x/t] ∧ ∀y . y < x→ Tr(ϕ)[y/t]

The direction from FOL to LTL is known as Kamp’s Theorem.

The Big Picture

Kamp’s

Theorem
Schutzenberger’s

Theorem

FOLSF

AP LTL

LTL Model Checking

System verification using LTL

• Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

• Given an LTL formula ϕ over a set of atomic propositions P ,

specifying all bad behaviors, we build a Büchi automaton Aϕ that

accepts all sequences over 2P satisfying ϕ.

Q: Since LTL ⊂ S1S, this automaton can be built, so why bother?

• Check whether L(Aϕ) ∩ L(K) = ∅. In case it is not, we obtain a

counterexample.

Generalized Büchi Automata

Let Σ = {a, b, . . .} be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is A = 〈S, I, T,F〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ× S is a transition relation,

• F = {F1, . . . , Fk} ⊆ 2S is a set of sets of final states.

A run π of a GBA is said to be accepting iff, for all 1 ≤ i ≤ k, we have

inf(π) ∩ Fi 6= ∅

GBA and BA are equivalent

Let A = 〈S, I, T,F〉, where F = {F1, . . . , Fk}.

Build A′ = 〈S′, I ′, T ′, F ′〉:

• S′ = S × {1, . . . , k},

• I ′ = I × {1},

• (〈s, i〉, a, 〈t, j〉) ∈ T ′ iff (s, t) ∈ T and:

– j = i if s 6∈ Fi,

– j = (i mod k) + 1 if s ∈ Fi.

• F ′ = F1 × {1}.

The idea of the construction

Let K = 〈S, s0,→, L〉 be a Kripke structure over a set of atomic

propositions P , π : N → S be an infinite path through K, and ϕ be an

LTL formula.

To determine whether K,π |= ϕ, we label π with sets of subformulae of ϕ

in a way that is compatible with LTL semantics.

Closure

Let ϕ be an LTL formula written in negation normal form.

The closure of ϕ is the set Cl(ϕ) ∈ 2L(LTL):

• ϕ ∈ Cl(ϕ)

• ©ψ ∈ Cl(ϕ) ⇒ ψ ∈ Cl(ϕ)

• ψ1 • ψ2 ∈ Cl(ϕ) ⇒ ψ1, ψ2 ∈ Cl(ϕ), for all • ∈ {∧,∨,U ,R}.

Example 2 Cl(✸p) = Cl(⊤Up) = {✸p, p,⊤}✷

Q: What is the size of the closure relative to the size of ϕ ?

Labeling rules

Given π : N → 2P and ϕ, we define τ : N → 2Cl(ϕ) as follows:

• for p ∈ P , if p ∈ τ(i) then p ∈ π(i), and if ¬p ∈ τ(i) then p 6∈ π(i)

• if ψ1 ∧ ψ2 ∈ τ(i) then ψ1 ∈ τ(i) and ψ2 ∈ τ(i)

• if ψ1 ∨ ψ2 ∈ τ(i) then ψ1 ∈ τ(i) or ψ2 ∈ τ(i)

Labeling rules

ϕUψ ⇐⇒ ψ ∨ (ϕ ∧©(ϕUψ))

ϕRψ ⇐⇒ ψ ∧ (ϕ ∨©(ϕRψ))

• if ©ψ ∈ τ(i) then ψ ∈ τ(i+ 1)

• if ψ1Uψ2 ∈ τ(i) then either ψ2 ∈ τ(i), or ψ1 ∈ τ(i) and

ψ1Uψ2 ∈ τ(i+ 1)

• if ψ1Rψ2 ∈ τ(i) then ψ2 ∈ τ(i) and either ψ1 ∈ τ(i) or

ψ1Rψ2 ∈ τ(i+ 1)

Interpreting labelings

A sequence π satisfies a formula ϕ if one can find a labeling τ satisfying:

• the labeling rules above

• ϕ ∈ τ(0), and

• if ψ1Uψ2 ∈ τ(i), then for some j ≥ i, ψ2 ∈ τ(j) (the eventuality

condition)

Building the GBA Aϕ = 〈S, I, T,F〉

The automaton Aϕ is the set of labeling rules + the eventuality

condition(s) !

• Σ = 2P is the alphabet

• S ⊆ 2Cl(ϕ), such that, for all s ∈ S :

– ϕ1 ∧ ϕ2 ∈ s⇒ ϕ1 ∈ s and ϕ2 ∈ s

– ϕ1 ∨ ϕ2 ∈ s⇒ ϕ1 ∈ s or ϕ2 ∈ s

• I = {s ∈ S | ϕ ∈ s},

• (s, α, t) ∈ T iff:

– for all p ∈ P , p ∈ s⇒ p ∈ α, and ¬p ∈ s⇒ p 6∈ α,

– ©ψ ∈ s⇒ ψ ∈ t,

– ψ1Uψ2 ∈ s⇒ ψ2 ∈ s or [ψ1 ∈ s and ψ1Uψ2 ∈ t]

– ψ1Rψ2 ∈ s⇒ ψ2 ∈ s and [ψ1 ∈ s or ψ1Rψ2 ∈ t]

Building the GBA Aϕ = 〈S, I, T,F〉

• for each eventuality φUψ ∈ Cl(ϕ), the transition relation ensures that

this will appear until the first occurrence of ψ

• it is sufficient to ensure that, for each φUψ ∈ Cl(ϕ), one goes

infinitely often either through a state in which this does not appear,

or through a state in which both φUψ and ψ appear

• let φ1Uψ1, . . . φnUψn be the “until” subformulae of ϕ

F = {F1, . . . , Fn}, where:

Fi = {s ∈ S | φiUψi ∈ s and ψi ∈ s or φiUψi 6∈ s}

for all 1 ≤ i ≤ n.

