The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω -recognizable subset of Σ^{ω} can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that ω -recognizable languages are closed under complement.

Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions $t = \langle l, s \rangle$:

- $l: \mathbb{N} \mapsto \Sigma$ denotes the labels of the nodes
- $s: \mathbb{N} \mapsto \mathbb{N}^*$ gives the ordered list of children of each node

$$dom(l) = dom(s) \stackrel{def}{=} dom(t)$$

 $p \leq q$: q is a successor of p in t

 $p \preceq_{left} q$: p is to the left of q in t $(p \preceq q \text{ and } p \not\leq q)$

Safra Trees

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

A Safra tree is a pair $\langle t, m \rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq dom(t)$ is the set of marked positions, such that:

- each marked position is a leaf
- for each p ∈ dom(t), the union of labels of its children is a strict subset of t(p)
- for each $p,q \in dom(t)$, if $p \not\leq q$ and $q \not\leq p$ then $t(p) \cap t(q) = \emptyset$

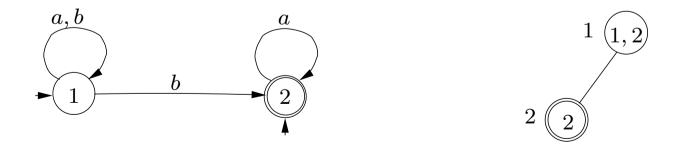
Proposition 1 A Safra tree has at most ||S|| nodes.

$$\begin{aligned} r(p) &= t(p) \setminus \bigcup_{q < p} t(q) \\ \| dom(t) \| &= \sum_{p \in dom(t)} 1 \le \sum_{p \in dom(t)} \| r(p) \| \le \| S \| \end{aligned}$$

Initial State

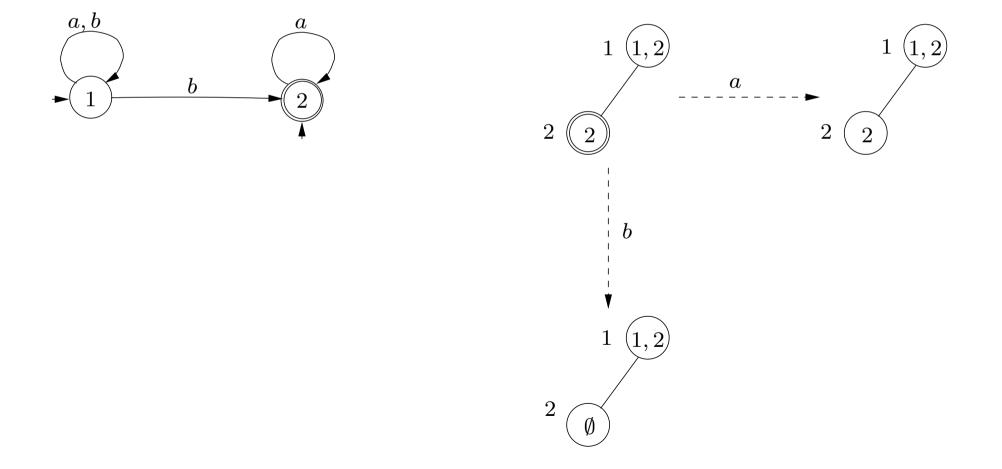
We build a Rabin automaton $B = \langle S_B, i_B, T_B, \Omega_B \rangle$, where:

- S_B is the set of all Safra trees $\langle t, m \rangle$ labeled with subsets of S
- $i_B = \langle t, m \rangle$ is the Safra tree defined as either:
 - $dom(t) = \{1\}, t(1) = I \text{ and } m = \emptyset \text{ if } I \cap F = \emptyset$
 - $dom(t) = \{1\}, t(1) = I \text{ and } m = \{\epsilon\} \text{ if } I \subseteq F$
 - $\ dom(t) = \{1,2\}, t(1) = I, t(2) = I \cap F \text{ and } m = \{2\} \text{ if } I \cap F \neq \emptyset$



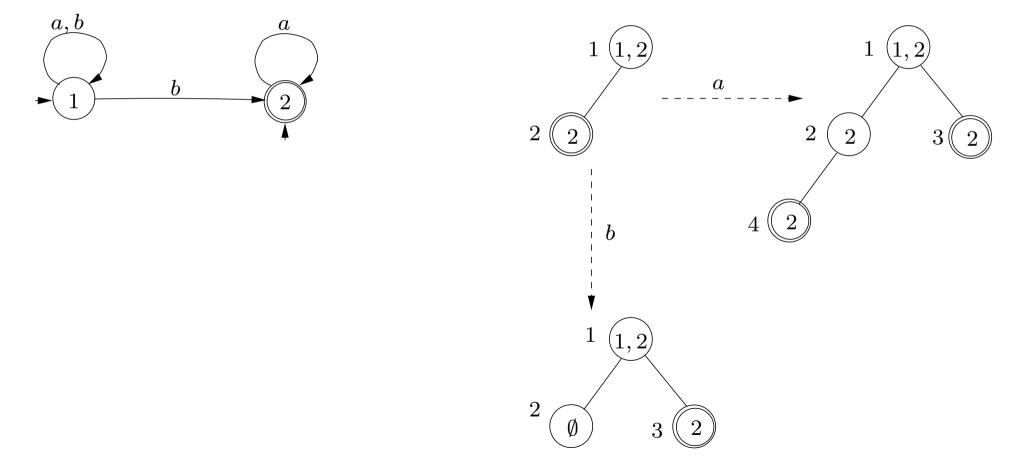
Classical Subset Move

[Step 1] $\langle t_1, m_1 \rangle$ is the tree with $dom(t_1) = dom(t), m_1 = \emptyset$, and $t_1(p) = \{s' \mid s \xrightarrow{\alpha} s', s \in t(p)\}$, for all $p \in dom(t)$



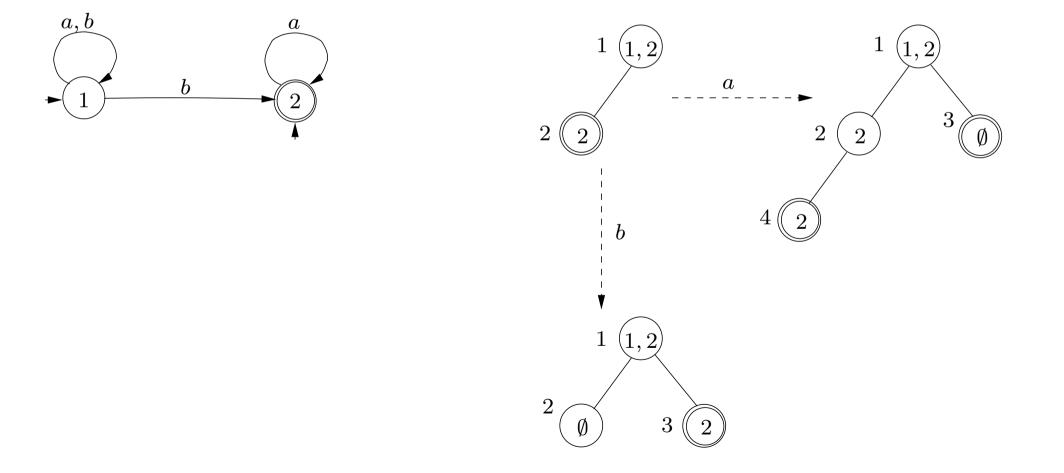
Spawn New Children

[Step 2] $\langle t_2, m_2 \rangle$ is the tree such that, for each $p \in dom(t_1)$, if $t_1(p) \cap F \neq \emptyset$ we add a new child to the right, identified by the first available id, and labeled $t_1(p) \cap F$, and m_2 is the set of all such children



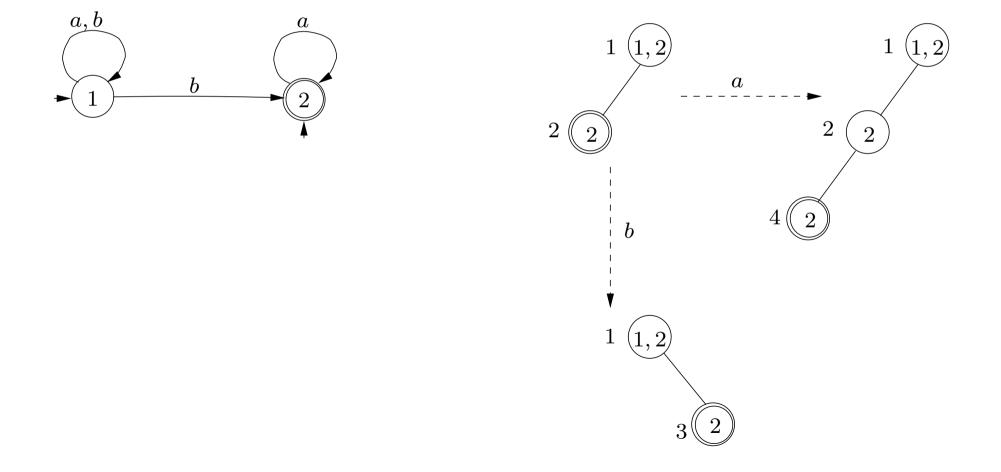
Horizontal Merge

[Step 3] $\langle t_3, m_3 \rangle$ is the tree with $dom(t_3) = dom(t_2), m_3 = m_2$, such that, for all $p \in dom(t_3), t_3(p) = t_2(p) \setminus \bigcup_{q \prec_{left} p} t_2(q)$



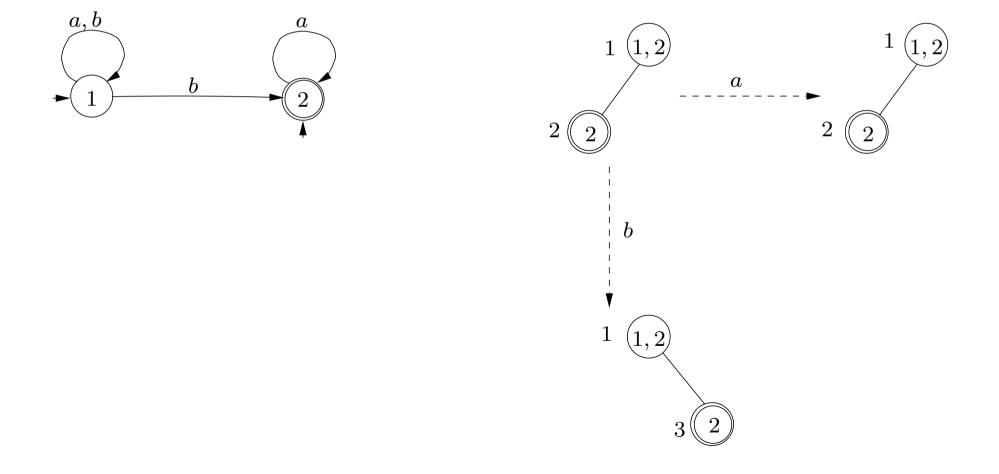
Delete Empty Nodes

[Step 4] $\langle t_4, m_4 \rangle$ is the tree such that $dom(t_4) = dom(t_3) \setminus \{p \mid t_3(p) = \emptyset\}$ and $m_4 = m_3 \setminus \{p \mid t_3(p) = \emptyset\}$



Vertical Merge

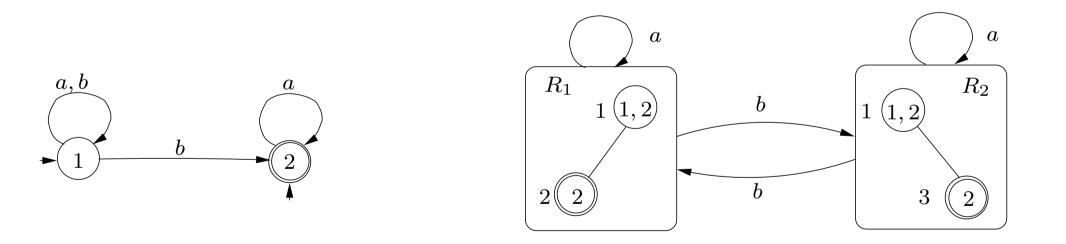
[Step 5] $\langle t_5, m_5 \rangle$ is $m_5 = m_4 \cup V$, $dom(t_5) = dom(t_4) \setminus \{q \mid p \in V, p < q\}$, $V = \{p \in dom(t_4) \mid t_4(p) = \bigcup_{p < q} t_4(q)\}$



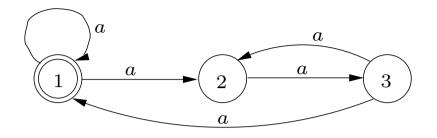
Accepting Condition

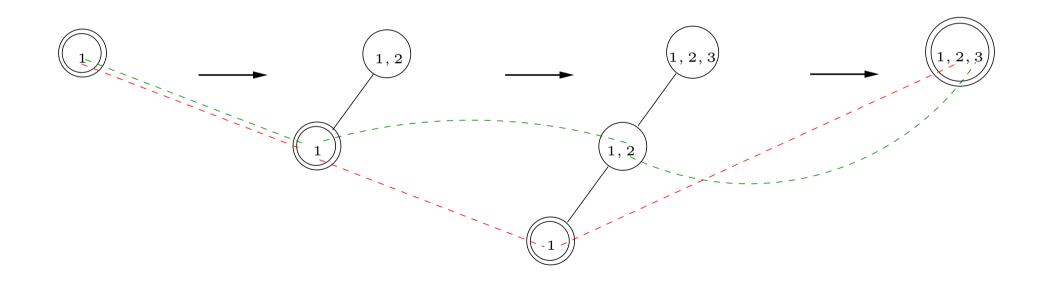
The Rabin accepting condition is defined as $\Omega_B = \{ (N_q, P_q) \mid q \in \bigcup_{\langle t, m \rangle \in S_B} dom(t) \}, \text{ where:}$

- $N_q = \{ \langle t, m \rangle \in S_B \mid q \notin dom(t) \}$
- $P_q = \{ \langle t, m \rangle \in S_B \mid q \in m \}$

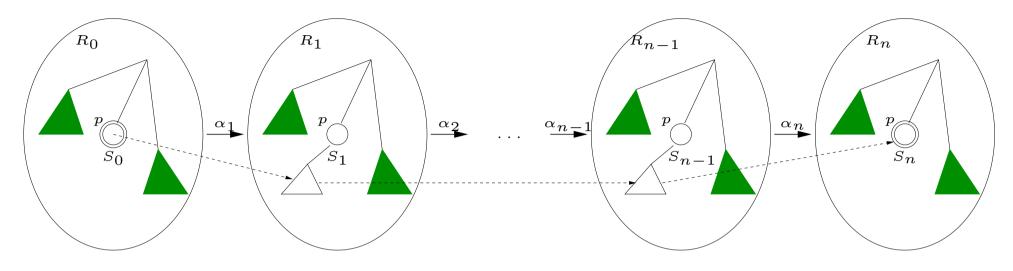


 $\Omega_B = \{(\{R_1\}, \{R_2\}), (\{R_2\}, \{R_1\})\}$





Correctness of Safra Construction



Lemma 1 For $0 \le i \le n-1$, $S_{i+1} \subseteq T(S_i, \alpha_{i+1})$. Moreover, for every $q \in S_n$, there is a path in A starting in some $q_0 \in S_0$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König's Lemma)

Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u = \alpha_0 \alpha_1 \alpha_2 \dots$

$$\pi : q_0 \xrightarrow{\alpha_0} q_1 \xrightarrow{\alpha_1} q_2 \dots$$

corresponds to a unique infinite path of B:

$$i_B = R_0 \xrightarrow{\alpha_0} R_1 \xrightarrow{\alpha_1} R_2 \dots$$

where each q_i belongs to the root of R_i

If the root is marked infinitely often, then u is accepted. Otherwise, let n_0 be the largest number such that the root is marked in R_{n_0} . Let $m > n_0$ be the smallest number such that $q_m \in F$ is repeated infinitely often in π .

Since $q_m \in F$ it appears in a child of the root. If it appears always on the same position p_m , then the path is accepting. Otherwise it appears to the left of p_m from some n_1 on (step 3). This left switch can only occur a finite number of times.

Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an equivalent Rabin automaton?

- The upper bound is $2^{\mathcal{O}(n \log n)}$ states
- The lower bound is of at least n! states

Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

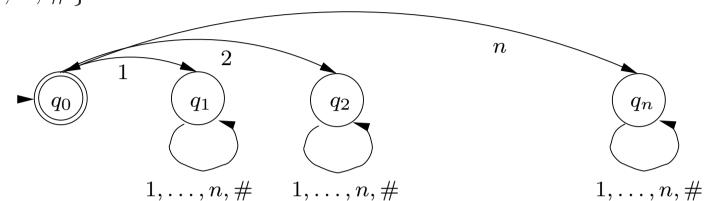
A Safra tree $\langle t, m \rangle$ can be uniquely described by the functions:

- $S \to \{0, \ldots, n\}$ gives for each $s \in S$ the characteristic position $p \in dom(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1, \ldots, n\} \rightarrow \{0, 1\}$ is the marking function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the parent function
- $\{1, \ldots, n\} \rightarrow \{0, \ldots, n\}$ is the older brother function

Altogether we have at most $(n+1)^n \cdot 2^n \cdot (n+1)^n \cdot (n+1)^n \leq (n+1)^{4n}$ Safra trees, hence the upper bound is $2^{\mathcal{O}(n \log n)}$.

The Language L_n

 $\Sigma = \{1, \dots, n, \#\}$



$$(3\#32\#21\#1)^{\omega} \in L_3$$
$$(312\#)^{\omega} \notin L_3$$

 $\alpha \in L_n \text{ if there exist } i_1, \ldots, i_n \in \{1, \ldots, n\}$ such that

- $\alpha_k = i_1$ is the first occurrence of i_1 in α and $q_0 \xrightarrow{\alpha_0 \dots \alpha_k} q_{i_1}$
- the pairs $i_1i_2, i_2i_3, \ldots, i_ni_1$ appear infinitely often in α .

The Language L_n

Lemma 2 (*Permutation*) For each permutation i_1, i_2, \ldots, i_n of $1, 2, \ldots, n$, the infinite word $(i_1 i_2 \ldots i_n \#)^{\omega} \notin L_n$.

Lemma 3 (Union) Let $A = (S, i, T, \Omega)$ be a Rabin automaton with $\Omega = \{\langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle\}$ and ρ_1, ρ_2, ρ be runs of A such that

 $\inf(\rho_1) \cup \inf(\rho_2) = \inf(\rho)$

If ρ_1 and ρ_2 are not successful, then ρ is not successful either.

Proving the *n*! Lower Bound

Suppose that A recognizes L_n . We need to show that A has $\geq n!$ states.

Let $\alpha = i_1, i_2, \ldots, i_n$ and $\beta = j_1, j_2, \ldots, j_n$ be two permutations of $1, 2, \ldots, n$. Then the words $(i_1 i_2 \ldots i_n \#)^{\omega}$ and $(j_1 j_2 \ldots j_n \#)^{\omega}$ are not accepted.

Let ρ_{α} , ρ_{β} be the non-accepting runs of A over α and β , respectively.

Claim 1 $\inf(\rho_{\alpha}) \cap \inf(\rho_{\beta}) = \emptyset$

Then A must have $\geq n!$ states, since there are n! permutations.

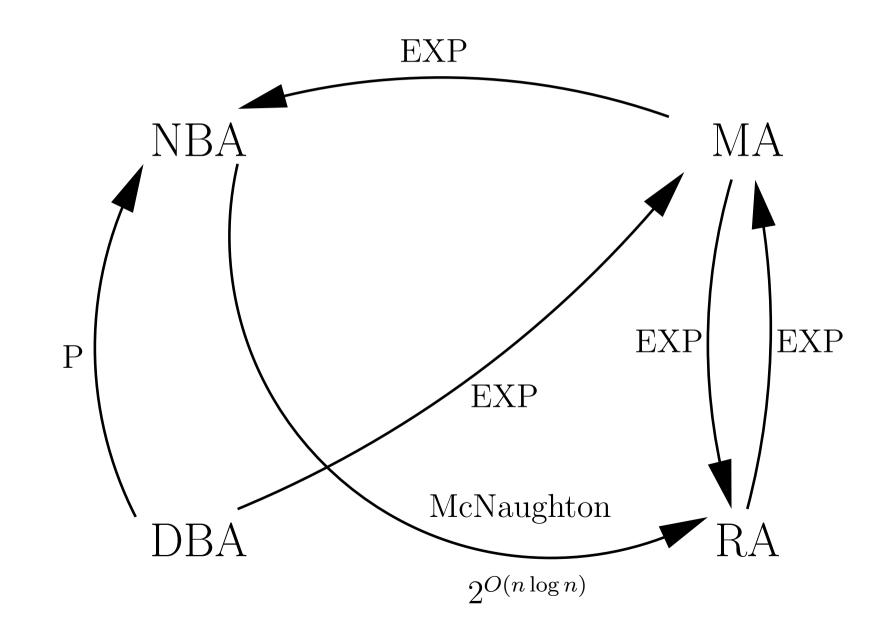
Proving the *n*! Lower Bound

By contradiction, assume $q \in \inf(\rho_{\alpha}) \cap \inf(\rho_{\beta})$. Then we can build a run ρ such that $\inf(\rho) = \inf(\rho_1) \cup \inf(\rho_2)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

$$i_1 \dots i_{k-1}$$
 i_k i_{k+1} \dots i_{l-1} i_l \dots i_n
 $=$ $=$ \neq
 $j_1 \dots j_{k-1}$ j_k j_{k+1} \dots j_{r-1} j_r \dots j_n

$$i_k \quad i_{k+1}, \quad \dots \quad i_l = j_k \quad j_{k+1}, \quad \dots \quad j_{r-1}, \quad j_r = i_k$$

The new word is accepted since the pairs $i_k i_{k+1}, \ldots, j_k j_{k+1}, \ldots, j_{r-1} i_k$ occur infinitely often. Contradiction with the fact that ρ is not accepting.



Linear Temporal Logic

• Safety : something bad never happens

A counterexample is an finite execution leading to something bad happening (e.g. an assertion violation).

• Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good happens (e.g. the program does not terminate).

Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
 - Partial Correctness :

 $\{\varphi\} \mathbf{P} \{\psi\}$ iff for any $s \models \varphi$, if *P* terminates on *s*, then $P(s) \models \psi$

– Total Correctness :

 $\{\varphi\} \mathbf{P} \{\psi\}$ iff for any $s \models \varphi$, *P* terminates on *s* and $P(s) \models \psi$

– Termination :

$$P$$
 terminates on s

- Need to reason about infinite computations :
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. "every request is eventually answered"

Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

 $\{p,q\} \{\neg p,\neg q\} (\{\neg p,q\} \{p,q\})^{\omega}$

Starting from position 2, q holds forever. \Box

Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of *atomic propositions*.

A *Kripke structure* is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of *states*,
- $s_0 \in S$ a designated *initial state*,
- \rightarrow : $S \times S$ is a transition relation,
- $L: S \to 2^{\mathcal{P}}$ is a *labeling function*.

Paths in Kripke Structures

A *path* in K is an infinite sequence $\pi : s_0, s_1, s_2 \dots$ such that, for all $i \ge 0$, we have $s_i \to s_{i+1}$.

By $\pi(i)$ we denote the *i*-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2} \dots$

 $\inf(\pi) = \{ s \in S \mid s \text{ appears infinitely often on } \pi \}$

If S is finite and π is infinite, then $\inf(\pi) \neq \emptyset$.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots ,
- boolean connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$,
- temporal connectives $\bigcirc, \Box, \diamondsuit, \mathcal{U}, \mathcal{R}$.

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi$, $\Box \varphi$, $\diamond \varphi$, $\varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.

- \bigcirc is read at the next time (in the next state)
- \Box is read always in the future (in all future states)
- \diamond is read eventually (in some future state)
- \mathcal{U} is read until
- \mathcal{R} is read releases

Linear Temporal Logic: Semantics

$$\begin{array}{lll} K,\pi \models p & \Longleftrightarrow & p \in L(\pi(0)) \\ K,\pi \models \neg \varphi & \Longleftrightarrow & K,\pi \not\models \varphi \\ K,\pi \models \varphi \land \psi & \Longleftrightarrow & K,\pi \models \varphi \text{ and } K,\pi \models \psi \\ K,\pi \models \bigcirc \varphi & \Longleftrightarrow & K,\pi_1 \models \varphi \\ K,\pi \models \varphi \mathcal{U}\psi & \Longleftrightarrow & \text{there exists } k \in \mathbb{N} \text{ such that } K,\pi_k \models \psi \\ & \text{and } K,\pi_i \models \varphi \text{ for all } 0 \leq i < k \end{array}$$

Derived meanings:

 $\begin{array}{lll} K,\pi\models\Diamond\varphi & \Longleftrightarrow & K,\pi\models\top\mathcal{U}\varphi\\ K,\pi\models\Box\varphi & \Longleftrightarrow & K,\pi\models\neg\Diamond\neg\varphi\\ K,\pi\models\varphi\mathcal{R}\psi & \Longleftrightarrow & K,\pi\models\neg(\neg\varphi\mathcal{U}\neg\psi) \end{array}$

- p holds throughout the execution of the system (p is invariant) : $\Box p$
- whenever p holds, q is bound to hold in the future : $\Box(p \to \Diamond q)$
- p holds infinitely often : $\Box \diamondsuit p$
- p holds forever starting from a certain point in the future : $\Diamond \Box p$
- $\Box(p \to \bigcirc(\neg q \mathcal{U} r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- $p\mathcal{R}q$: q is true unless this obligation is released by p being true in a previous state.

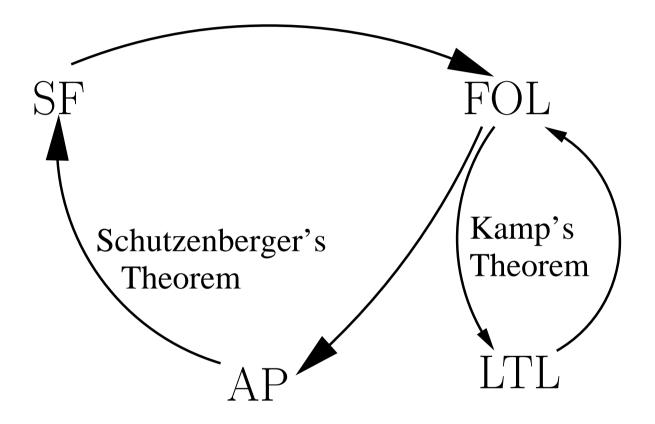
LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

Tr(q)	—	$p_q(t)$
$Tr(\neg \varphi)$	=	$\neg Tr(\varphi)$
$Tr(\varphi \wedge \psi)$	=	$Tr(\varphi) \wedge Tr(\psi)$
$Tr(\bigcirc \varphi)$	=	$Tr(\varphi)[t+1/t]$
$Tr(\varphi \mathcal{U}\psi)$	=	$\exists x \ . \ Tr(\psi)[x/t] \land \forall y \ . \ y < x \to Tr(\varphi)[y/t]$

The direction from FOL to LTL is known as Kamp's Theorem.



LTL Model Checking

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often)
- Given an LTL formula φ over a set of atomic propositions \mathcal{P} , specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^{\mathcal{P}}$ satisfying φ .

Q: Since $LTL \subset S1S$, this automaton can be built, so why bother?

• Check whether $\mathcal{L}(A_{\varphi}) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.

Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, \mathcal{F} \rangle$, where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a *transition relation*,
- $\mathcal{F} = \{F_1, \ldots, F_k\} \subseteq 2^S$ is a set of *sets of final states*.

A run π of a GBA is said to be *accepting* iff, for all $1 \le i \le k$, we have

 $\inf(\pi) \cap F_i \neq \emptyset$

GBA and **BA** are equivalent

Let
$$A = \langle S, I, T, \mathcal{F} \rangle$$
, where $\mathcal{F} = \{F_1, \dots, F_k\}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $S' = S \times \{1, \dots, k\},$
- $I' = I \times \{1\},$
- $(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$ iff $(s, t) \in T$ and: -j = i if $s \notin F_i$, $-j = (i \mod k) + 1$ if $s \in F_i$.
- $F' = F_1 \times \{1\}.$

The idea of the construction

Let $K = \langle S, s_0, \rightarrow, L \rangle$ be a Kripke structure over a set of atomic propositions $\mathcal{P}, \pi : \mathbb{N} \to S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

<u>Closure</u>

Let φ be an LTL formula written in negation normal form.

The *closure* of φ is the set $Cl(\varphi) \in 2^{\mathcal{L}(LTL)}$:

- $\bullet \ \varphi \in Cl(\varphi)$
- $\bigcirc \psi \in Cl(\varphi) \Rightarrow \psi \in Cl(\varphi)$
- $\psi_1 \bullet \psi_2 \in Cl(\varphi) \Rightarrow \psi_1, \psi_2 \in Cl(\varphi)$, for all $\bullet \in \{\land, \lor, \mathcal{U}, \mathcal{R}\}$.

Example 2 $Cl(\Diamond p) = Cl(\top \mathcal{U}p) = \{\Diamond p, p, \top\} \Box$

Q: What is the size of the closure relative to the size of φ ?

Labeling rules

Given $\pi: \mathbb{N} \to 2^{\mathcal{P}}$ and φ , we define $\tau: \mathbb{N} \to 2^{Cl(\varphi)}$ as follows:

- for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$
- if $\psi_1 \wedge \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$
- if $\psi_1 \lor \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$

$\begin{array}{lll} \varphi \mathcal{U}\psi & \iff & \psi \lor (\varphi \land \bigcirc (\varphi \mathcal{U}\psi)) \\ \varphi \mathcal{R}\psi & \iff & \psi \land (\varphi \lor \bigcirc (\varphi \mathcal{R}\psi)) \end{array}$

- if $\bigcirc \psi \in \tau(i)$ then $\psi \in \tau(i+1)$
- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$ then either $\psi_2 \in \tau(i)$, or $\psi_1 \in \tau(i)$ and $\psi_1 \mathcal{U} \psi_2 \in \tau(i+1)$
- if $\psi_1 \mathcal{R} \psi_2 \in \tau(i)$ then $\psi_2 \in \tau(i)$ and either $\psi_1 \in \tau(i)$ or $\psi_1 \mathcal{R} \psi_2 \in \tau(i+1)$

Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

- the labeling rules above
- $\varphi \in \tau(0)$, and
- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$, then for some $j \ge i$, $\psi_2 \in \tau(j)$ (the eventuality condition)

Building the GBA $A_{\varphi} = \langle S, I, T, \mathcal{F} \rangle$

The automaton A_{φ} is the set of labeling rules + the eventuality condition(s) !

- $\Sigma = 2^{\mathcal{P}}$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $-\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s \text{ and } \varphi_2 \in s$
 - $-\varphi_1 \lor \varphi_2 \in s \Rightarrow \varphi_1 \in s \text{ or } \varphi_2 \in s$
- $I = \{s \in S \mid \varphi \in s\},\$
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in \mathcal{P}$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,

$$-\bigcirc\psi\in s\Rightarrow\psi\in t,$$

- $-\psi_1 \mathcal{U}\psi_2 \in s \Rightarrow \psi_2 \in s \text{ or } [\psi_1 \in s \text{ and } \psi_1 \mathcal{U}\psi_2 \in t]$
- $-\psi_1 \mathcal{R}\psi_2 \in s \Rightarrow \psi_2 \in s \text{ and } [\psi_1 \in s \text{ or } \psi_1 \mathcal{R}\psi_2 \in t]$

Building the GBA $A_{\varphi} = \langle S, I, T, \mathcal{F} \rangle$

- for each eventuality $\phi \mathcal{U}\psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ
- it is sufficient to ensure that, for each $\phi \mathcal{U}\psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi \mathcal{U}\psi$ and ψ appear
- let $\phi_1 \mathcal{U} \psi_1, \ldots \phi_n \mathcal{U} \psi_n$ be the "until" subformulae of φ

 $\mathcal{F} = \{F_1, \dots, F_n\}, \text{ where:}$ $F_i = \{s \in S \mid \phi_i \mathcal{U}\psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i \mathcal{U}\psi_i \notin s\}$ for all $1 \leq i \leq n$

for all $1 \leq i \leq n$.