The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let > be an alphabet. Any w-recognizable subset of ¥ can be

recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset
construction to obtain a Rabin automaton equivalent to a given Buchi

automaton. The Safra algorithm is optimal 20(7logn),

This proves that w-recognizable languages are closed under complement.

Oriented Trees

Let > be an alphabet of labels.

An oriented tree is a pair of partial functions ¢ = ([, s):
e [: N — X denotes the labels of the nodes

e s: N — N* gives the ordered list of children of each node

dom(l) = dom/(s) = dom(t)

p < q: q is a successor of pin ¢

P =iept ¢ pis to the left of gint (p X g and p £ q)

Safra Trees

Let A= (S,I,T,F) be a Biichi automaton.

A Safra tree is a pair (t,m), where t is a finite oriented tree labeled with
non-empty subsets of S, and m C dom(t) is the set of marked positions,
such that:

e cach marked position is a leaf

e for each p € dom(t), the union of labels of its children is a strict
subset of t(p)

e for each p,q € dom(t), if p £ g and g £ p then t(p) Nt(q) =0
Proposition 1 A Safra tree has at most | S| nodes.

rip) = tip)\ |0

q<p

[dom@®)] = > 1< Y |rp)l<]S]

pedom(t) pedom(t)

Initial State

We build a Rabin automaton B = (Sg,ip,Tx,{2p), where:
e Sp is the set of all Safra trees (t,m) labeled with subsets of S

e ip = (t,m) is the Safra tree defined as either:
—dom(t)={1}t(l) =T and m=0if INF =)
— dom(t) ={1},t(1) =T and m={e} if C F
— dom(t) ={1,2ht(1)=Lt2)=INFand m={2}if INF # ()

Do F

Classical Subset Move

[Step 1] (t1,mq) is the tree with dom(t1) = dom(t), m; = 0, and
ti(p) ={s" | s = s, sct(p)}, for all p € dom(t)

a,b a
112 10,2
a
e »
A

Spawn New Children

[Step 2] (to, mo) is the tree such that, for each p € dom(ty), if
t1(p) N F # () we add a new child to the right, identified by the first
available id, and labeled t1(p) N F', and ms is the set of all such children

SR

Horizontal Merge

[Step 3] (t3, m3) is the tree with dom(t3) = dom(tz), ms = ms, such that,
for all p € dom(ts), t3(p) = ta(p) \UQ'<Zeftp ta(q)

Delete Empty Nodes

[Step 4] (t4,my4) is the tree such that dom(ty) = dom(t3) \ {p | t3(p) = 0}
and my =ms \ {p | t3(p) = 0}

Vertical Merge

[Step 5] (t5,ms5) is ms = mg UV, dom(ts) = dom(ts) \{q | p €V, p < q},
V =A{p € dom(ts) | talp) = U, ta(0)}

a,b a

o} @ e

Accepting Condition

The Rabin accepting condition is defined as
Qp ={(Ng:) | ¢ € Uy imyes,, dom(t)}, where:

o Ny={{t;m) € Sp | q¢&dom(t)}

o P,={({t,m) e Sp|qgem}

Ry
1 b
/\

Op = {({Ri},{Ra}), {Rao}, {R1})}

Example

Correctness of Safra Construction

Lemma 1 For0<i<n-—1, S;41 CT(S;,a;+1). Moreover, for every

q € Sy, there is a path in A starting in some qg € Sy, ending in q and

visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path

in A (Konig’s Lemma))

Correctness of Safra Construction

Conversely, an infinite accepting path of A over u = agaias . ..
aQ o
™. o —q1 — q2 ...
corresponds to a unique infinite path of B:
ip=Ry~> R ~> Ry...

where each ¢; belongs to the root of R;

If the root is marked infinitely often, then u is accepted. Otherwise, let ng
be the largest number such that the root is marked in R,,. Let m > ng be

the smallest number such that q,, € F' is repeated infinitely often in .

Since q,, € F' it appears in a child of the root. If it appears always on the
same position p,,, then the path is accepting. Otherwise it appears to the
left of p,, from some n; on (step 3). This left switch can only occur a

finite number of times.

Complexity of the Safra Construction

Given a Biichi automaton with n states, how many states we need for an

equivalent Rabin automaton?

90(nlogn)

e The upper bound is states

e The lower bound is of at least n! states

Maximum Number of Safra Trees

Each Safra tree has at most n nodes.

A Safra tree (t,m) can be uniquely described by the functions:

e S— {0,...,n} gives for each s € S the characteristic position
p € dom(t) such that s € t(p), and s does not appear below p

e {1,...,n} — {0,1} is the marking function
e {1,....,n} —{0,...,n} is the parent function

e {1,...,n} — {0,...,n} is the older brother function

Altogether we have at most (n 4 1)"-2" - (n+1)"- (n+ 1)* < (n + 1)*"

Safra trees, hence the upper bound is 20(nlogn).

The Language L,

Y =A{1,...,n,#}

(3432421 41)° € Lg
(312#)“ ¢ L3

« € Ly, if there exist i1,...,7, € {1,...,n} such that
e (. = 17 is the first occurrence of 7; in o and g 0Tk Qi

e the pairs 7179,1913,...,1,%1 appear infinitely often in «.

The Language L,

Lemma 2 (Permutation) For each permutation iy,19,...,1, of
1,2,...,n, the infinite word (i1ia...in#)" & L.

Lemma 3 (Union) Let A = (S,4,T,82) be a Rabin automaton with
Q={(Ny,P1),...,(Ng, Px)} and p1, p2, p be runs of A such that

inf(p1) Uinf(p2) = inf(p)

If p1 and ps are not successful, then p is not successful either.

Proving the n! Lower Bound

Suppose that A recognizes L,,. We need to show that A has > n! states.

Let o = 11,29,...,7, and B8 = j1, 72, ..., Jn be two permutations of
1,2,...,n. Then the words (i1iz...in#)* and (j1J2 ... n#)“ are not

accepted.

Let pn, pg be the non-accepting runs of A over o and (3, respectively.

Claim 1 inf(py) Ninf(pg) =0

Then A must have > n! states, since there are n! permutations.

Proving the n! Lower Bound

By contradiction, assume ¢ € inf(p,) Ninf(pg). Then we can build a run p
such that inf(p) = inf(p1) Uinf(p2) and «, 8 appear infinitely often. By

the union lemma, p is not accepting.

11 e 1 Uk Tgad . 11 1 . in,
Ji - Jk=1 Jk o Jk+1 .- Jr—1 Jr oo In
Uk U1, oo U =Jk Jk+1, - Jr—1, Jr =Tk
The new word is accepted since the pairs txte 1,y JkJktls-- - Jr—1%k

occur infinitely often. Contradiction with the fact that p is not accepting.

The Big Picture

20(n logn)

Linear Temporal Logic

Safety vs. Liveness

e Safety : something bad never happens

A counterexample is an finite execution leading to something bad

happening (e.g. an assertion violation).

e Liveness : something good eventually happens

A counterexample is an infinite execution on which nothing good

happens (e.g. the program does not terminate).

Verification of Reactive Systems

e (lassical verification a la Floyd-Hoare considered three problems:

— Partial Correctness :
{o} P {vy} iff for any s = ¢, if P terminates on s, then P(s) =

— Total Correctness :
{o} P {4y} iff for any s = ¢, P terminates on s and P(s) = ¢

— Termination :

P terminates on s

e Need to reason about infinite computations :
— systems that are in continuous interaction with their environment
— servers, control systems, etc.

— e.g. “every request is eventually answered”

Reasoning about infinite sequences of states

e Linear Temporal Logic is interpreted on infinite sequences of states

e Fach state in the sequence gives an interpretation to the atomic

propositions

e Temporal operators indicate in which states a formula should be

interpreted

FExample 1 Consider the sequence of states:

{p,a} {-p,~q} {-p,q} {p,q})”

Starting from position 2, q holds forever. O

Kripke Structures

Let P ={p,q,r,...} be a finite alphabet of atomic propositions.

A Kripke structure is a tuple K = (S, so, —, L) where:

e S is a set of states,
o sy € S a designated wnitial state,

o —: S x Sisa transition relation,

o L:S — 2% is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence m : sg, S1, S2 ... such that, for all

1 > 0, we have s; — s;11.

By 7(z) we denote the i-th state on the path.

By m; we denote the suffix s;, s;11, 849

inf(7w) = {s € S | s appears infinitely often on 7}

If S is finite and 7 is infinite, then inf(7) # (.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:
e atomic proposition symbols p,q,r,...,
e boolean connectives =, V, A\, —, <>,

e temporal connectives (), 0,0, U, R.

The set of LTL formulae is defined inductively, as follows:
e any atomic proposition is a formula,

e if ¢ and ¢ are formulae, then —¢ and @ e ¢, for @ € {V, A, —, <>} are

also formulae.

e if ¢ and v are formulae, then Oy, Op, O, WUy and R are

formulae,

e nothing else is a formula.

Temporal Operators

e () isread at the next time (in the next state)

e 0 is read always in the future (in all future states)

e < is read eventually (in some future state)

e /[is read until

e R is read releases

Linear Temporal Logic: Semantics

K,mEp < p € L(x(0))
KirmE-p <+ K,m o
KrtEeANYy <~ K,m=pand K,7m =1
K.r=Qp <« K,m = ¢
K, 7= o)y <= there exists k € N such that K, 7 = 1

and K,m, =g forall0 <i<k

Derived meanings:
KrnEOp <— K,mE TUyp
K,mE=Op < K,mE -0
K.mlE¢RYy <= K7 (-pU—y)

Examples

e p holds throughout the execution of the system (p is invariant) : Op
e whenever p holds, ¢ is bound to hold in the future : O(p — <gq)

e p holds infinitely often : O3p

e p holds forever starting from a certain point in the future : ¢Op

e O(p — O(—qglr)) holds in all sequences such that if p is true in a
state, then ¢ remains false from the next state and until the first state

where 7 is true, which must occur.

e pRq : q is true unless this obligation is released by p being true in a

previous state.

LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive

power.

From LTL to FOL:

Tr(q) = Pq(?)
Tr(-p) = ~Tr(p)
Tr(eAY) = Tr(e) NTr(y)
Tr(O¢) = Tr(e)t +1/1]
Tr(pUy) = Fdx.Tr)x/t]\Vy .y <z —Tr(p)ly/t]

The direction from FOL to LTL is known as Kamp’s Theorem.

The Big Picture

— \
SF FOL

Schutzenberger’s Kamp's
Theorem Theorem

AP 'L

LTL Model Checking

System verification using LTL

e Let K be a model of a reactive system (finite computations can be

turned into infinite ones by repeating the last state infinitely often)

e Given an LTL formula ¢ over a set of atomic propositions P,
specifying all bad behaviors, we build a Biichi automaton A, that

accepts all sequences over 27 satisfying .

Q: Since LTL C S18S, this automaton can be built, so why bother?

o Check whether £L(A,) N L(K) = (. In case it is not, we obtain a

counterexample.

Generalized Buchi Automata

Let ¥ = {a,b,...} be a finite alphabet.

A generalized Biichi automaton (GBA) over ¥ is A = (S,I,T, F), where:
e S is a finite set of states,
e | C S is a set of initial states,
o I'C S x> xS isa transition relation,

o F=1{F,...,F,} C2%isaset of sets of final states.

A run 7 of a GBA is said to be accepting iff, for all 1 <7 < k, we have

inf(m) N F; #£ 0

GBA and BA are equivalent

Let A= (S,I,T,F), where F = {Fy,..., F}.

Build A’ = (S, T, T', F'):
o S'=5x{1,...,k},
o I'=1x{1},
o ((s,i),a,(t, 7)) € T"iff (s,t) € T and:
_j=iifs¢F,
— j=(i mod k) +1if s € F;.

® F/:F1><{1}.

The idea of the construction

Let K = (5, sg,—, L) be a Kripke structure over a set of atomic
propositions P, 7 : N — S be an infinite path through K, and ¢ be an
LTL formula.

To determine whether K, 7 = ¢, we label m with sets of subformulae of ¢

in a way that is compatible with LTL semantics.

Closure

Let ¢ be an LTL formula written in negation normal form.

The closure of ¢ is the set Cl(p) € 26UETL).

® C Cl((p)

e Oy € Cl(p) = ¢ € Cl(p)
o Y1 ey € Cl(p) = Y1,y € Cl(p), for all e € {A,V,U,R}.

Example 2 Cl(Op) = Cl(TUp) = {p,p, T }0O

Q: What is the size of the closure relative to the size of ¢ 7

Labeling rules

Given 7 : N — 27 and o, we define 7 : N — 26U%#) ag follows:

o for pec P, if p e 7(i) then p € n(i), and if —p € 7(¢) then p & 7(7)

o if Y1 Ay € 7(2) then ¥y € 7(¢) and 19 € 7(4)

o if Y1 Vo € 7(7) then ¥ € 7() or 19 € 7(4)

Labeling rules

Uy = PV (oA O(pUr))
YRy = YA (pVO(@RY))

o if Oy € 7(i) then ¢y € 7(v + 1)

o if y1U1py € T(i) then either ¥y € 7(i), or Y1 € 7(7) and
ViUYy € T(i 4 1)

o if Yy Ripy € 7(i) then ¥y € 7(¢) and either ¥; € 7(¢) or
1Ry € T(i + 1)

Interpreting labelings

A sequence 7 satisfies a formula ¢ if one can find a labeling 7 satisfying:

e the labeling rules above

e v c7(0), and

o if Y Urps € 7(i), then for some j > i, 1o € 7(j) (the eventuality

condition)

Building the GBA A, = (S,[,T,F)

The automaton A, is the set of labeling rules + the eventuality

condition(s) !
e ¥ = 27 is the alphabet
o S C 20U¥) guch that, for all s € S :
— 1 N2 €s=; €sand Yy €5
— Y1V €8S = Y1 €ESOr Ya €S
e [={seS|pes}
e (s,a,t) €T iff:
—forallpeP,pes=p€a,and pEs=pé€<a,

- Oves=1vYet,
— 1UYy € s = Py € s or |11 € s and Y1l € 1]
— PRy € s = 1Py € s and [1h1 € s or Y1 Ry € t]

Building the GBA A, = (S,[,T,F)

e for each eventuality ¢ty € Cl(p), the transition relation ensures that

this will appear until the first occurrence of

e it is sufficient to ensure that, for each ¢ly) € Cl(yp), one goes
infinitely often either through a state in which this does not appear,
or through a state in which both ¢lf1) and 1) appear

o let o1UY1, ... 0, UY, be the “until” subformulae of ¢

F=A{F,...,F,}, where:
F,={se S| ¢p;Up; € s and ¢; € s or ¢p;UY; & s}

for all 1 <17 <n.

