The McNaughton Theorem

McNaughton Theorem

Theorem 1 Let Σ be an alphabet. Any ω -recognizable subset of Σ^{ω} can be recognized by a Rabin automaton.

Determinisation algorithm by S. Safra (1989) uses a special subset construction to obtain a Rabin automaton equivalent to a given Büchi automaton. The Safra algorithm is optimal $2^{O(n \log n)}$.

This proves that ω -recognizable languages are closed under complement.

Oriented Trees

Let Σ be an alphabet of labels.

An oriented tree is a pair of partial functions $t = \langle l, s \rangle$:

- $l: \mathbb{N} \mapsto \Sigma$ denotes the labels of the nodes
- $s: \mathbb{N} \to \mathbb{N}^*$ gives the ordered list of children of each node

$$dom(l) = dom(s) \stackrel{def}{=} dom(t)$$

 $p \leq q$: q is a successor of p in t

 $p \leq_{left} q$: p is to the left of q in t $(p \leq q \text{ and } p \not\leq q)$

Safra Trees

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton.

A Safra tree is a pair $\langle t, m \rangle$, where t is a finite oriented tree labeled with non-empty subsets of S, and $m \subseteq dom(t)$ is the set of marked positions, such that:

- each marked position is a leaf
- for each $p \in dom(t)$, the union of labels of its children is a strict subset of t(p)
- for each $p, q \in dom(t)$, if $p \not\leq q$ and $q \not\leq p$ then $t(p) \cap t(q) = \emptyset$

Proposition 1 A Safra tree has at most ||S|| nodes.

$$r(p) = t(p) \setminus \bigcup_{q < p} t(q)$$

$$\|dom(t)\| = \sum_{p \in dom(t)} 1 \le \sum_{p \in dom(t)} \|r(p)\| \le \|S\|$$

Initial State

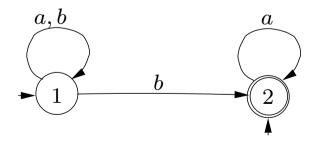
We build a Rabin automaton $B = \langle S_B, i_B, T_B, \Omega_B \rangle$, where:

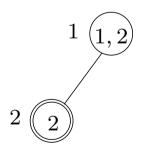
- S_B is the set of all Safra trees $\langle t, m \rangle$ labeled with subsets of S
- $i_B = \langle t, m \rangle$ is the Safra tree defined as either:

$$-dom(t) = \{1\}, t(1) = I \text{ and } m = \emptyset \text{ if } I \cap F = \emptyset$$

$$-dom(t) = \{1\}, t(1) = I \text{ and } m = \{\epsilon\} \text{ if } I \subseteq F$$

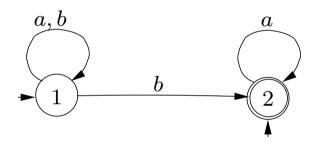
$$-dom(t) = \{1, 2\}, t(1) = I, t(2) = I \cap F \text{ and } m = \{2\} \text{ if } I \cap F \neq \emptyset$$

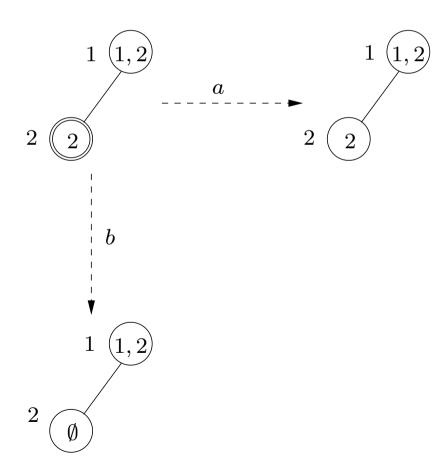




Classical Subset Move

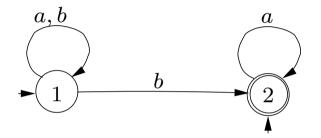
[Step 1] $\langle t_1, m_1 \rangle$ is the tree with $dom(t_1) = dom(t), m_1 = \emptyset$, and $t_1(p) = \{s' \mid s \xrightarrow{\alpha} s', s \in t(p)\}$, for all $p \in dom(t)$

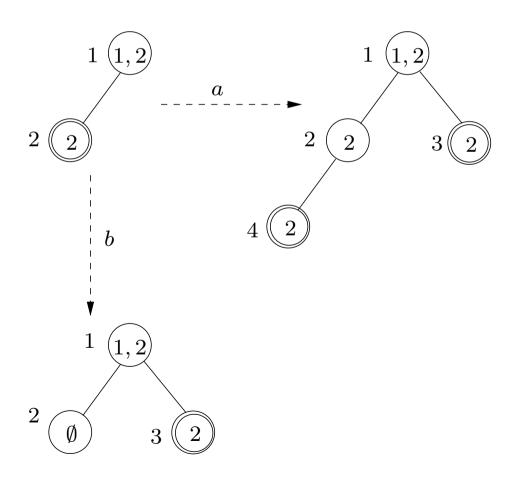




Spawn New Children

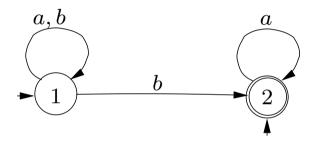
[Step 2] $\langle t_2, m_2 \rangle$ is the tree such that, for each $p \in dom(t_1)$, if $t_1(p) \cap F \neq \emptyset$ we add a new child to the right, identified by the first available id, and labeled $t_1(p) \cap F$, and m_2 is the set of all such children

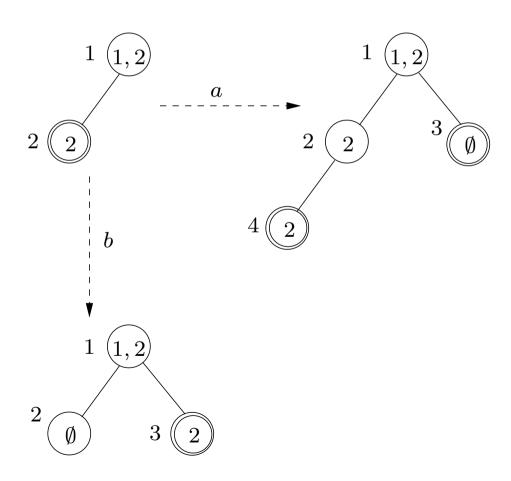




Horizontal Merge

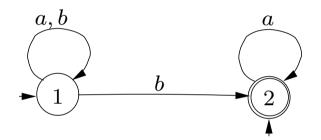
[Step 3] $\langle t_3, m_3 \rangle$ is the tree with $dom(t_3) = dom(t_2)$, $m_3 = m_2$, such that, for all $p \in dom(t_3)$, $t_3(p) = t_2(p) \setminus \bigcup_{q \prec_{left} p} t_2(q)$

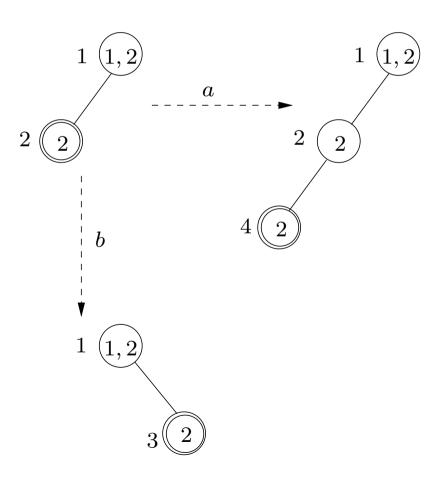




Delete Empty Nodes

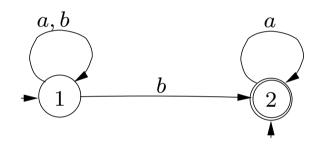
[Step 4] $\langle t_4, m_4 \rangle$ is the tree such that $dom(t_4) = dom(t_3) \setminus \{p \mid t_3(p) = \emptyset\}$ and $m_4 = m_3 \setminus \{p \mid t_3(p) = \emptyset\}$

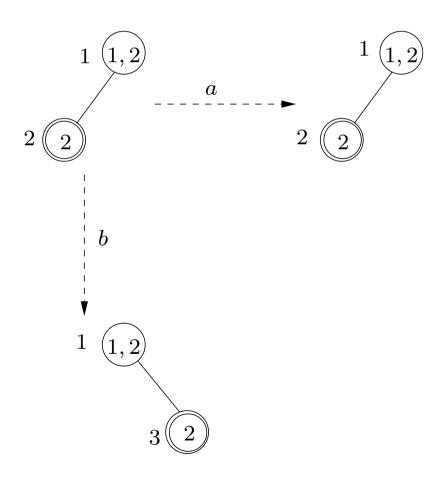




Vertical Merge

[Step 5] $\langle t_5, m_5 \rangle$ is $m_5 = m_4 \cup V$, $dom(t_5) = dom(t_4) \setminus \{q \mid p \in V, p < q\}$, $V = \{p \in dom(t_4) \mid t_4(p) = \bigcup_{p < q} t_4(q)\}$



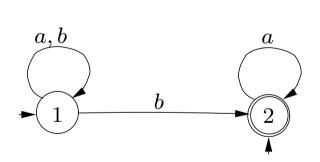


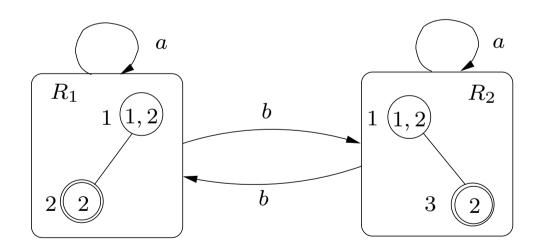
Accepting Condition

The Rabin accepting condition is defined as

$$\Omega_B = \{(N_q, P_q) \mid q \in \bigcup_{\langle t, m \rangle \in S_B} dom(t)\}, \text{ where:}$$

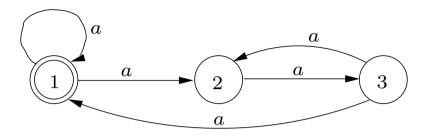
- $N_q = \{\langle t, m \rangle \in S_B \mid q \not\in dom(t)\}$
- $P_q = \{\langle t, m \rangle \in S_B \mid q \in m\}$

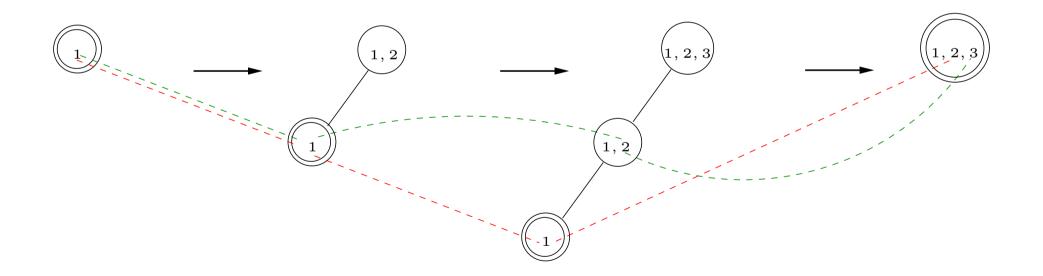




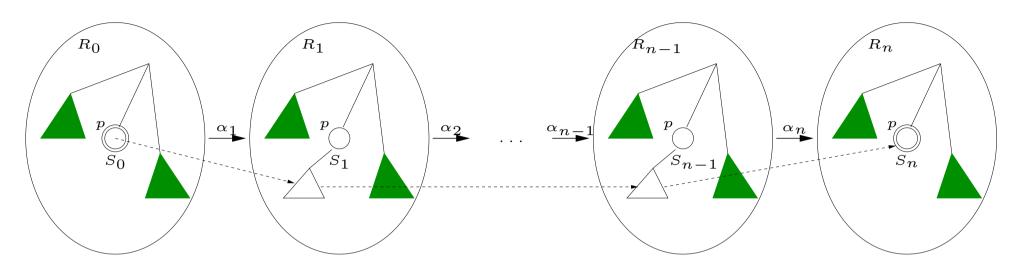
$$\Omega_B = \{(\{R_1\}, \{R_2\}), (\{R_2\}, \{R_1\})\}\$$

Example





Correctness of Safra Construction



Lemma 1 For $0 \le i \le n-1$, $S_{i+1} \subseteq T(S_i, \alpha_{i+1})$. Moreover, for every $q \in S_n$, there is a path in A starting in some $q_0 \in S_0$, ending in q and visiting at least one final state after its origin.

An infinite accepting path in B corresponds to an infinite accepting path in A (König's Lemma)

Correctness of Safra Construction

Conversely, an infinite accepting path of A over $u = \alpha_0 \alpha_1 \alpha_2 \dots$

$$\pi: q_0 \xrightarrow{\alpha_0} q_1 \xrightarrow{\alpha_1} q_2 \dots$$

corresponds to a unique infinite path of B:

$$i_B = R_0 \xrightarrow{\alpha_0} R_1 \xrightarrow{\alpha_1} R_2 \dots$$

where each q_i belongs to the root of R_i

If the root is marked infinitely often, then u is accepted. Otherwise, let n_0 be the largest number such that the root is marked in R_{n_0} . Let $m > n_0$ be the smallest number such that $q_m \in F$ is repeated infinitely often in π .

Since $q_m \in F$ it appears in a child of the root. If it appears always on the same position p_m , then the path is accepting. Otherwise it appears to the left of p_m from some n_1 on (step 3). This left switch can only occur a finite number of times.

Complexity of the Safra Construction

Given a Büchi automaton with n states, how many states we need for an equivalent Rabin automaton?

- The upper bound is $2^{\mathcal{O}(n \log n)}$ states
- The lower bound is of at least n! states

Maximum Number of Safra Trees

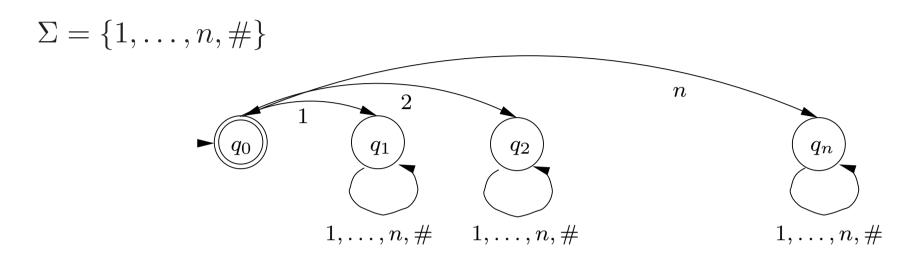
Each Safra tree has at most n nodes.

A Safra tree $\langle t, m \rangle$ can be uniquely described by the functions:

- $S \to \{0, ..., n\}$ gives for each $s \in S$ the characteristic position $p \in dom(t)$ such that $s \in t(p)$, and s does not appear below p
- $\{1,\ldots,n\} \to \{0,1\}$ is the marking function
- $\{1,\ldots,n\} \to \{0,\ldots,n\}$ is the parent function
- $\{1,\ldots,n\} \to \{0,\ldots,n\}$ is the older brother function

Altogether we have at most $(n+1)^n \cdot 2^n \cdot (n+1)^n \cdot (n+1)^n \leq (n+1)^{4n}$ Safra trees, hence the upper bound is $2^{\mathcal{O}(n\log n)}$.

The Language L_n



$$(3\#32\#21\#1)^{\omega} \in L_3$$

 $(312\#)^{\omega} \notin L_3$

 $\alpha \in L_n$ if there exist $i_1, \ldots, i_n \in \{1, \ldots, n\}$ such that

- $\alpha_k = i_1$ is the first occurrence of i_1 in α and $q_0 \xrightarrow{\alpha_0 \dots \alpha_k} q_{i_1}$
- the pairs $i_1i_2, i_2i_3, \ldots, i_ni_1$ appear infinitely often in α .

The Language L_n

Lemma 2 (Permutation) For each permutation $i_1, i_2, ..., i_n$ of 1, 2, ..., n, the infinite word $(i_1 i_2 ... i_n \#)^{\omega} \notin L_n$.

Lemma 3 (Union) Let $A = (S, i, T, \Omega)$ be a Rabin automaton with $\Omega = \{\langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle\}$ and ρ_1, ρ_2, ρ be runs of A such that

$$\inf(\rho_1) \cup \inf(\rho_2) = \inf(\rho)$$

If ρ_1 and ρ_2 are not successful, then ρ is not successful either.

Proving the n! Lower Bound

Suppose that A recognizes L_n . We need to show that A has $\geq n!$ states.

Let $\alpha = i_1, i_2, \ldots, i_n$ and $\beta = j_1, j_2, \ldots, j_n$ be two permutations of $1, 2, \ldots, n$. Then the words $(i_1 i_2 \ldots i_n \#)^{\omega}$ and $(j_1 j_2 \ldots j_n \#)^{\omega}$ are not accepted.

Let ρ_{α} , ρ_{β} be the non-accepting runs of A over α and β , respectively.

Claim 1 $\inf(\rho_{\alpha}) \cap \inf(\rho_{\beta}) = \emptyset$

Then A must have $\geq n!$ states, since there are n! permutations.

Proving the n! Lower Bound

By contradiction, assume $q \in \inf(\rho_{\alpha}) \cap \inf(\rho_{\beta})$. Then we can build a run ρ such that $\inf(\rho) = \inf(\rho_1) \cup \inf(\rho_2)$ and α, β appear infinitely often. By the union lemma, ρ is not accepting.

$$i_k \quad i_{k+1}, \quad \dots \quad i_l = j_k \quad j_{k+1}, \quad \dots \qquad \qquad j_{r-1}, \quad j_r = i_k$$

The new word is accepted since the pairs $i_k i_{k+1}, \ldots, j_k j_{k+1}, \ldots, j_{r-1} i_k$ occur infinitely often. Contradiction with the fact that ρ is not accepting.

Linear Temporal Logic

Safety vs. Liveness

• Safety: something bad never happens

A counterexample is an finite execution leading to something bad happening (e.g. an assertion violation).

• Liveness: something good eventually happens

A counterexample is an infinite execution on which nothing good happens (e.g. the program does not terminate).

Verification of Reactive Systems

- Classical verification à la Floyd-Hoare considered three problems:
 - Partial Correctness:

$$\{\varphi\}$$
 P $\{\psi\}$ iff for any $s \models \varphi$, if *P* terminates on *s*, then $P(s) \models \psi$

- Total Correctness:

$$\{\varphi\}$$
 P $\{\psi\}$ iff for any $s \models \varphi$, **P** terminates on **s** and $P(s) \models \psi$

- Termination:

P terminates on s

- Need to reason about infinite computations:
 - systems that are in continuous interaction with their environment
 - servers, control systems, etc.
 - e.g. "every request is eventually answered"

Reasoning about infinite sequences of states

- Linear Temporal Logic is interpreted on infinite sequences of states
- Each state in the sequence gives an interpretation to the atomic propositions
- Temporal operators indicate in which states a formula should be interpreted

Example 1 Consider the sequence of states:

$$\{p,q\} \ \{\neg p, \neg q\} \ (\{\neg p,q\} \ \{p,q\})^{\omega}$$

Starting from position 2, q holds forever. \square

Kripke Structures

Let $\mathcal{P} = \{p, q, r, \ldots\}$ be a finite alphabet of *atomic propositions*.

A *Kripke structure* is a tuple $K = \langle S, s_0, \rightarrow, L \rangle$ where:

- S is a set of *states*,
- $s_0 \in S$ a designated *initial state*,
- $\bullet \rightarrow : S \times S \text{ is a } transition relation,$
- $L: S \to 2^{\mathcal{P}}$ is a labeling function.

Paths in Kripke Structures

A path in K is an infinite sequence $\pi: s_0, s_1, s_2 \dots$ such that, for all $i \geq 0$, we have $s_i \to s_{i+1}$.

By $\pi(i)$ we denote the *i*-th state on the path.

By π_i we denote the suffix $s_i, s_{i+1}, s_{i+2} \dots$

 $\inf(\pi) = \{ s \in S \mid s \text{ appears infinitely often on } \pi \}$

If S is finite and π is infinite, then $\inf(\pi) \neq \emptyset$.

Linear Temporal Logic: Syntax

The alphabet of LTL is composed of:

- atomic proposition symbols p, q, r, \ldots ,
- boolean connectives \neg , \lor , \land , \rightarrow , \leftrightarrow ,
- temporal connectives \bigcirc , \square , \diamond , \mathcal{U} , \mathcal{R} .

The set of LTL formulae is defined inductively, as follows:

- any atomic proposition is a formula,
- if φ and ψ are formulae, then $\neg \varphi$ and $\varphi \bullet \psi$, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$ are also formulae.
- if φ and ψ are formulae, then $\bigcirc \varphi$, $\Box \varphi$, $\Diamond \varphi$, $\varphi \mathcal{U} \psi$ and $\varphi \mathcal{R} \psi$ are formulae,
- nothing else is a formula.

Temporal Operators

- (in the next state)
- \bullet \Box is read always in the future (in all future states)
- \diamond is read eventually (in some future state)
- *U* is read until

 \bullet \mathcal{R} is read releases

Linear Temporal Logic: Semantics

$$K, \pi \models p \iff p \in L(\pi(0))$$

$$K, \pi \models \neg \varphi \iff K, \pi \not\models \varphi$$

$$K, \pi \models \varphi \land \psi \iff K, \pi \models \varphi \text{ and } K, \pi \models \psi$$

$$K, \pi \models \bigcirc \varphi \iff K, \pi_1 \models \varphi$$

$$K, \pi \models \varphi \mathcal{U} \psi \iff \text{there exists } k \in \mathbb{N} \text{ such that } K, \pi_k \models \psi$$

$$\text{and } K, \pi_i \models \varphi \text{ for all } 0 \leq i < k$$

Derived meanings:

$$K, \pi \models \Diamond \varphi \iff K, \pi \models \top \mathcal{U} \varphi$$

$$K, \pi \models \Box \varphi \iff K, \pi \models \neg \Diamond \neg \varphi$$

$$K, \pi \models \varphi \mathcal{R} \psi \iff K, \pi \models \neg (\neg \varphi \mathcal{U} \neg \psi)$$

Examples

- p holds throughout the execution of the system (p is invariant): $\Box p$
- whenever p holds, q is bound to hold in the future : $\Box(p \to \Diamond q)$
- p holds infinitely often : $\Box \Diamond p$
- p holds forever starting from a certain point in the future : $\Diamond \Box p$
- $\Box(p \to \bigcirc(\neg q \mathcal{U}r))$ holds in all sequences such that if p is true in a state, then q remains false from the next state and until the first state where r is true, which must occur.
- pRq: q is true unless this obligation is released by p being true in a previous state.

LTL vs. FOL

Theorem 2 LTL and FOL on infinite words have the same expressive power.

From LTL to FOL:

$$Tr(q) = p_q(t)$$
 $Tr(\neg \varphi) = \neg Tr(\varphi)$
 $Tr(\varphi \wedge \psi) = Tr(\varphi) \wedge Tr(\psi)$
 $Tr(\bigcirc \varphi) = Tr(\varphi)[t+1/t]$
 $Tr(\varphi \mathcal{U}\psi) = \exists x . Tr(\psi)[x/t] \wedge \forall y . y < x \rightarrow Tr(\varphi)[y/t]$

The direction from FOL to LTL is known as Kamp's Theorem.

LTL Model Checking

System verification using LTL

- Let K be a model of a reactive system (finite computations can be turned into infinite ones by repeating the last state infinitely often)
- Given an LTL formula φ over a set of atomic propositions \mathcal{P} , specifying all bad behaviors, we build a Büchi automaton A_{φ} that accepts all sequences over $2^{\mathcal{P}}$ satisfying φ .

Q: Since LTL \subset S1S, this automaton can be built, so why bother?

• Check whether $\mathcal{L}(A_{\varphi}) \cap \mathcal{L}(K) = \emptyset$. In case it is not, we obtain a counterexample.

Generalized Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A generalized Büchi automaton (GBA) over Σ is $A = \langle S, I, T, \mathcal{F} \rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $\mathcal{F} = \{F_1, \dots, F_k\} \subseteq 2^S$ is a set of sets of final states.

A run π of a GBA is said to be *accepting* iff, for all $1 \leq i \leq k$, we have

$$\inf(\pi) \cap F_i \neq \emptyset$$

GBA and BA are equivalent

Let $A = \langle S, I, T, \mathcal{F} \rangle$, where $\mathcal{F} = \{F_1, \dots, F_k\}$.

Build $A' = \langle S', I', T', F' \rangle$:

- $\bullet S' = S \times \{1, \dots, k\},\$
- $\bullet \ I' = I \times \{1\},$
- $(\langle s, i \rangle, a, \langle t, j \rangle) \in T'$ iff $(s, t) \in T$ and:
 - $-j=i \text{ if } s \notin F_i,$
 - $-j = (i \mod k) + 1 \text{ if } s \in F_i.$
- $F' = F_1 \times \{1\}.$

The idea of the construction

Let $K = \langle S, s_0, \to, L \rangle$ be a Kripke structure over a set of atomic propositions $\mathcal{P}, \pi : \mathbb{N} \to S$ be an infinite path through K, and φ be an LTL formula.

To determine whether $K, \pi \models \varphi$, we label π with sets of subformulae of φ in a way that is compatible with LTL semantics.

Closure

Let φ be an LTL formula written in negation normal form.

The *closure* of φ is the set $Cl(\varphi) \in 2^{\mathcal{L}(LTL)}$:

- $\varphi \in Cl(\varphi)$
- $\bigcirc \psi \in Cl(\varphi) \Rightarrow \psi \in Cl(\varphi)$
- $\psi_1 \bullet \psi_2 \in Cl(\varphi) \Rightarrow \psi_1, \psi_2 \in Cl(\varphi)$, for all $\in \{\land, \lor, \mathcal{U}, \mathcal{R}\}$.

Example 2
$$Cl(\Diamond p) = Cl(\top \mathcal{U}p) = \{\Diamond p, p, \top\} \Box$$

Q: What is the size of the closure relative to the size of φ ?

Labeling rules

Given $\pi: \mathbb{N} \to 2^{\mathcal{P}}$ and φ , we define $\tau: \mathbb{N} \to 2^{Cl(\varphi)}$ as follows:

• for $p \in \mathcal{P}$, if $p \in \tau(i)$ then $p \in \pi(i)$, and if $\neg p \in \tau(i)$ then $p \notin \pi(i)$

• if $\psi_1 \wedge \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ and $\psi_2 \in \tau(i)$

• if $\psi_1 \vee \psi_2 \in \tau(i)$ then $\psi_1 \in \tau(i)$ or $\psi_2 \in \tau(i)$

Labeling rules

$$\varphi \mathcal{U}\psi \iff \psi \vee (\varphi \wedge \bigcirc (\varphi \mathcal{U}\psi))$$
$$\varphi \mathcal{R}\psi \iff \psi \wedge (\varphi \vee \bigcirc (\varphi \mathcal{R}\psi))$$

- if $\bigcirc \psi \in \tau(i)$ then $\psi \in \tau(i+1)$
- if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$ then either $\psi_2 \in \tau(i)$, or $\psi_1 \in \tau(i)$ and $\psi_1 \mathcal{U} \psi_2 \in \tau(i+1)$
- if $\psi_1 \mathcal{R} \psi_2 \in \tau(i)$ then $\psi_2 \in \tau(i)$ and either $\psi_1 \in \tau(i)$ or $\psi_1 \mathcal{R} \psi_2 \in \tau(i+1)$

Interpreting labelings

A sequence π satisfies a formula φ if one can find a labeling τ satisfying:

• the labeling rules above

• $\varphi \in \tau(0)$, and

• if $\psi_1 \mathcal{U} \psi_2 \in \tau(i)$, then for some $j \geq i$, $\psi_2 \in \tau(j)$ (the eventuality condition)

Building the GBA $A_{\varphi} = \langle S, I, T, \mathcal{F} \rangle$

The automaton A_{φ} is the set of labeling rules + the eventuality condition(s)!

- $\Sigma = 2^{\mathcal{P}}$ is the alphabet
- $S \subseteq 2^{Cl(\varphi)}$, such that, for all $s \in S$:
 - $-\varphi_1 \land \varphi_2 \in s \Rightarrow \varphi_1 \in s \text{ and } \varphi_2 \in s$
 - $-\varphi_1 \vee \varphi_2 \in s \Rightarrow \varphi_1 \in s \text{ or } \varphi_2 \in s$
- $I = \{s \in S \mid \varphi \in s\},\$
- $(s, \alpha, t) \in T$ iff:
 - for all $p \in \mathcal{P}$, $p \in s \Rightarrow p \in \alpha$, and $\neg p \in s \Rightarrow p \notin \alpha$,
 - $-\bigcirc\psi\in s\Rightarrow\psi\in t,$
 - $-\psi_1 \mathcal{U} \psi_2 \in s \Rightarrow \psi_2 \in s \text{ or } [\psi_1 \in s \text{ and } \psi_1 \mathcal{U} \psi_2 \in t]$
 - $-\psi_1 \mathcal{R} \psi_2 \in s \Rightarrow \psi_2 \in s \text{ and } [\psi_1 \in s \text{ or } \psi_1 \mathcal{R} \psi_2 \in t]$

Building the GBA $A_{\varphi} = \langle S, I, T, \mathcal{F} \rangle$

- for each eventuality $\phi \mathcal{U} \psi \in Cl(\varphi)$, the transition relation ensures that this will appear until the first occurrence of ψ
- it is sufficient to ensure that, for each $\phi \mathcal{U}\psi \in Cl(\varphi)$, one goes infinitely often either through a state in which this does not appear, or through a state in which both $\phi \mathcal{U}\psi$ and ψ appear
- let $\phi_1 \mathcal{U} \psi_1, \dots \phi_n \mathcal{U} \psi_n$ be the "until" subformulae of φ

$$\mathcal{F} = \{F_1, \dots, F_n\}, \text{ where:}$$

$$F_i = \{ s \in S \mid \phi_i \mathcal{U} \psi_i \in s \text{ and } \psi_i \in s \text{ or } \phi_i \mathcal{U} \psi_i \notin s \}$$

for all $1 \leq i \leq n$.