## Automata on Finite Trees

## Preliminaries

## Trees

A tree over $\Sigma$ is a partial function $t: \mathbb{N}^{*} \rightarrow \Sigma$ such that $\operatorname{dom}(t)$ is a prefix-closed set:

- for each $p \in \operatorname{dom}(t)$ for all $q \leq p$ we have $q \in \operatorname{dom}(t)$.

A word $p \in \operatorname{dom}(t)$ is called a position.

If $p, q \in \operatorname{dom}(t)$ such that $p \cdot n=q$ for some $n \in \mathbb{N}$ :

- $p$ is the parent of $q$,
- $q$ is the $n$-th child of $p$.


## Trees

Given a finite tree $t \in \mathcal{T}(\Sigma)$, the frontier of $t$ is the set

$$
f r(t)=\{p \in \operatorname{dom}(t) \mid \text { for all } n \in \mathbb{N} p n \notin \operatorname{dom}(t)\}
$$

A path in $t$ is a maximal subset $\pi$ of $\operatorname{dom}(t)$ linearly ordered by $\leq$.

Given $p \in \operatorname{dom}(t)$, the subtree $t_{p}$ is defined as

$$
t_{p}:\left\{q \in \mathbb{N}^{*} \mid p q \in \operatorname{dom}(t)\right\} \rightarrow \Sigma
$$

such that $t_{p}(q)=t(p q)$, for all $q \in \operatorname{dom}\left(t_{p}\right)$.

Lemma 1 (König) A finitely branching tree is infinite if and only if it has an infinite path.

## Coding $\omega$-branching trees as binary trees

Let $t: \mathbb{N}^{*} \rightarrow \Sigma$ be a tree of arbitrary (possibly infinite) branching.

Define $t^{\prime}:\{0,1\}^{*} \rightarrow \Sigma \cup\{\bullet\}$ as follows:

- $t^{\prime}(\epsilon)=t(\epsilon)$
- for all $n_{1} n_{2} \ldots n_{k} \in \operatorname{dom}(t)$, with $k>0$, let

$$
t^{\prime}\left(01^{n_{1}} 01^{n_{2}} \ldots 01^{n_{k}}\right)=t\left(n_{1} n_{2} \ldots n_{k}\right)
$$

- for all other $p$ let $t^{\prime}(p)=\bullet$


## Tree Concatenation

Let $\sigma \in \Sigma$ and $T, T^{\prime} \subseteq \mathcal{T}(\Sigma)$.

By $T \cdot{ }_{\sigma} T^{\prime}$ we denote the set of trees obtained from some $t \in T$ by replacing each occurrence of $\sigma$ on $f r(t)$ by a tree in $T^{\prime}$.

If $\vec{\sigma}=\left\langle\sigma_{1}, \ldots, \sigma_{n}\right\rangle$, let $T \cdot \vec{\sigma}\left\langle T_{1}, \ldots, T_{m}\right\rangle$ be the set of trees obtained from some $t \in T$ by replacing each occurrence of $\sigma_{i}$ on $f r(t)$ by a tree in $T_{i}$.

We denote by $T \cdot \vec{\sigma}\left\langle T_{1}, \ldots, T_{m}\right\rangle^{\omega \vec{\sigma}}$ the set of infinite trees obtained by the infinite unfolding of the concatenation operation.

## Terms

A ranked alphabet $\langle\Sigma, \#\rangle$ is a set of symbols together with a function $\#: \Sigma \rightarrow \mathbb{N}$. For $f \in \Sigma$, the value $\#(f)$ is said to be the arity of $f$.

Zero-arity symbols are called constants, and denoted by $a, b, c, \ldots$

A term $t$ over $\Sigma$ is a partial function $t: \mathbb{N}^{*} \rightarrow \Sigma$ :

- $\operatorname{dom}(t)$ is a finite prefix-closed subset of $\mathbb{N}^{*}$, and
- for each $p \in \operatorname{dom}(t)$, if $\#(t(p))=n>0$ then $\{i \mid p i \in \operatorname{dom}(t)\}=\{0, \ldots, n-1\}$.


## Contexts

Let $X=\left\{x_{1}, \ldots, x_{n}\right\}$ be a finite set of variables, interpreted over terms.

A term $t \in \mathcal{T}(\Sigma \cup X)$ is said to be linear if each variable occurs in $t$ at most once.

A context is a linear term $C\left[x_{1}, \ldots, x_{n}\right]$, and $C\left[t_{1}, \ldots, t_{n}\right]$ denotes the result of replacing $x_{i}$ with the term $t_{i}$, for all $1 \leq i \leq n$.

A context is said to be trivial if it is reduced to a variable, and non-trivial otherwise.

Bottom Up Tree Automata

## Definition

Let $\Sigma=\{f, g, h, \ldots\}$ be a finite ranked alphabet. A bottom-up tree automaton is a tuple $A=\langle S, T, F\rangle$ where:

- $S$ is a finite set of states,
- $T$ is a set of transition rules of the form:

$$
f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q
$$

where $f \in \Sigma, \#(f)=n$, and $q_{1}, \ldots q_{n}, q \in S$.

- $F \subseteq S$ is a set of final states.

Notice that there are no initial states.

If $\#(f)=0$ we have rules of the form $f \rightarrow q$.

## Runs

A run of $A$ over a tree $t: \mathbb{N}^{*} \rightarrow \Sigma$ is a mapping $\pi: \operatorname{dom}(t) \rightarrow S$ such that, for each position $p \in \operatorname{dom}(t)$, where $q=\pi(p)$ :

- if $\#(t(p))=n$ and $q_{i}=\pi(p i), 1 \leq i \leq n$, then $T$ has a rule

$$
t(p)\left(q_{1}, \ldots, q_{n}\right) \rightarrow q
$$

A run $\pi$ is said to be accepting, if and only if $\pi(\epsilon) \in F$.

The language of $A$, denoted as $\mathcal{L}(A)$ is the set of all trees over which $A$ has an accepting run.

A set of trees $L \subseteq \mathcal{T}(\Sigma)$ is said to be recognizable iff there exists a bottom-up tree automaton $A$ such that $\mathcal{L}(A)=L$.

## Examples

1. Let $\Sigma=\{f, g, a\}$, where $\#(f)=2, \#(g)=1$ and $\#(a)=0$.

Let $A=\langle S, T, F\rangle$, where:

- $S=\left\{q_{f}, q_{g}, q_{a}\right\}$,
- $F=\left\{q_{f}\right\}$,
- $T=\left\{a \rightarrow q_{a}, g\left(q_{a}\right) \rightarrow q_{g}, g\left(q_{g}\right) \rightarrow q_{g}, f\left(q_{g}, q_{g}\right) \rightarrow q_{f}\right\}$

2. Let $\Sigma=\{$ red,black, nil $\}$ with $\#($ red $)=\#($ black $)=2$ and $\#($ nil $)=0$. Let $A_{r b}=\left\langle\left\{q_{b}, q_{r}\right\}, T,\left\{q_{b}\right\}\right\rangle$ with

$$
T=\left\{n i l \rightarrow q_{b}, \operatorname{black}\left(q_{b / r}, q_{b / r}\right) \rightarrow q_{b}, \operatorname{red}\left(q_{b}, q_{b}\right) \rightarrow q_{r}\right\}
$$

## Determinism

A tree automaton is said to be deterministic iff there are no two transition rules with the same left-hand side.

Proposition 1 A deterministic tree automaton has at most one run for each input tree.

A tree automaton is said to be complete iff there exists at least one transition rule $f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q$, for each $f \in \Sigma, \#(f)=n$ and $q_{1}, \ldots, q_{n} \in S$.

Proposition $2 A$ complete tree automaton has at least one run for each input tree.

## Determinism

Theorem 1 Let $L$ be a recognizable tree language. Then there exists a complete deterministic tree automaton $A$ such that $\mathcal{L}(A)=L$.

We define $A_{d}=\left\langle S_{d}, T_{d}, F_{d}\right\rangle$ where $S_{d}=2^{S}, F_{d}=\{s \subseteq S \mid s \cap F \neq \emptyset\}$ and:

$$
\begin{aligned}
f\left(s_{1}, \ldots, s_{n}\right) \rightarrow s & \Longleftrightarrow s=\left\{q \in S \mid \exists q_{1} \in s_{1}, \ldots \exists q_{n} \in s_{n} \cdot f\left(q_{1}, \ldots, q_{n}\right) \rightarrow q\right\} \\
a \rightarrow s & \Longleftrightarrow s=\{q \in S \mid a \rightarrow q\}
\end{aligned}
$$

To prove $\mathcal{L}\left(A_{d}\right)=\mathcal{L}(A)$, we prove:

$$
t \xrightarrow[A_{d}]{*} s \Longleftrightarrow s=\{q \in S \mid t \xrightarrow[A]{*} q\}
$$

## Determinism

By induction on the structure of $t$.

If $t=a$, by definition we have $a \rightarrow s \Longleftrightarrow s=\{q \in S \mid a \rightarrow q\}$

If $t=f\left(t_{1}, \ldots, t_{n}\right)$, by ind. hyp. $t_{i} \xrightarrow[A_{d}]{*} s_{i} \Longleftrightarrow s_{i}=\left\{q \in S \mid t_{i} \xrightarrow[A]{*} q\right\}$
$" \Rightarrow "$ if $t \underset{A_{d}}{*} f\left(s_{1}, \ldots, s_{n}\right) \xrightarrow[A_{d}]{\longrightarrow} s$ we show :

$$
\exists q_{i} \in s_{i} \cdot f\left(q_{1}, \ldots, q_{n}\right) \underset{A}{\longrightarrow} q \Longleftrightarrow t \xrightarrow[A]{*} q
$$

## Determinism

$$
\begin{aligned}
& " \Leftarrow " \text { Let } s_{i}=\left\{q \mid t_{i} \underset{A}{\rightarrow} q\right\}, i=1, \ldots, n \text { and } \\
& \qquad s^{\prime}=\left\{q \mid \exists q_{i} \in s_{i} . f\left(q_{1}, \ldots, q_{n}\right) \underset{A}{\rightarrow} q\right\}
\end{aligned}
$$

We conclude by showing $s=s^{\prime} \square$

## Closure Properties

Theorem 2 The class of recognizable tree languages is closed under union, complementation and intersection.

Union Let $A_{i}=\left\langle S_{i}, T_{i}, F_{i}\right\rangle$ for $i=1,2$. Suppose that $S_{1} \cap S_{2}=\emptyset$. Let $A_{\cup}=\left\langle S_{1} \cup S_{2}, T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle$.

Complementation Let $A=\langle S, T, F\rangle$ be a complete deterministic tree automaton such that $\mathcal{L}(A)=L$. Define $\bar{A}=\langle S, T, S \backslash F\rangle$.

Intersection We use the fact that $L_{1} \cap L_{2}=\overline{\overline{L_{1}} \cup \overline{L_{2}}}$.

## Projection

Let $\Sigma=\Sigma_{1} \times \Sigma_{2}=\left\{\left(\sigma_{1}, \sigma_{2}\right) \mid \sigma_{1} \in \Sigma_{1}, \sigma_{2} \in \Sigma_{2}, \#\left(\sigma_{1}\right)=\#\left(\sigma_{2}\right)\right\}$

We define $p r_{1}(t): \mathbb{N}^{*} \rightarrow \Sigma_{1}$, where $p r_{1}(t)(p)=\sigma_{1}$ iff there exist $\sigma_{2} \in \Sigma_{2}$ such that $t(p)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$.
$p r_{2}(t)$ is defined in a similar way.

Theorem 3 If $L \subseteq \mathcal{T}\left(\Sigma_{1} \times \Sigma_{2}\right)$ is a recognizable tree language, then so are the projections $p r_{1}(L)$ and $p r_{2}(L)$.

## Minimization

A relation $\equiv \subseteq \mathcal{T}(\Sigma) \times \mathcal{T}(\Sigma)$ is a congruence on $\mathcal{T}(\Sigma)$ iff for every context $C\left[x_{1}, \ldots x_{n}\right]$ :

$$
\forall 1 \leq i \leq n . u_{i} \equiv v_{i} \Rightarrow C\left[u_{1}, \ldots, u_{n}\right] \equiv C\left[v_{1}, \ldots, v_{n}\right]
$$

For a given tree language $L$, we define $\equiv_{L}$ :
$u \equiv_{L} v$ iff for all contexts $C[x]$ we have $C[u] \in L \Longleftrightarrow C[v] \in L$

Exercise 1 Show that $\equiv_{L}$ is a congruence. $\square$

## A Myhill-Nerode Theorem for Tree Languages

Theorem 4 (Myhill-Nerode) A tree language is recognizable iff the congruence $\equiv_{L}$ is of finite index.
" $\Rightarrow$ " Let $A=\langle S, T, F\rangle$ be a complete TA such that $L=\mathcal{L}(A)$.

Let $u \equiv_{A} v$ iff $u \xrightarrow{*} q \Longleftrightarrow v \xrightarrow{*} q$, for all $q \in S$. We have $u \equiv_{A} v \Rightarrow u \equiv_{L} v$.
" $\Leftarrow$ " Define $A_{\text {min }}=\left\langle S_{\text {min }}, T_{\text {min }}, F_{\text {min }}\right\rangle$, where:

- $S_{\text {min }}=\left\{[u]_{L} \mid u \in \mathcal{T}(\Sigma)\right\}$
- $T_{\text {min }}=\left\{f\left(\left[u_{1}\right]_{L}, \ldots,\left[u_{n}\right]_{L}\right)=\left[f\left(u_{1}, \ldots, u_{n}\right)\right]_{L} \mid u_{1}, \ldots, u_{n}, u \in \mathcal{T}(\Sigma)\right\}$
- $F_{\text {min }}=\left\{[u]_{L} \mid u \in L\right\}$


## $\underline{\text { Pumping Lemma for Recognizable Tree Languages }}$

Lemma 2 (Pumping) Let $L$ be a recognizable tree language. Then there exists a constant $N>0$ such that, for every $t \in L$ with height $(t)>N$, there exists a context $C$, a non-trivial context $D$ and a tree $u$ such that $C[D[u]] \in L$, and, for all $n \geq 0$ we have $C\left[D^{n}[u]\right] \in L$.

Corollary 1 Let $A=\langle S, T, F\rangle$ be a tree automaton.

1. $\mathcal{L}(A) \neq \emptyset$ iff there exists $t \in \mathcal{L}(A)$ with height $(t)<\|S\|$,
2. $\|\mathcal{L}(A)\|=\omega$ iff there exists $t \in \mathcal{L}(A)$ with $\|S\|<\operatorname{height}(t)<2\|S\|$.

## Pumping Lemma for Recognizable Tree Languages

Exercise 2 Show that $\left\{f\left(g^{n}(a), g^{n}(a)\right) \mid n \geq 0\right\}$ is not recognizable.

Exercise 3 (Homework) Let $L$ be a recognizable tree language over the alphabet $\Sigma=\{f, a, b\}$, where $\#(f)=2$ and $\#(a)=\#(b)=0$. Let $L^{a c} \supseteq L$ be the smallest tree language which is closed by the application of the two rules below:

- commutativity: for all context $C$ and subtrees $t_{1}, t_{2}$ :

$$
C\left[f\left(t_{1}, t_{2}\right)\right] \in L^{a c} \Longleftrightarrow C\left[f\left(t_{2}, t_{1}\right)\right] \in L^{a c}
$$

- associativity: for all context $C$ and subtrees $t_{1}, t_{2}, t_{3}$ :

$$
C\left[f\left(f\left(t_{1}, t_{2}\right), t_{3}\right)\right] \in L^{a c} \Longleftrightarrow C\left[f\left(t_{1}, f\left(t_{2}, t_{3}\right)\right)\right] \in L^{a c}
$$

Show that there exists a recognizable tree language $L$ for which $L^{a c}$ is not recognizable.

## Decidability

- Emptiness $\mathcal{L}(A)=\emptyset$ ?
- Equality $\mathcal{L}(A)=\mathcal{L}(B)$ ?
- Infinity $\|\mathcal{L}(A)\|<\infty$ ?
- Universality $\mathcal{L}(A)=\mathcal{T}(\Sigma)$ ?

Theorem 5 The emptiness, equality, infinity and universality problems on tree automata are decidable. In particular, emptiness is decidable in time polynomial in the size (number of states) of automata.

# Top Down Tree Automata 

## Definition

A top-down tree automaton is a tuple $A=\langle S, I, T, F\rangle$ where:

- $S$ is a set of states,
- $I \subseteq S$ is a set of initial states,
- $T$ is a set of transition rules of the form

$$
q(f) \rightarrow\left\langle q_{1}, \ldots, q_{n}\right\rangle
$$

where $\#(f)=n>0$.

- $F$ is a set of final states

Notice that, for $\#(f)=0$ there are no rules in $T$.

## Runs

A run of $A$ over a tree $t: \mathbb{N}^{*} \rightarrow \Sigma$ is a mapping $\pi: \operatorname{dom}(t) \rightarrow S$ such that, for each position $p \in \operatorname{dom}(t)$, where $q=\pi(p)$, we have:

- if $p=\epsilon$ then $q \in I$, and
- if $\#(t(p))=n$ and $q_{i}=\pi(p i), 1 \leq i \leq n$, then $T$ has a rule

$$
q(t(p)) \rightarrow\left\langle q_{1}, \ldots, q_{n}\right\rangle
$$

A run $\pi$ is said to be accepting, if and only if $\pi(p) \in F$, for all $p \in f r(t)$.

## Top Down vs. Bottom Up

Theorem 6 Bottom up and top down tree automata recognize the same languages.

A top down tree automaton is said to be deterministic if it has one initial state and no two rules with the same left-hand side.

Proposition 3 A deterministic top down tree automaton has at most one run for each input tree.

Proposition 4 There exists a recognizable tree language that is not accepted by any top down deterministic tree automaton.

Proof: $L=\{f(g(a), h(a)), f(g(a), h(a))\} \square$

## Tree Automata and WSkS

## MSOL on Trees: (W)S $\omega$ S

Let $\Sigma=\{a, b, \ldots\}$ be a tree alphabet. The alphabet of (W)S $\omega \mathrm{S}$ is:

- the function symbols $\left\{s_{i} \mid i \in \mathbb{N}\right\} ; s_{i}(x)$ denotes the $i$-th successor of $x$
- the set constants $\left\{p_{a} \mid a \in \Sigma\right\} ; p_{a}$ denotes the set of positions of $a$
- the first and second order variables and connectives.


## Examples

Let us consider binary trees, i.e. the alphabet of WS2S.

- The formula

$$
\operatorname{closed}(X): \forall x . X(x) \rightarrow X\left(s_{0}(x)\right) \wedge X\left(s_{1}(x)\right)
$$

denotes the fact that $X$ is a downward-closed set.

- The prefix ordering on tree positions is defined by

$$
x \leq y: \forall X . \operatorname{closed}(X) \wedge X(x) \rightarrow X(y)
$$

## Examples

- The formula $\operatorname{path}(X)$ denotes the fact that $X$ is a path in the tree:

$$
\begin{aligned}
& \operatorname{total}(X): \quad \forall x, y . X(x) \wedge X(y) \rightarrow x \leq y \vee y \leq x \\
& \operatorname{path}(X): \\
& \operatorname{total}(X) \wedge \forall Y \cdot \operatorname{total}(Y) \wedge X \subseteq Y \rightarrow X=Y
\end{aligned}
$$

- A leaf is defined by the formula:

$$
\operatorname{leaf}(x): \exists X \cdot \operatorname{path}(X) \wedge X(x) \wedge \forall y . X(y) \rightarrow y \leq x
$$

- A tree is finite iff:

$$
\forall X . \operatorname{path}(X) \rightarrow \exists x . X(x) \wedge \forall y . X(y) \rightarrow y \leq x
$$

## From Automata to Formulae

Let $X_{1}, \ldots X_{k}, x_{k+1}, \ldots, x_{m}$, and $\Sigma=\{0,1\}^{m}$.

Let $A=\langle S, I, T, F\rangle$ be a non-deterministic top-down tree automaton, where $S=\left\{s_{1}, \ldots, s_{p}\right\}$.

## $\underline{\text { Coding of } \Sigma}$

Let $\sigma \in\{0,1\}^{m}$ and $\vec{X}=\left\langle X_{1}, \ldots, X_{m}\right\rangle$.

We define the formula $\Phi_{\sigma}(x, \vec{X})$ as the conjunction of:

- $X_{i}(x), 1 \leq i \leq m$, if $\sigma_{i}=1$,
- $\neg X_{i}(x), 1 \leq i \leq m$, if $\sigma_{i}=0$.

It follows, that for any $t \in \mathcal{T}(\Sigma)$, we have $t \models \forall x . \bigvee_{\sigma \in \Sigma} \Phi_{\sigma}(x, \vec{X})$.

## Coding of $S$

Let $\vec{Y}=\left\{Y_{1}, \ldots, Y_{p}\right\}$ be set variables.

Intuitivelly, the set variable $Y_{i}, 1 \leq i \leq p$ contains all tree positions labeled by $A$ with state $s_{i}$ during the run on some tree.

$$
\Phi_{S}(\vec{Y}): \forall z \cdot \bigvee_{1 \leq i \leq p} Y_{i}(z) \wedge \bigwedge_{1 \leq i<j \leq p} \neg \exists z \cdot Y_{i}(z) \wedge Y_{j}(z)
$$

## Coding of $I, T$ and $F$

Every run starts from an initial state:

$$
\Phi_{I}(\vec{Y}): \exists x \forall y \cdot x \leq y \wedge \bigvee_{s_{i} \in I} Y_{i}(x)
$$

If $A$ is at position $x$ and $t(x) \in\{0,1\}^{m}, A$ moves on $\left\langle s_{0}(x), s_{1}(x)\right\rangle$ :

$$
\Phi_{T}(\vec{X}, \vec{Y}): \bigwedge_{i=1}^{p} \forall x . Y_{i}(x) \wedge \bigvee_{\sigma \in \Sigma} \Phi_{\sigma}(x, \vec{X}) \rightarrow \bigvee_{s_{i}(\sigma) \rightarrow\left\langle s_{j}, s_{k}\right\rangle} Y_{j}\left(s_{0}(x)\right) \wedge Y_{k}\left(s_{1}(x)\right)
$$

If $A$ is at a frontier position it must be in an accepting state:

$$
\Phi_{F}(\vec{X}, \vec{Y}): \forall x . \operatorname{leaf}(x) \rightarrow \bigvee_{s_{i} \in F} Y_{i}(x)
$$

## From Formulae to Automata

Let $\varphi: x_{2} \in X_{1}$.

We define $A_{\varphi}=\left\langle\left\{s_{0}, s_{1}\right\}, s_{0}, T,\left\{s_{1}\right\}\right\rangle$, where:

$$
\begin{aligned}
\langle 0,0\rangle\left(s_{0}\right) & \rightarrow\left\{\left\langle s_{0}, s_{1}\right\rangle,\left\langle s_{1}, s_{0}\right\rangle\right\} \\
\langle 1,0\rangle\left(s_{0}\right) & \rightarrow\left\{\left\langle s_{0}, s_{1}\right\rangle,\left\langle s_{1}, s_{0}\right\rangle\right\} \\
\langle 1,1\rangle\left(s_{0}\right) & \rightarrow\left\langle s_{1}, s_{1}\right\rangle \\
\langle 0,0\rangle\left(s_{1}\right) & \rightarrow\left\langle s_{1}, s_{1}\right\rangle \\
\langle 1,0\rangle\left(s_{1}\right) & \rightarrow\left\langle s_{1}, s_{1}\right\rangle
\end{aligned}
$$

## From Formulae to Automata

Let $\varphi: s_{0}\left(x_{1}\right)=x_{2}$.

We define $A_{\varphi}=\left\langle\left\{s_{0}, s_{1}, s_{2}\right\}, T,\left\{s_{0}\right\}\right\rangle$, where:

$$
\begin{array}{rll}
\langle 0,0\rangle & \rightarrow & s_{2} \\
\langle 0,1\rangle & \rightarrow & s_{1} \\
\langle 0,0\rangle\left(s_{2}, s_{2}\right) & \rightarrow & s_{2} \\
\langle 0,1\rangle\left(s_{2}, s_{2}\right) & \rightarrow & s_{1} \\
\langle 1,0\rangle\left(s_{1}, s_{2}\right) & & s_{0} \\
\langle 0,0\rangle\left(s_{0}, s_{2}\right) & & s_{0} \\
\langle 0,0\rangle\left(s_{2}, s_{0}\right) & & s_{0}
\end{array}
$$

## From Formulae to Automata

As in the case of automata on words, $A_{\Phi}$ can be effectively constructed, for any formula $\Phi$ of $W S k S$.

Theorem 7 Given a ranked alphabet $\Sigma$, a tree language $L \subseteq \mathcal{T}(\Sigma)$ is definable in WSkS iff it is recognizable.

Corollary 2 The SAT problem for WSkS is decidable.

