A Verification Toolkit for Numerical Transition Systems
Tool Paper*

Hossein Hojjat, Filip Koneény?#, Florent Garniet,
Radu losit, Viktor Kuncak!, and Philipp Rimme#p

1 Swiss Federal Institute of Technology Lausanne (EPFL)
2 Verimag, Grenoble, France
3 Uppsala University, Sweden
4 Brno University of Technology, Czech Republic

Abstract. This paper presents a publicly available toolkit and a benchmark suite
for rigorous verification ofnteger Numerical Transition SysterfiSITS), which

can be viewed as control-flow graphs whose edges are annotateediyuRyer
arithmetic formulas. We present.ETA and B.DARICA, two verification tools

for INTS. The RATA system is based on precise acceleration of the transition
relation, while the EDARICA system is based on predicate abstraction with
interpolation-based counterexample-driven refinement. TimaRICA verifier
uses the RINCESStheorem prover as a sound and complete interpolating prover
for Presburger arithmetic. Both systems can solve several exangyl@ghfch
previous approaches failed, and present a useful baseline fifyivgrinteger
programs. The infrastructure is a starting point for rigorous bendkingg com-
petitions, and standardized communication between tools.

1 Introduction

Common representation formats, benchmarks, and tool citope have helped re-
search in a number of areas, including constraint solvirepgrtem proving, and compil-
ers. To bring such benefits to the area of software verifinati@ are proposing a stan-
dardized logical format for programs, in terms of hieracahiinfinite-state transition
systems. The advantage of using a formally defined commandiois avoiding ambi-
guities of programming language semantics and helpinggarage semantic modeling
from designing verification algorithms. This paper focusesystems whose transition
relation is expressed in Presburger arithmetic. Integanéfical Transition Systems,
(denoted INTS in this paper), also known as counter autgneatanter systems, or
counter machines, are an infinite-state extension of theehafdfinite-stateboolean
transition systemsa model extensively used in the area of software verifinali).
The interest for INTS comes from the fact that they can encadieus classes of sys-
tems with unbounded (or very large) data domains, such akMaae circuits, cache

* Supported by the Rich Model Toolkit initiativéat t p: / / ri chnodel s. or g, the Czech
Science Foundation (projects P103/10/0306 and 102/09/H042), thé Guristry of Educa-
tion (COST OC10009 and MSM 0021630528), the EU/CzechIT4InnavaBentre of Excel-
lence project CZ.1.05/1.1.00/02.0070, the BUT project FIT-12d.tae Microsoft Innovation
Cluster for Embedded Software.

http://richmodels.org

2 Hojjat, Kon€ny, Garnier, losif, Kuncak, Bmmer

var i,j: Int
10: havodi); assuméi >=0)
I1: havoqj); assumdj >=0)
12: var x: Int = i;
vary: Int = j
I3: while (x '=0) {
4: x=x-1,;
5: y=y-1}
16: if (i ==j) assert(x ==vy)

@

Fig. 1. Example Program and its Numerical Transition System (NTS) RepregentBy con-
vention, if a variablev does not appear in the transition relation formula, we implicitly assume
that the frame condition = v’ is conjoined. The statds andi» have been merged in the NTS.

memories, or software systems with variables of non-pimitypes, such as integer
arrays, pointers and/or recursive data structures. Aningrecomplete class of systems
can, in principle be simulated by an INTS. A number of recentks have revealed
cost-effective approximate reductions of verificationlhgems for several classes of
complex systems to decision problems phrased in terms o8 IEXamples of systems
that can be effectively verified by means of integer programlside: specifications of
hardware components [10], programs with singly-linketsl[4], trees|[6], and integer
arrays|[2].

Consider the program in Figuré 1(a). Most programmers whbalgk little difficulty ob-
serving that the assertion will always succeed, but mang tamluding non-relational
abstract interpretation, as well as predicate abstragtitinarbitrary interpolation can
fail to prove the assertion to hold/[9]. The integer numéricansition system for this
program is in Figur&l1(b). We have developed a toolkit fordpicing and manipulat-
ing such representations, as well as two very differentyaeas that can analyze such
transition systems. Both analyzerq,dARICA and FATA, in fact succeed for this ex-
ample, as well as for several other interesting examplesegqperiments show that the
two tools are complementary in general, so users benefit @liferent techniques that
use the same input format.

2 The INTS Infrastructure

We have developed a toolkit for rigorous automated verificabf programs in INTS
format. The unifying component is the INTS Iibrrwvhich defines the syntax of the
INTS representation by providing a parser and a library stralot syntax tree classes.
For the purposes of this paper, the INTS syntax is considerbd a textual description
of a control flow graph labeled by Presburger arithmetic fdem, as in Figurgl1 (b).

At this point, there are several tools supporting the INTi#fa, as input and/or output
language. The INTS library is designed for easy bridgindhwiéw tools, which can
be either front-ends (translators from mainstream prograng languages into INTS),

Shttp://richnmodel s. epfl.ch/ntsconp/ntslib

http://richmodels.epfl.ch/ntscomp/ntslib

A Verification Toolkit for Numerical Transition Systems 3

back-ends (verification tools), or both. Currently, thexésketools to generate INTS
from sequential and concurrent C, Scala, and Verilog. Wegmetwo tools that can
verify INTS programs: Flata and Eldarica.

Flata verifier. FLATA is a verification tool for hierarchical non-recursive INT®dA
els. The tool computes the summary relation for each INT8peddently of its calling
context, thus avoiding the overhead of procedure inlinifige verification is based
on computing transitive closure of loops. Classes of integktions for which tran-
sitive closures can be computed precisely included{ffgrence bounds relation$2)
octagonsand (3)finite monoid affine transformationBor these three classes, the tran-
sitive closures can be effectively defined in Presburgénmetic. R ATA integrates the
transitive closure computation method for difference lisuand octagonal relations
from [3] in a semi-algorithm computing the summary relatioorementally, by elimi-
nating control states and composing incoming with outgo@igtions.

Eldarica verifier. ELpaRicall implements predicate abstraction with Counter-
Example Guided Abstraction Refinement (CEGAR). It generate abstract reacha-
bility tree (ART) of the system on demand, using lazy absiwacwith Cartesian ab-
straction, and uses interpolation to refine the set of pegesc[7]. For checking the
feasibility of paths, and constructing abstractionspERICA employs the provers pac)
and Princess.In addition, E.DARICA uses caching of previously explored states and
formulae to prevent unnecessary reconstruction of treggd block encoding can be
performed to reduce the number of calls to the interpolatiegrem prover.

Eldarica refines abstractions with the helpGrhig Interpolants extracted from infea-
sibility proofs for spurious counterexamples. The conplaterpolation procedure for
Presburger arithmetic was proposed.ih [4], and is implepteas part of Princess.

3 Experimental Comparison of the H.ATA and ELDARICA Tools

We next give an experimentally comparesfA and B DARICA on six sets of examples
extracted automatically from different sources: (a) C paogs with arrays provided as
examples of divergence in predicate abstraction [9], (A)3Nextracted from programs
with singly-linked lists by the L2CA tool [1], (c) INTS extcéed from VHDL models
of circuits following the method of [10], (d) verification nditions for programs with
arrays, expressed in the SIL logic 01 [2] and translated t63N(e) C programs pro-
vided as benchmarks in the NECLA static analysis suite, §r@ grograms with asyn-
chronous procedure calls translated into INTS using thecggh of [5] (the examples
with extension .optim are obtained via an optimized traiwtamethod). Experiments
were ran on an IntédCore’™2 Duo @ 2.66GHz with3GB RAM. The two tools be-
haved in a complementary way. In some cases (examples épy¢icate abstraction
method fails due to an unbounded number of loop unrollingsiired by refinement.
In these cases, acceleration was capable to find the neadehint rather quickly. On
the other hand (examples (f)), the acceleration approashuwauccessful in reducing

Shttp://wwe=verimag.imag. fr/ FLATA htm
"http://lara.epfl.ch/weldarica

8http://research. mcrosoft. coni en- us/ uni rednond/ proj ect s/ z3/
®http://ww. philipp. ruenmer. org/ princess.shtn

http://www-verimag.imag.fr/FLATA.html
http://lara.epfl.ch/w/eldarica
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.philipp.ruemmer.org/princess.shtml

4 Hojjat, Kon€ny, Garnier, losif, Kuncak, Bmmer

loops with linear but non-octagonal relations. In theseesathe predicate abstraction
found the needed Presburger invariants for proving caress, and error traces, for the
erroneous examples.

Time [s Time [s Time [s

Model Flata [E]Id. Model Flata [E]Id. Model Flata [El]d
(a) Examples from [9] (c) VHDL models from [10] (f) Examples from [5]

anubhav (C) 0.8 2.0 counter (C) 0.1 1.7 h1(E) - b7
copyl (E) 1.8 13.9 register (C) 0.2 1.2 hl.optim (E) 06 1.3
cousot (C) 12.0 - synlifo (C) 16.4 20.3 hlh2 (E) - 19.0
loopl (E) 1.3 12.0 (d) Verification conditions h1h2.optim (E) 09 43
loop (E) 1.9 10.6 for array programs [2] simple (E) - 6.1
scan (E) 25 - Totationvc.1 (C) 0.8 2.0 simple.optm(E) 0.6 1.3
stringconcatl (E) 4.7 - rotationvc.2 (C) 1.1 2.2 test0(C) - 30.6
stringconcat (E) 4.7 - rotationvc.3(C) 1.2 0.3 test0.optim (C) 0.3 53
string.copy (C) 0.4 - rotationvc.1(E) 1.1 1.4 testO(E) - 50
substringl (E) 0.6 5.5 splitve.1 (C) 3.8 3.0 test0.optim (E) 06 1.3
substring (E) 1.6 0.7 splitve.2 (C) 2.8 2.2 testl.optim (C) 06 85

(b) Examples from L2CA[1] split.ve.3 (C) 2.6 0.6 testl.optim (E) 14 6.8
bubblesort (E) 141 2.5 splitvc.1 (E) 30.2 2.2 test2l.optim(E) 1.2 4.6

insdel (E) 0.1 0.3 (e) NECLA benchmarks test22.optim (E) 2.8 4.6
insertsort (E) 1.9 0.8 infl(E) 0.2 0.4 test2.optim(C) 6.3 72.9
listcounter (C) 0.3 - inf4 (E) 09 0.6 wrpc.manual(C) 0.6 1.2
listcounter (E) 0.3 0.3 inf6 (C) 0.1 0.4 wrpc(E) - 95
listreversal (C) 4.8 0.6 inf8 (C) 0.3 0.6 wrpc.optim (E) - 30

Fig. 2.Benchmarks foFlata andEldarica. The letter after the model name distinguisbesect
from models with a reachablerror state. Items with “-” led to a timeout for the respective tool.

References

1. A.Bouajjani, M. Bozga, P. Habermehl, R. losif, P. Moro, and Tneéo Programs with lists
are counter automata. DAV, pages 517-531, 2006.

2. M. Bozga, P. Habermehl, R. losif, F. K&y, and T. Vojnar. Automatic verification of
integer array programs. IBAV, pages 157-172, 2009.

3. M. Bozga, R. losif, and F. Kortay. Fast acceleration of ultimately periodic relations. In
CAV, pages 227-242, 2010.

4. A. Brillout, D. Kroening, P. Rmmer, and T. Wahl. An interpolating sequent calculus for
quantifier-free Presburger arithmetic. IICAR LNCS. Springer, 2010.

5. P. Ganty and R. Majumdar. Algorithmic verification of asynchronowg@mams. CoRR
abs/1011.0551, 2010.

6. P. Habermehl, R. losif, A. Rogalewicz, and T. Vojnar. Proving teation of tree manipu-
lating programs. IATVA pages 145-161, 2007.

7. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Absti@ts from proofs. In
POPL, pages 232-244. ACM, 2004.

8. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy atikira InPOPL, 2002.

9. R. Jhalaand K. L. McMillan. A practical and complete approach toipagel refinement. In
TACAS pages 459473, 2006.

10. A. Smrcka and T. Vojnar. Verifying parametrised hardware assita counter automata. In

Haifa Verification Conferencgages 51-68, 2007.

	A Verification Toolkit for Numerical Transition Systems

