Automata on Infinite Words



Definition of Buchi Automata

Let ¥ = {a,b,...} be a finite alphabet.

A non-deterministic Biichi automaton (NBA) over X is a tuple
A= (S 1,T, F), where:

e S is a finite set of states,
e /| C S is aset of initial states,
o I'C S x> xS isa transition relation,

o ['C Sis asetof final states.



Acceptance Condition

A run of a Buchi automaton is defined over an infinite word w : a1 . . .

as an infinite sequence of states m : spsiss ... such that:
e sy €1 and

o (s;,jt1,8;41) €T, for all i € N,

inf(m) = {s | s appears infinitely often on =}

Run 7 of A is said to be accepting iff inf(7) N EF £ (.

The language of A, denoted L(A), is the set of all words accepted by A.

A language L C X% is w-recognizable if there exists a Biichi automaton A
such that L = L(A).



Examples

Let ¥ = {0,1}. Define Biichi automata for the following languages:
1. L ={a € X% | 0 occurs in « exactly once}

2. L ={a e X% | after each 0 in « there is 1}

3. L ={a € ¥¥ | a contains finitely many 1’s}
4. L= (01)*3¥

5. L ={a € X¥ | 0 occurs on all even positions in a}



Buchi Characterization Theorem

Lemma 1 If L C X* is a recognizable language, there exists a DFA

A= (S{s0}, T, F) such that sy has no incoming transitions and
L=L(A).

Given W C ¥* define W¥ = {wow; ... | w; € W,i > 0}

Lemma 2 Let W,V C X* be recognizable languages. Then the languages

W< and V - W% are w-recognizable.



Buchi Characterization Theorem

Let A= (S,I,T,F) be a Biichi automaton and s, s’ € S be two states.
Let W, o = {w e X* | s — s'}.
The language W, ¢ C ¥* is recognizable, for any s,s’ € S.

Theorem 1 An w-langage L C X% is w-recognizable iff L is a finite union

of w-languages V - W, where V., W C X* are recognizable languages.
Proof idea: L = USQ,S,EF Wss - WS

Corollary 1 Any non-empty Buchi-recognizable language contains an

ultimately periodic word of the form uvovv. ...



The Emptiness Problem

Theorem 2 Given a Bichi automaton A, L(A) # 0 iff there exist
u,v € X%, |ul, [v] < [A], such that uwv® € L(A).

In practical terms, A is non-empty iff there exists a state s which is

reachable both from an initial state and from itself.



Closure Properties

Closure under union and projection are like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Biichi automata is a complex

result.

Deterministic Biichi automata are not closed under complement.



Closure under Intersection

Let A = <Sl,11,T1,F1> and A, = <SQ,IQ,T2,F2>

Build A = (S,I,T, F):
o S=51 xS x{1,2,3},
[ I:Il><12><{1},

e the definition of 7' is the following:

— ((s1,82,1),a,(s],s5,1)) € T iff (s;,a,s;) € T;,i=1,2 and s1 € Fi
— ((s1,82,1),a,(s],55,2)) € Tiff (s;,a,s,) € T;,i=1,2 and s1 € Fy
— ((s1,82,2),a,(s],5,2)) € Tiff (s;,a,s,) € T;,i=1,2 and s| & Fy
— ((s1,52,2),a,(s),55,3)) € Tiff (s4,a,s,) € T;,i=1,2 and s € Fy
— ((s1,$2,3),a,(s],s5,1)) € T iff (s;,a,s,) € T;,i=1,2

o =51 x5 x{3}



Deterministic Buchi Automata

w-languages recognized by NBA D w-languages recognized by DBA

Q: Why classical subset construction does not work for Biichi automata?
Let A= (S,I,T,F) and Ag = (2°, {1}, T;,{Q | QN F # 0}).
Let upujug ... € L(A) be an infinite word. In A, this gives:

I 2% Q1 25 Qs = ...

where each (); N F'. However this does not necessarily correspond to an

accepting path in A!



Deterministic Buchi Automata

Let W C ¥*. Define W= {a € ¥¥ | a(0,n) € W for infinitely many n}

Theorem 3 A language L C X% is recognizable by a deterministic Biichi

automaton iff there exists a recognizable language W C X* such that

=W,

If L =L(A) then W = L(A’) where A’ is the DFA with the same

definition as A, and with the finite acceptance condition.



Deterministic Buchi Automata

Theorem 4 There exists an w-recognizable language that can be

recognized by no deterministic Bucht automaton.

Y ={a,b} and L ={a € X¥ | #,(a) < oo} = X*bv.
%

Suppose L = W for some W C X*,

W“elL=b1'eclW

b"tab” € L = b"ab™? ¢ W

%
b"tab™a... € W = L, contradiction.



Deterministic Buchi Automata are not closed under complement

Theorem 5 There exists a DBA A such that no DBA recognizes the
language 3% \ L(A).

Y ={a,b} and L ={a € X¥ | #,(a) < oo} = X*b¥.
Let V = ¥*a. There exists a DFA A such that L(A) = V.
There exists a deterministic Biichi automaton B such that £(A) = i

But 3¢\ 7 — L which cannot be recognized by any DBA.



Buchi Automata and S1S

Let ¥ = {a,b,...} be a finite alphabet.

Any finite word w € ¥* induces the infinite sets p, = {p | w(p) = a}.
e v <y : xisless than y,
e s(x) =1y : y is the successor of x,

e p.(x) : a occurs at position z in w

Remember that < and s can be defined one from another.



Problem Statement

Let L(p) = {w | my, = ¢}

A language L C >* is said to be S1S-definable iff there exists a S1S
formula ¢ such that L = L(p).

1. Given a Biichi automaton A build an S1S formula ¢ 4 such that
L(A) = L(p)

2. Given an S1S formula ¢ build a Biichi automaton A, such that
L(A) = L(p)

The Biichi recognizable and S1S-definable languages coincide



From Automata to Formulae

Let A= (S,I,T,F) with S = {s1,...,5p}, and X = {0,1}".
Build ® 4(X1,...,X,,) such that Vw € ¥* . w € L(A) <= my = D4

DA(X1,..., X)) =3Y1...3Y, . dg(Y)AD(Y)ADp(Y, X)ADp(Y)

Op(Y)=Vady . a<yrz#yn \/ Yi(y)
s, EF



From Formulae to Automata

Let ®(X1,...,Xp, Tpt1,...,2m) be a S1S formula.

Build an automaton Ag such that Vw € ¥* . w € L(A) < [®]"* = true

Lw

Let ®(X1, Xo,x3,14) be:
1. X1(£B3>
2. x3 < 24

3. X1 =X



From Formulae to Automata

Ag is built by induction on the structure of &:
o for ® = 1 A ¢p2 we have L(Ag) = L(Ap,) N L(Ay,)
o for ® = ¢1 V ¢p2 we have L(Ag) = L(Ap,) U L(As,)

o for & = —¢ we have L(Ap) = L(Ay) (requires complementation)
o for & =3X; . ¢, we have L(Ag) = pri(L(Ay)).



Consequences

Theorem 6 A language L C X% is definable in S15 iff it is

w-recognizable.

Corollary 2 The SAT problem for S1§ is decidable.



Muller and Rabin Word Automata



Muller Automata

Let ¥ = {a,b,...} be a finite alphabet.

Definition 1 A Muller automaton over ¥ is A = (5, sg, T, F), where:
e S 1s the finite set of states
e sy €S is the initial state
o T:5 x X+ S is the transition table

o F C 2° is the set of accepting sets

Notice that Muller automata are deterministic and complete by definition.



Acceptance Condition

A run of a Muller automaton is defined over an infinite word w : ajas . ..

as an infinite sequence of states m : spsiss ... such that:

o T'(s;,jy1) = S;+1, for all 7+ € N.

Let inf(m) = {s | s appears infinitely often on 7}.

Run 7 of A is said to be accepting iff inf(7) € F.

L C % is Muller-recognizable iff there exists a MA A such that L = L(A).



Exercises

Exercise 1 Let ¥ ={a,b} and A = (S, s,,T,F), where:
o 5= {Saasb}y
o T'(sq,a) = Sq, T(Sq,b) = sp, T(sp,a) = sq and T'(sp,b) = sp,

o F = {{a;5}}
What is L(A)? What if A was Biichi with F = {sq, Sp}?

Exercise 2 Build a Muller automaton recognizing the following language:
¥ ={a,b}, L=(a+b)"a"



Closure Properties

Theorem 7 The class of Muller-recognizable languages is closed under

union, intersection and complement.

Let A = (S,s9,T,F) be a Muller automaton.
Define B = (S, 59, T,2° \ F).

We have L(B) = X“ \ L(A).



Closure Properties

Let A; = (Si, s04, T3, Fi), ¢ = 1,2 be Muller automata.

Define B = (S, sg,T, F) where:
o S = Sl X SQ,

® 50 = (50,1,502),
o T((s1,82),a) = (T(s1,a),T(s2,a))
o F={{(s1,8)), - s (skssi)} | {s1,...,spt € Fror{s|,...,s,} € Fa}

We have L(B) = L(A1) U L(As).

For intersection it is enough to set

F={{ls1,81) s s sid} [ o1, s} € Frand {sh,.. 51} € F)



Deterministic Buchi € Muller

Theorem 8 For each deterministic Biichi automaton A there exists a
Muller automaton B such that L(A) = L(B)

Let A= (S,{so}, T, F) be a deterministic Biichi automaton.

Define B = (5,50, T,{G € 2° | GNF # (})



Muller € Non-deterministic Buchi

Theorem 9 For each Muller automaton A there exists a
non-deterministic Buichi automaton B such that L(A) = L(B).

Let A = (S,s9,T,F) be a Muller automaton, with F = {Fy,..., F,}.

Then B simulates A and guesses the accepting set Fj.

We introduce finite memory to accumulate F; states. The Biichi

automaton guesses when all the states outside Fj are finished.

When the memory is full we reset it to (), to ensure that we see F; states

again and again.



Muller € Non-deterministic Buchi

Define the Biichi automaton B = (Spg, sg, 15, Fg) where:
e Sp=SU(Sx2°x{1,...,n})
e Fip={(s,0,i) | se S, ie{l,....,n}}
e T'p is defined as follows:
— (s,a,t) € Tp and (s, a, (t,0,i)) € Tp if T(s, ) =t
— ((s,Q,1),a, (t,QU{t}, i) €e Tp if T(s,a) =t and Q U {t} C F;
— ((5,Q,1),a, (t,0,1)) €e Tg if T(s,a) =t and Q U {t} = F;

Now we prove that L(A) = L(B).



Characterization of Muller-recognizable languages

A language L C X% is Muller-recognizable iff L is a Boolean combination
— > S
of sets W, W C ¥* recognizable, i.e. L =], (ﬂ] Wi N (3% \ Wzk))

—
“<” Any set W;; is recognized by a deterministic Biichi automaton, hence

also by a Muller automaton.
“=" Let A= (S,sp,T,F) be a Muller automaton recognizing L.

Let A, = (5,s0,T,{q}), ¢ €S, and W, = L(4,).

L = UQGF (ﬂqu M—/; 2 ﬂqES\Q(Ew \ Wq))



Rabin Word Automata

Let ¥ = {a,b,...} be a finite alphabet.

Definition 2 A Rabin automaton over ¥ is A = (S, sg, T, )), where:
e S 1s the finite set of states
e sy €S is the initial state
o T:5 x X+ S is the transition table

o O ={(Ny,Pi),...,(Ng, Pr)} is the set of accepting pairs, N;, P; C S.

Run 7 of A is said to be accepting iff
inf(7) N NV; =0 and inf(7w) N P; # ()

for some 1 <1 < k.



Exercises

Exercise 3 Let ¥ = {a,b}. Write down a Rabin automaton for the

following languages:
1. L =A{w | a occurs infinitely often and b occurs finitely often in w}

2. L ={w | a occurs finitely often and b occurs infinitely often in w}



From Rabin to Muller

Given a Rabin automaton A = (S, sg, T, ()), there exists a Muller
automaton B such that L(A) = L(B)

Let Q = {(N1,P1),...,(Ng, Pg)}.

Let A; = (S,s0,T, P;) and B; = (S, s, T, N;) be DFA.

k
£(4) = | (c(a) n =\ £(B))

1=1



From Rabin to Muller (a constructive approach)

Given a Rabin automaton A = (5, sg, T, {2), such that
Q={(N,P1),...,{(Ng, Py}
let B = (S, sg,T,F) be the Muller automaton, where

F={FCS|FNN;,=0and FNP; # () for some 1 <7<k}

Exercise 4 Let A = (S,s0,T,{Q1,...,Q:}) be a Muller automaton.
Consider the Rabin automaton A" = (S, so, T, Q) where

() = {(S\Q17Q1>7'°'7(S\Qt7Qt)}
Give an example of A such that L(A) # L(A).



From Muller to Rabin

Given a Muller automaton A = (5, sg, T, F), there exists a Rabin
automaton B such that L(A) = L(B)

Let 7 ={Q1,..., Qx}

Let B = (5, s;,T",Q)) where:
o S/ =201 x .. x29 x§
[ 56: <@,...,@,So>



From Muller to Rabin

o T'((S1,...,5k,8),a) =(5],...,95},s") where:
— s =T(s,a)
- SI=0ifS;=Q;, 1 <i<k
- Si=Su{sHNQi, 1<i<k

® Pi:{<81,...,si,...,sk,8>‘S@ZQi},lgiSk

o Ni:{<51,...,si,...,sk,8> ‘ SQ/Qi},lSiSk



Exercises

Exercise 5 Build a Rabin automaton for the language: 3 = {a, b},

L ={w | if a occurs infinitely often then b occurs infinitely often in w}



The Big Picture

20(n logn)



w-Regular Languages

It X CX*andY CX¥

XY = {ay|lzxeX, yeY}ed”
X¥ = Axox1... | ®o,71,... € X \ {€}}
X* = X"uUuX®
The class of w-reqular languages R°° () is the smallest class of languages
L C X:°° such that:
e ) € R®(X) and {a} € R*(X), for all a € X
o if XY € R®(X) then X UY € R®(X)
o foreach X C¥X*and Y C ¥, if X|Y € R*®(X) then XY € R*(X)
o for each X C ¥* if X € R°(X) then X*, X“ € R®(X)



Star Free w-Languages

The class of star-free w-languages is the smallest class SF*°(X) of

languages L € X* such that:
e ). {a} € SF>®(X), a e X
¢ if XY € SF>®(X) then XUY, X € SF®(X)
o if X CY* X eSF(X), Y e SF*) then XY € SF*(X)

Example 1
o if B C X, then X*BX" 1is star-free

o if X ={a,b}, then (ab)¥ = bX¥ U X*aad® U X*bbXw is star-free



The Big Picture

— \
SF FOL

Schutzenberger’s
Theorem

AP



