
Obligation and Reactivity Games, Tree Automata

Hierarchy

Reachability Safety

Obligation: Staiger-Wagner, Weak-Parity

Recurrence: Büchi Persistence: co-Büchi

Reactivity: Muller, Parity

1.

2.

3.

4.

Obligation Games

We consider games where the winning condition for Player 0 (on the

play) is

◮ a Boolean combination of reachability conditions

◮ equivalently: a condition on the set Occ

Standard form: Staiger-Wagner winning condition F = {F1, . . . , Fk}

Player 0 wins play ρ iff Occ(ρ) ∈ F .

We call these games obligation games (or Staiger-Wagner games).

Example

S = {s1, s2, s3} F = {{s1, s2, s3}}

s2s1 s3

No winning strategy is positional.

There is a finite-state winning strategy.

Weak Parity Games

Method for solving Staiger-Wagner games:

1. Solve weak parity games.

2. Reduce Staiger-Wagner games to weak parity games.

A weak parity game is a pair (G, p), where

◮ G = (S, S0, E) is a game graph and

◮ p : S → {0, . . . , k} is a priority function mapping every state in S

to a number in {0, . . . , k}.

A play ρ is winning for Player 0 iff the minimum priority occurring in

ρ is even: min
s∈Occ(ρ) p(s) is even

Example

3

2 13

2 1

0

Weak Parity Games

Theorem

For a weak parity game one can compute the winning regions W0, W1

and also construct corresponding positional winning strategies.

Proof.

Let G = (S, S0, E) be a game graph, p : S → {0, . . . , k} a priority

function. Let Pi = {s ∈ S | p(s) = i}.

First steps if P0 6= ∅: We first compute A0 = Attr0(P0), clearly from

here Player 0 can win.

In the rest game, we compute A1 = Attr1(P1 \A0) from here Player 1

can win.

General Construction

Aim: Compute A0, A1, . . . Ak

Let Gi be the game graph restricted to S \ (A0 ∪ . . . Ai−1).

AttrGi

0 (M) is the 0-attractor of M in the subgraph induced by Gi

A0 := Attr0(P0)

A1 := AttrG1

1 (P1 \ A0)

for i > 1 :

Ai :=

AttrGi

0 (Pi \ (A0 ∪ .. ∪Ai−1)) if i is even

AttrGi

1 (Pi \ (A0 ∪ .. ∪Ai−1)) if i is odd

Correctness

Correctness Claim:

W0 =
⋃

i even
Ai and W1 =

⋃

i odd

Ai

and the union of the corresponding attractor strategies are positional

winning strategies for the two players on their respective winning

regions.

Prove by induction on j = 0, . . . , k the following:

⋃

i=0..j,i even
Ai ⊆ W0 and

⋃

i=1..j,i odd

Ai ⊆ W1

Correctness (cont.)

Base:

◮ i=0: A0 = Attr0(P0) ⊆ W0

◮ i=1: A1 = AttrG1

1 (P1 \ A0) ⊆ W1

Induction step:

◮ i even: Consider play ρ starting Ai that complies to attractor

strategy.

◮ Case 1: ρ eventually leaves Ai to some Aj (from a Player-1 state),

which j < i and even, then Player 0 wins by induction hypothesis.

◮ Case 2: ρ visits Pi, then we need to show that ρ visits only states

with p(s) ≥ i. Consider a state s ∈ Ai that visits Pi, then

◮ if s ∈ S0, then not all edges lead to states with lower priority,

otherwise s ∈ Aj for some j < i. Contradiction.

Correctness (cont.)

◮ Case 2 (cont.):

◮ if s ∈ S1, then all edges lead to states with priority ≥ i. Any edge

to a lower priority must lead to Aj with even j (Case 1). If there

were edges to states s′ with priority j < i and j odd, then s′

would already be in Aj . Contradiction.

◮ i odd: switch players

Obligation/Staiger-Wagner to Weak-Parity Games

◮ How to translate a Staiger-Wagner automaton to Weak-Parity

automaton?

◮ Idea: record visited states during a run

◮ Record set: R ⊆ S

◮ Question: How to give priorities?

Record Sets and Priorities

Assume automaton with states {s0, s1, s2}.

Consider possible record sets:

∅

{s0} {s1} {s2}

{s0, s1} {s1, s2}{s0, s2}

{s0, s1, s2}

Assume the following run s1, s0, s1, s0, s2, ... and the acceptance

condition F = {{s0, s1}, {s0, s1, s2}}. How to assign priorities?

Record Sets and Priorities

F = {{s0, s1}, {s0, s1, s2}}. How would you assign priorities?

∅

{s0} : 5 {s1} : 5 {s2} : 5

{s0, s1} : 2 {s1, s2} : 3{s0, s2} : 3

{s0, s1, s2} : 0

d.c.

4 or 5

2 or 3

0 or 1

Idea of Game Reduction

We want to solve Staiger-Wagner games. We use a reduction to weak

parity games (and the positional winning strategies of weak parity

games).

Reduction will transform a game (G,φ) into a game (G′, φ′) such that

usually

◮ G′ is (usually) larger than G

◮ φ′ is simpler than φ (so the solution of (G′, φ′) is simpler than

that of (G,φ))

◮ from a solution of (G′, φ′) we can construct a solution of (G,φ).

Concrete application: Transform Staiger-Wagner game into a weak

parity game over a larger graph (from S proceed to S × 2S)

Game Reduction

Let G = (S, S0, E) and G′ = (S′, S′
0, E

′) be game graphs with winning

conditions φ and φ′, respectively.

(G,φ) is reducible to (G′, φ′) if:

1. S′ = S ×M for a finite set M and S′
0 = S0 ×M

2. Each play ρ = s0s1 . . . over G is translated into a play

ρ′ = s′0s
′
1 . . . over G′ by

◮ a function g : S → S ×M (marks the beginning of ρ′).

◮ for all states (s,m) ∈ S ×M in G′ and all states s′ ∈ S in G, if

there exists an edge (s, s′) ∈ E, then there is a unique m′ with

((s,m), (s′,m′)) ∈ E′

◮ for each edge ((s,m), (s′,m′)) ∈ E′ in G′, there is an edge

(s, s′) ∈ E in G

3. For all plays ρ and ρ′ according to 2.: ρ ∈ φ iff ρ′ ∈ φ′

Application of Game Reduction

Theorem

Suppose (G,φ) is reducible to (G′, φ′) with extension set M , initial

function g, and G and G′ defined as before. Then, if Player 0 wins in

(G′, φ′) from g(s) with a memoryless winning strategy, then Player 0

wins in (G,φ) from s with a finite-state strategy.

Idea: Given a memoryless winning strategy f : S′
0 → S′ from g(s) for

Player 0 in (G′, φ′), we can construct a strategy automaton

A = (M,m0, δ, λ) for Player 0 in (G,φ).

Obligation/Staiger-Wagner Games

Theorem

Given a Staiger-Wagner game (G,φ), one can compute the winning

regions of Player 0 and 1 and corresponding finite state strategies.

Proof.

We can apply game reduction with (G′, φ′) as follows:

G′ := (S′, S′
0, E

′)

S′ := S × 2S

((s,R), (s′, R′)) ∈ E′) iff (s, s′) ∈ E,R′ = R ∪ {s′}

g(s) = (s, {s})

p((s,R)) := 2 · |S| −

2 · |R| if R ∈ φ

2 · |R| − 1 if R 6∈ φ

Hierarchy

Reachability Safety

Obligation: Staiger-Wagner, Weak-Parity

Recurrence: Büchi Persistence: co-Büchi

Reactivity: Muller, Parity

1.

2.

3.

4.

Parity Games

A Parity game is a pair (G, p), where

◮ G = (S, S0, E) is a game graph and

◮ p : S → {0, . . . , k} is a priority function mapping every state in S

to a number in {0, . . . , k}.

A play ρ is winning for Player 0 iff the minimum priority visited

infinitely often in ρ is even: min
s∈Inf(ρ) p(s) is even.

Parity Games

Theorem

1. Parity games are determined (i.e., each state belongs to W0 or

W1), and the has a positional winning strategy.

2. Over finite graphs, the winning regions and winning strategies of

the two players can be effectively computed.

Overview

We will show two proofs:

◮ One for general (even infinite) game graph

◮ One constructive for finite game graphs to establish effectiveness.

Proof 1

Given G = (S, S0, E) with priority function p : S → {0, . . . , d} and let

Pi = {s ∈ S | p(s) = i}. We proceed by induction on the number of

priorities.

◮ Base case: we either have an even or an odd priority

Proof 1

Given G = (S, S0, E) with priority function p : S → {0, . . . , d} and let

Pi = {s ∈ S | p(s) = i}. We proceed by induction on the number of

priorities

◮ Base case: we either have an even or an odd priority

◮ Induction step: we assume that the minimum priority k is even

(otherwise switch the roles of players 0 and 1 below).

Let Π1 be the set of vertices from which player 1 has a positional

winning strategy.

Show that from each vertex in S \ Π1, player 0 has a positional

winning strategy.

Proof 1: Induction step

Consider the subgame with vertex set S \ Π1. Then, S \ Π1 defines a

subgame. Why?

◮ Case 1: S \ Π1 does not contain the minimal priority k.

Induction hypothesis applies.

◮ Case 2: S \ Π1 contains vertices of minimal (even) priority.

Then, S \ (Π1 ∪Attr0(Pk \ Π1)) defines a subgame

Proof 1: Induction step

Player 0 can guarantee that starting from a vertex in S \Π1 the play

remains there.

Either the play stays in S \ (Π1 ∪Attr0(Pk \Π1)) from some point on,

or it visits Attr0(Pk \ Π1) infinitely often.

In the first case player 0 wins by induction hypothesis with a

positional strategy, in the second case by infinitely many visits to the

lowest (even) priority, also with a positional strategy.

Altogether: Player 0 wins from each vertex in S \Π1 with a positional

strategy.

Proof 2

Given G = (S, S0, E) with S finite and priority function

p : S → {0, . . . , d}. We proceed by induction on the number of states

denoted by n.

◮ Base case: we either have one Player-0 or Player-1 state with a

selfloop (Note that every state in a game has at least one

outgoing edge). Then the priority of the state determines if

S = W0 or S = W1.

◮ Induction step: Let Pi = {s | p(s) = i} be the set of states with

priority i. Assume P0 6= ∅, otherwise assume P1 6= ∅ and switch

the roles of Players 0 and 1 below. Finally, if P0 = P1 = ∅

decrease every priority by 2.

Proof (induction step cont.)

Choose s ∈ P0 and let X = Attr0({s}). Note that S \X is a subgame

with < n states.

The induction hypothesis gives a partition of S \X into winning

regions U0 and U1 for Player 0 and 1, respectively, and corresponding

positional winning strategies.

◮ Case 1: Player 0 can guarantee a transition from s to U0 ∪X,

i.e., if s ∈ S0, then there exists s′ ∈ U0 ∪X such that (s, s′) ∈ E

or if s ∈ S1, then for all (s, s′) ∈ E, s′ ∈ U0 ∪X holds.

Claim:

(i) U0 ∪X ⊆ W0

(ii) U1 ⊆ W1.

Proof (Case 1 cont.)

The positional strategy for Player 0 on U0 ∪X is:

1. On U0 play according to the positional strategy given by the

induction hypothesis

2. On X (= Attr0({s})) play according to the attractor strategy.

Then eventually reach s

3. From s “move back” to U0 ∪X (by the assumption of Case 1).

For Player 1 use the positional strategy on U1 given by the induction

hypothesis.

Proof of claim: (ii) is clear, since starting in U1 Player 1 can

guarantee that the play remains in U1. For (i), the play remains in

U0 ∪X if the strategy for state s is followed. If the play eventually

remains in U0, then Player 0 wins by induction hypothesis, otherwise

the play passes through s infinitely often, which is winning as well.

Proof (Case 2)

◮ Case 2: Player 1 can guarantee a transition to U1 from s, i.e., if

s ∈ S0, then all edges (s, s′) ∈ E lead to U1 (s′ ∈ U1), and if

s ∈ S1, then there exists s′ ∈ U1 such that (s, s′) ∈ E.

Let Y = Attr1(U1), then s ∈ Y and S \ Y is a subgame with < n

states. The induction hypothesis gives winning region V0 and V1

and corresponding positional winning strategies.

Claim:

(i) V0 ⊆ W0

(ii) V1 ∪ Y ⊆ W1.

Proof of claim: (i) is clear, since Player 0 can guarantee to stay

within V0. For (ii), for all states in Y , Player 1 can guarantee to

move to U1 and stay there. From t ∈ V1 Player 0 can either move

to Y or stay in V1. Both choices are winning for Player 1.

Example

1 0 3

2 1 2

Recap

Winning conditions are defined over Occ and Inf.

Occ(ρ) Inf(ρ)

Reachability/Guarantee game Büchi game

Safety game co-Büchi game

Weak-parity game Parity game

Obligation/Staiger-Wagner game Muller game

Recap

How did we solve those games?

Game Solution

Reachability games Attractor + Attractor Strategy

Safety games like Reachability games

Büchi games Recurrence set + Extended Attractor Strategy

co-Büchi games like Büchi games

Weak-parity games Alternation between Attr0 and Attr1

Obligation games Reduction to Weak-parity games + record sets

Parity games Recursive algorithm

Games and Tree Automata

Muller Games

Given a game graph G = (S, S0, E) and a Muller condition F ⊆ P(S),

then a play ρ is winning for Player 0 if Inf(ρ) ∈ F .

Recall, in Staiger-Wagner games, we had Occ(ρ) ∈ F .

Example

Player 0 wins iff the number of states in S0 = {s1, s2, s3, s4} visited

infinitely often is equal to the lowest index of the states in

S1 = {t1, t2, t3, t4} visited infinitely often.

s1

s2

s3

s4

t1

t2

t3

t4

Winning condition in Muller form: F ∈ F iff mini(ti ∈ F) = |F ∩ S0|.

Record the Past

For simplicity, we record only the s-states.

Visited letter Record set

s1 s1

s3 s1s3

s3 s1s3

s4 s1s3s4

s2 s1s2s3s4

s4 s1s2s3s4

s3 -”-

s4 -”-

s4 -”-

Latest Appearance Record

Visited letter Record set LAR

s1 s1 s1s2s3s4(1)

s3 s1s3 s3s1s2s4(3)

s3 s1s3 s3s1s2s4(1)

s4 s1s3s4 s4s3s1s2(4)

s2 s1s2s3s4 s2s4s3s1(4)

s4 s1s2s3s4 s4s2s3s4(2)

s3 -”- ..

s4 -”- ..

s4 -”- ..

Example

Assume the states s3 and s4 are repeated infinitely often but not

s1, s2. Then:

◮ the states s1 and s2 eventually arrive at the last two positions

and are not touched any more, so finally the hit appears at most

on positions 1 and 2

◮ position 2 is hit again and again; if only position 1 is hit from

some point onwards, only the same letter would be chosen from

there onwards (and not two states s3 and s4 as assumed)

Example

LAR-strategy for Player 0:

During play update and use the LAR as follows:

◮ shift the letter of the current state to the front

◮ record the position from where the current letter was taken

◮ move to the state whose index is the current hit position

This is a finite-state winning strategy with n! · n memory states if n

letter states and n number states occur in the game graph.

From Muller to Parity Games

Theorem

For a game (G,φ) with G = (S, S0, E) and Muller winning condition φ

(using the set F ⊆ 2S), there is a game (G′, φ′) with G′ = (S′, S′
0, E

′)

and parity winning condition φ′ such that (G,φ) ≤ (G′, φ′)

Proof.

Assume S = {1, . . . n}. Define S′ := LAR(S)

LAR(S) is the set of pairs ((i1, . . . in), h) consisting of a permutation

of 1, . . . n and a number h ∈ {1, . . . n}.

Construction

Initialisation: For i ∈ S set

g(i) = ((i, i + 1, . . . , n, 1, . . . , i− 1), 1)

Definition of E′: Introduce an edge from ((i1 . . . in), h) to

((imi1 . . . im−1im+1 . . . in),m) if (i1, im) ∈ E

Construction

Initialisation: For i ∈ S set

g(i) = ((i, i + 1, . . . , n, 1, . . . , i− 1), 1)

Definition of E′: Introduce an edge from ((i1 . . . in), h) to

((imi1 . . . im−1im+1 . . . in),m) if (i1, im) ∈ E

How should we assign the priorities?

Record Sets and Priorities

Recall, priorities in the reduction of Staiger-Wagner to Weak-Parity.

F = {{s0, s1}, {s0, s1, s2}}.

∅

{s0} : 5 {s1} : 5 {s2} : 5

{s0, s1} : 2 {s1, s2} : 3{s0, s2} : 3

{s0, s1, s2} : 0

d.c.

4 or 5

2 or 3

0 or 1

Construction(2)

Now, we are only interested in states visited infinitely often. The hit

value tells as how many states are visited infinitely often.

E.g., if s0 and s1 are visited infinitely often, we see from some point

on only the LARs: (s0s1 . . . , 1),(s0s1 . . . , 2), (s1s0 . . . , 1), (s1s0 . . . , 2).

If F = {{s0, s1}}, then we want plays that visit only (s0s1 . . . , 1) or

(s1s0 . . . , 1) from some point on to be losing. So, the priorities

assigned to (s0s1 . . . , 2) or (s1s0 . . . , 2) need to override the priorities

of (s0s1 . . . , 1) or (s1s0 . . . , 1).

Construction(2)

Now, we are only interested in states visited infinitely often. The hit

value tells as how many states are visited infinitely often.

E.g., if s0 and s1 are visited infinitely often, we see from some point

on only the LARs: (s0s1 . . . , 1),(s0s1 . . . , 2), (s1s0 . . . , 1), (s1s0 . . . , 2).

If F = {{s0, s1}}, then we want plays that visit only (s0s1 . . . , 1) or

(s1s0 . . . , 1) from some point on to be losing. So, the priorities

assigned to (s0s1 . . . , 2) or (s1s0 . . . , 2) need to override the priorities

of (s0s1 . . . , 1) or (s1s0 . . . , 1).

Priorities p : LAR(S) → {1, . . . 2n}

p((i1 . . . in, h)) = 2n−

2h− 1 if {i1 . . . ih} 6∈ F

2h if {i1 . . . ih} ∈ F

Proof of Correctness

Lemma

Given a play ρ in (G,φ) and its counterpart ρ′ in (G′, φ′), then

Inf(ρ) = F with |F | = m iff

1. in ρ′ the hit value is > m only finitely often

2. in ρ′ the hit-segment is equal to F infinitely often

Proof (forward).

Let Inf(ρ) = F and |F | = m. Choose k and k′ > k s.t. forall j > k

ρ(j) ∈ F and {ρ(k), . . . , ρ(k′ − 1)} = F .

By construction of ρ′, the F -states F = {i1, . . . , im} are at the

beginning of ρ′(k′) and for every k′′ > k′ the hit is always ≤ m (1).

Proof of Correctness

Proof (forward cont.)

For the hit equal to m the hit-segment must be the set F . So, for (2)

it suffices to show that the hit is infinitely often equal to m. Assume

the hit is only finitely often equal to m, then eventually the

LAR-entries im, im+1, . . . , in are not changed anymore (and so, these

states are not visited anymore). Then, |Inf(ρ)| < m, which contradicts

Inf(ρ) = F with |F | = m.

Proof (backwards).

Assume (1) and (2) holds. It follows from (1), that the LAR-entries

im+1, . . . , in in ρ′ are fixed from some point j0 onwards. So, the states

im+1, . . . , in are not visited anymore after j0. From, (2) it follows that

im+1, . . . , in are not in F (i.e., Inf(ρ) ⊆ F).

Proof of Correctness

Proof (backwards cont.)

For F ⊆ Inf(ρ), assume q ∈ F but q 6∈ Inf(ρ).

Since q ∈ F and hit-segment = F infinitely often (2), we know that

q ∈ hit-segment infinitely often. Furthermore, since |hit-segment| ≤ m

from some point on (1), it follows that from some point on the index i

of q in the hit segment is ≤ m. From q 6∈ Inf(ρ) it follows that from

some point onwards q can only stay in the same position in the LAR

or go to the right and its final position i is > m. Contradiction.

Example

3

1

2

0

ρ ∈ Win ↔ {0, 2} ⊆ Inf(ρ)

F = {{0, 2}, {0, 1, 2}, {0, 1, 2, 3}}

Back to Tree Automata

Muller tree automaton

Recall, a Muller tree automaton over Σ is A = (S, s0, T,F), where

◮ S is a finite set of states,

◮ s0 ∈ S is an initial state,

◮ T : S × Σ → 2S×S is a transition function

◮ F ⊆ 2S is the set of accepting sets.

Given an input tree t, a run π of A over t is accepting iff for every

path σ in t:

Inf(π|σ) ∈ F

Parity tree automaton

A Parity tree automaton over Σ is A = (S, s0, T, p), where

◮ S is a finite set of states,

◮ s0 ∈ S is an initial state,

◮ T : S × Σ → 2S×S is a transition function

◮ p : S → {0, . . . k} is a priority function.

Given an input tree t, a run π of A over t is accepting iff for every

path σ in t:

min
s∈Inf(π|σ)

p(s) is even

Example

A parity tree automaton over Σ = {a, b} that recognizes all binary

trees

T = {t ∈ T ω(Σ) | each path through t has only finitely many b}

◮ S = {qa, qb}

◮ I = {qa, qb}

◮ T (qa, a) = {(qa, qa)}, T (qb, a) = {(qa, qa)}

T (qa, b) = {(qb, qb)}, T (qb, b) = {(qb, qb)}

◮ p(qa) = 2, p(qb) = 1

Parity Automata ↔ Muller Automata

Theorem

1. For any parity tree automaton one can construct an equivalent

Muller tree automaton.

2. For any Muller tree automaton one can construct an equivalent

parity tree automaton.

1. Given a parity tree automaton A = (S, s0, T, p) keep states and

transitions and define F as follows:

F = {F ∈ 2S | min
s∈F

p(s) is even}

Parity ↔ Muller

2. Copy the simulation of Muller games by parity games. Given a

Muller tree automaton with state set S use for the parity tree

automaton the state set LAR(S) and define the transition according

to the LAR update rule.

Allow transition

((s1 . . . sn, i), a, (s
′
1 . . . s

′
n, j), (s

′′
1 . . . s

′′
n, k))

for transition (s1, a, s
′
1, s

′′
1) of the Muller automaton, where

◮ (s′1 . . . s
′
n, j) is the LAR update for a visit to s′1 and

◮ (s′′1 . . . s
′′
n, k) is the LAR update for a visit to s′′1.

Define priorities as in the simulation of Muller games by parity games.

Tree Automata and Games

With any parity tree automaton A = (S, s0, T, p) over Σ and any

input tree t ∈ T ω(Σ), we can associate a parity game between

◮ Player Automaton and

◮ Player Pathfinder

that proceeds as follows:

◮ First, Automaton picks a transition in T (from s0) which

matches the labels of the root of t

◮ Then Pathfinder decides on a direction (left or right) to proceed

to a son of the root

◮ Then Automaton chooses again a transition for this node (and

compatible with the first transition)

◮ Then Pathfinder reacts again by branching left or right...

Tree Automata and Games

Such a play give a sequence of transitions (and hence a sequence of

states in S) built up along a path chosen by Pathfinder.

Automaton wins the play iff the sequence of states satisfies the parity

condition.

Given a parity tree automaton A = (S, s0, T, p) over Σ and an input

tree t, the game graph GA,t = (S0 ∪ S1, S0, E) is defined by

◮ S0 = {(w, t(w), s) | w ∈ {0, 1}∗, t(w) ∈ Σ, s ∈ S0},

◮ S1 = {(w, t(w), τ) | w ∈ {0, 1}∗, t(w) ∈ Σ, τ ∈ T},

and the edges relation E is such that successive game positions are

compatible with the transitions in A on t.

The priority of a triple u = (w, t(w), s) or (w, t(w), (s, t(w), s′ , s′′)) is

the priority p(s). (Standard initial position: (ǫ, t(ǫ), s0))

Tree Automata and Games

Lemma

The tree automaton A accepts an input tree t iff in the parity game

over GA,t there is a winning strategy for player Automaton from the

initial position (ǫ, t(ǫ), s0).

Proof.

A successful run of A on t yields a winning strategy for Automaton in

the parity game over GA,t: Along each path the suitable choice of

transitions is fixed by the run.

Conversely, a winning strategy for Automaton over GA,t clearly

provides a method to build up a successful run of A on t. Just apply

this winning strategy along arbitrary paths.

Summary: Tree Automaton

◮ Tree Automata can be viewed as games between Automaton and

Pathfinder

◮ Parity and Muller tree automata can be reduced to each other

◮ (Same holds for Rabin/Streett, Parity, and Muller tree automata)

◮ We showed closure properties of Muller tree automaton (union,

intersection, projection)

◮ Missing: complementation

Complementation of Parity Tree Automaton

We will show basic idea.

◮ To complement a given automaton A means to construct an

automaton B s.t.

t 6∈ A ↔ t ∈ B

◮ Due to the run lemma, complementation means to conclude from

the non-existence of a winning strategy of Player Automaton in

GA,t that there exists a winning strategy of Automaton in GB,t.

Proof has two steps:

1. use determinacy of parity games to show that if Automaton has

no winning strategy over GA,t, then Pathfinder has a winning

strategy over GA,t (from (ǫ, t(ǫ), s0))

2. Convert Pathfinder’s strategy into an Automaton strategy.

Complementation of Parity Tree Automaton

Theorem

For any parity tree automaton A over Σ, one can build a Muller tree

automaton (and therefore a parity tree automaton) B over Σ that

recognizes T ω(Σ) \ L(A)

Proof.

From Step 1 (determinacy of parity games), we know there exists a

(memoryless) winning strategy f : S1 → {0, 1} for Player Pathfinder.

f : {0, 1}∗ × Σ× T → {0, 1}

decompose f into a family of strategies parameterized by w ∈ {0, 1}∗

fw : Σ× T → {0, 1}

Complementation of Parity Tree Automaton

Let I be the set of all possible local instructions i : Σ× T → {0, 1}.

Then, f can be represented as I-labeled binary tree s with s(w) = fw.

Let s · t be the corresponding (I × Σ)-labeled tree

s · t(w) = (s(w), t(w)) for w ∈ {0, 1}∗.

Since f exists, we know there is an I-labeled tree s s.t. for all

sequences τ0τ1 . . . of transitions chosen by Automaton and for all

paths (in path for the unique) π ∈ {0, 1}∗, the generated state

sequence violates the parity condition.

Intuitively, f tells the “new” automaton for every tree t 6∈ L(A) which

path to track for a given transition sequences in order to

reject/accept the tree t.

Complementation of Parity Tree Automaton

So, we know:

1. There exists an I-labeled tree s such that s · t satisfies

2. for all π ∈ {0, 1}ω

3. for all τ0τ1 · · · ∈ Tω

4. if the sequence s|π of local

instructions applied to the sequence of tree labels t|π and

the sequence τ0τ1 . . . produces the path π, then the state

sequence determined by τ0τ1 . . . violates the parity

condition.

Complementation of Parity Tree Automaton

◮ Condition 4 is a property of ω-words over I × Σ× T × {0, 1},

which can be checked by a Muller word automaton M4.

◮ Condition 3 is a property of ω-words over I × Σ× {0, 1} checked

by M3, which results from M4 by universally quantifying T

(negate, project, negate).

◮ Condition 2 is a property of (I × Σ)-labeled trees, which can be

checked by a Muller tree automaton M2 that simulates M3 along

each path.

◮ Condition 1, apply nondeterminism, a Muller tree automaton B

can be built by guessing a tree s on the input tree t and running

M2 on s · t.

