
Automata on Infinite Words



Definition of Büchi Automata

Let Σ = {a, b, . . .} be a finite alphabet.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple

A = 〈S, I, T, F 〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ× S is a transition relation,

• F ⊆ S is a set of final states.



Acceptance Condition

A run of a Büchi automaton is defined over an infinite word w : α1α2 . . .

as an infinite sequence of states π : s0s1s2 . . . such that:

• s0 ∈ I and

• (si, αi+1, si+1) ∈ T , for all i ∈ N.

inf(π) = {s | s appears infinitely often on π}

Run π of A is said to be accepting iff inf(π) ∩ F 6= ∅.

The language of A, denoted L(A), is the set of all words accepted by A.

A language L ⊆ Σω is ω-recognizable if there exists a Büchi automaton A

such that L = L(A).



Examples

Let Σ = {0, 1}. Define Büchi automata for the following languages:

1. L = {α ∈ Σω | 0 occurs in α exactly once}

2. L = {α ∈ Σω | after each 0 in α there is 1}

3. L = {α ∈ Σω | α contains finitely many 1’s}

4. L = (01)∗Σω

5. L = {α ∈ Σω | 0 occurs on all even positions in α}



Büchi Characterization Theorem

Lemma 1 If L ⊆ Σ∗ is a recognizable language, there exists a DFA

A = 〈S, {s0}, T, F 〉 such that s0 has no incoming transitions and

L = L(A).

Given W ⊆ Σ∗, define Wω = {w0w1 . . . | wi ∈ W, i ≥ 0}

Theorem 1 Let W,V ⊆ Σ∗ be recognizable languages. Then the

languages Wω and V ·Wω are ω-recognizable.



Büchi Characterization Theorem

Let A = 〈S, I, T, F 〉 be a Büchi automaton and s, s′ ∈ S be two states.

Let Ws,s′ = {w ∈ Σ∗ | s
w
−→ s′}.

The language Ws,s′ ⊆ Σ∗ is recognizable, for any s, s′ ∈ S.

Theorem 2 An ω-langage L ⊆ Σω is ω-recognizable iff L is a finite union

of ω-languages V ·Wω, where V,W ⊆ Σ∗ are recognizable languages.

Proof idea: L =
⋃

s∈I,s′∈F Ws,s′ ·W
ω
s′,s′

Corollary 1 Any non-empty Büchi-recognizable language contains an

ultimately periodic word of the form uvvv . . ..



The Emptiness Problem

Theorem 3 Given a Büchi automaton A, L(A) 6= ∅ iff there exist

u, v ∈ Σ∗, |u|, |v| ≤ ||A||, such that uvω ∈ L(A).

In practical terms, A is non-empty iff there exists a state s which is

reachable both from an initial state and from itself.

Q: Is the membership problem decidable for Büchi automata?



Closure Properties

Closure under union and projection are like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex

result.

Deterministic Büchi automata are not closed under complement.



Closure under Intersection

Let A1 = 〈S1, I1, T1, F1〉 and A2 = 〈S2, I2, T2, F2〉

Build A∩ = 〈S, I, T, F 〉:

• S = S1 × S2 × {1, 2, 3},

• I = I1 × I2 × {1},

• the definition of T is the following:

– ((s1, s2, 1), a, (s
′
1, s

′
2, 1)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s1 6∈ F1

– ((s1, s2, 1), a, (s
′
1, s

′
2, 2)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s1 ∈ F1

– ((s1, s2, 2), a, (s
′
1, s

′
2, 2)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s′1 6∈ F2

– ((s1, s2, 2), a, (s
′
1, s

′
2, 3)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2 and s′1 ∈ F2

– ((s1, s2, 3), a, (s
′
1, s

′
2, 1)) ∈ T iff (si, a, s

′
i) ∈ Ti, i = 1, 2

• F = S1 × S2 × {3}



Deterministic Büchi Automata

ω-languages recognized by NBA ⊃ ω-languages recognized by DBA

Q: Why classical subset construction does not work for Büchi automata?

Let A = 〈S, I, T, F 〉 and Ad = 〈2S , {I}, Td, {Q | Q ∩ F 6= ∅}〉.

Let u0u1u2 . . . ∈ L(A) be an infinite word. In Ad this gives:

I
u0−→ Q1

u1−→ Q2
u2−→ . . .

where each Qi ∩ F . However this does not necessarily correspond to an

accepting path in A!



Deterministic Büchi Automata

Let W ⊆ Σ∗. Define
−→
W = {α ∈ Σω | α(0, n) ∈ W for infinitely many n}

Theorem 4 A language L ⊆ Σω is recognizable by a deterministic Büchi

automaton iff there exists a recognizable language W ⊆ Σ∗ such that

L =
−→
W .

If L = L(A) then W = L(A′) where A′ is the DFA with the same

definition as A, and with the finite acceptance condition.



Deterministic Büchi Automata

Theorem 5 There exists an ω-recognizable language that can be

recognized by no deterministic Büchi automaton.

Σ = {a, b} and L = {α ∈ Σω | #a(α) < ∞} = Σ∗bω.

Suppose L =
−→
W for some W ⊆ Σ∗.

bω ∈ L ⇒ bn1 ∈ W

bn1abω ∈ L ⇒ bn1abn2 ∈ W

. . .

bn1abn2a . . . ∈
−→
W = L, contradiction.



Deterministic Büchi Automata are not closed under complement

Theorem 6 There exists a DBA A such that no DBA recognizes the

language Σω \ L(A).

Σ = {a, b} and L = {α ∈ Σω | #a(α) < ∞} = Σ∗bω.

Let V = Σ∗a. There exists a DFA A such that L(A) = V .

There exists a deterministic Büchi automaton B such that L(A) =
−→
V

But Σω \
−→
V = L which cannot be recognized by any DBA.



Büchi Automata and S1S

Let Σ = {a, b, . . .} be a finite alphabet.

Any finite word w ∈ Σ∗ induces the infinite sets pa = {p | w(p) = a}.

• x ≤ y : x is less than y,

• s(x) = y : y is the successor of x,

• pa(x) : a occurs at position x in w

Remember that ≤ and s can be defined one from another.



Problem Statement

Let L(ϕ) = {w | mw |= ϕ}

A language L ⊆ Σω is said to be S1S-definable iff there exists a S1S

formula ϕ such that L = L(ϕ).

1. Given a Büchi automaton A build an S1S formula ϕA such that

L(A) = L(ϕ)

2. Given an S1S formula ϕ build a Büchi automaton Aϕ such that

L(A) = L(ϕ)

The Büchi recognizable and S1S-definable languages coincide



From Automata to Formulae

Let A = 〈S, I, T, F 〉 with S = {s1, . . . , sp}, and Σ = {0, 1}m.

Build ΦA(X1, . . . ,Xm) such that ∀w ∈ Σ∗ . w ∈ L(A) ⇐⇒ mw |= ΦA

ΦA(X1, . . . ,Xm) = ∃Y1 . . . ∃Yp . ΦS(~Y ) ∧ ΦI(~Y ) ∧ ΦT (~Y , ~X) ∧ ΦF (~Y )

ΦF (~Y ) = ∀x∃y . x ≤ y ∧ x 6= y ∧
∨

si∈F

Yi(y)



From Formulae to Automata

Let Φ(X1, . . . ,Xp, xp+1, . . . , xm) be a S1S formula.

Build an automaton AΦ such that ∀w ∈ Σ∗ . w ∈ L(A) ⇐⇒ [[Φ]]mw

ιw
= true

Let Φ(X1,X2, x3, x4) be:

1. X1(x3)

2. x3 ≤ x4

3. X1 = X2



From Formulae to Automata

AΦ is built by induction on the structure of Φ:

• for Φ = φ1 ∧ φ2 we have L(AΦ) = L(Aφ1
) ∩ L(Aφ2

)

• for Φ = φ1 ∨ φ2 we have L(AΦ) = L(Aφ1
) ∪ L(Aφ2

)

• for Φ = ¬φ we have L(AΦ) = L(Aφ) (requires complementation)

• for Φ = ∃Xi . φ, we have L(AΦ) = pri(L(Aφ)).



Consequences

Theorem 7 A language L ⊆ Σω is definable in S1S iff it is

ω-recognizable.

Corollary 2 The SAT problem for S1S is decidable.



Muller and Rabin Word Automata



Muller Automata

Let Σ = {a, b, . . .} be a finite alphabet.

Definition 1 A Muller automaton over Σ is A = 〈S, s0, T,F〉, where:

• S is the finite set of states

• s0 ∈ S is the initial state

• T : S × Σ 7→ S is the transition table

• F ⊆ 2S is the set of accepting sets

Notice that Muller automata are deterministic and complete by definition.



Acceptance Condition

A run of a Muller automaton is defined over an infinite word w : α1α2 . . .

as an infinite sequence of states π : s0s1s2 . . . such that:

• T (si, αi+1) = si+1, for all i ∈ N.

Let inf(π) = {s | s appears infinitely often on π}.

Run π of A is said to be accepting iff inf(π) ∈ F .

L ⊆ Σω is Muller-recognizable iff there exists a MA A such that L = L(A).



Exercises

Exercise 1 Let Σ = {a, b} and A = 〈S, sa, T,F〉, where:

• S = {sa, sb},

• T (sa, a) = sa, T (sa, b) = sb, T (sb, a) = sa and T (sb, b) = sb,

• F = {{sa, sb}}

What is L(A)? What if A was Büchi with F = {sa, sb}?

Exercise 2 Build a Muller automaton recognizing the following language:

Σ = {a, b}, L = (a+ b)∗aω



Closure Properties

Theorem 8 The class of Muller-recognizable languages is closed under

union, intersection and complement.

Let A = 〈S, s0, T,F〉 be a Muller automaton.

Define B = 〈S, s0, T, 2
S \ F〉.

We have L(B) = Σω \ L(A).



Closure Properties

Let Ai = 〈Si, s0,i, Ti,Fi〉, i = 1, 2 be Muller automata.

Define B = 〈S, s0, T,F〉 where:

• S = S1 × S2,

• s0 = 〈s0,1, s0,2〉,

• T (〈s1, s2〉, a) = 〈T (s1, a), T (s2, a)〉

• F = {{〈s1, s′1〉, . . . , 〈sk, s
′
k〉} | {s1, . . . , sk} ∈ F1 or {s′1, . . . , s

′
k} ∈ F2}

We have L(B) = L(A1) ∪ L(A2).

For intersection it is enough to set

F = {{〈s1, s
′
1〉, . . . , 〈sk, s

′
k〉} | {s1, . . . , sk} ∈ F1 and {s′1, . . . , s

′
k} ∈ F2}



Deterministic Büchi ⊆ Muller

Theorem 9 For each deterministic Büchi automaton A there exists a

Muller automaton B such that L(A) = L(B)

Let A = 〈S, {s0}, T, F 〉 be a deterministic Büchi automaton.

Define B = 〈S, s0, T, {G ∈ 2S | G ∩ F 6= ∅}〉



Muller ⊆ Non-deterministic Büchi

Theorem 10 For each Muller automaton A there exists a

non-deterministic Büchi automaton B such that L(A) = L(B).

Let A = (S, s0, T,F) be a Muller automaton, with F = {F1, . . . , Fn}.

Then B simulates A and guesses the accepting set Fi.

We introduce finite memory to accumulate Fi states. The Büchi

automaton guesses when all the states outside Fi are finished.

When the memory is full we reset it to ∅, to ensure that we see Fi states

again and again.



Muller ⊆ Non-deterministic Büchi

Define the Büchi automaton B = (SB, s0, TB , FB) where:

• SB = S ∪ (S × 2S × {1, . . . , n})

• FB = {(s, ∅, i) | s ∈ S, i ∈ {1, . . . , n}}

• TB is defined as follows:

– (s, α, t) ∈ TB and (s, α, (t, ∅, i)) ∈ TB if T (s, α) = t

– ((s,Q, i), α, (t,Q ∪ {t}, i)) ∈ TB if T (s, α) = t and Q ∪ {t} ⊂ Fi

– ((s,Q, i), α, (t, ∅, i)) ∈ TB if T (s, α) = t and Q ∪ {t} = Fi

Now we prove that L(A) = L(B).



Characterization of Muller-recognizable languages

A language L ⊆ Σω is Muller-recognizable iff L is a Boolean combination

of sets
−→
W , W ⊆ Σ∗ recognizable, i.e. L =

⋃

i

(

⋂

j

−−→
Wij ∩

⋂

k(Σ
ω \

−−→
Wik)

)

.

“⇐” Any set
−−→
Wij is recognized by a deterministic Büchi automaton, hence

also by a Muller automaton.

“⇒” Let A = 〈S, s0, T,F〉 be a Muller automaton recognizing L.

Let Aq = 〈S, s0, T, {q}〉, q ∈ S, and Wq = L(Aq).

L =
⋃

Q∈F

(

⋂

q∈Q

−→
Wq ∩

⋂

q∈S\Q(Σ
ω \

−→
Wq)

)



Rabin Word Automata

Let Σ = {a, b, . . .} be a finite alphabet.

Definition 2 A Rabin automaton over Σ is A = 〈S, s0, T,Ω〉, where:

• S is the finite set of states

• s0 ∈ S is the initial state

• T : S × Σ 7→ S is the transition table

• Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉} is the set of accepting pairs, Ni, Pi ⊆ S.

Run π of A is said to be accepting iff

inf(π) ∩Ni = ∅ and inf(π) ∩ Pi 6= ∅

for some 1 ≤ i ≤ k.



Exercises

Exercise 3 Let Σ = {a, b}. Write down a Rabin automaton for the

following languages:

1. L = {w | a occurs infinitely often and b occurs finitely often in w}

2. L = {w | a occurs finitely often and b occurs infinitely often in w}



From Rabin to Muller

Given a Rabin automaton A = 〈S, s0, T,Ω〉, there exists a Muller

automaton B such that L(A) = L(B)

Let Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉}.

Let Ai = 〈S, s0, T, Pi〉 and Bi = 〈S, s0, T,Ni〉 be DFA.

L(A) =
k
⋃

i=1

(−−−→
L(Ai) ∩ (Σω \

−−−→
L(Bi))

)



From Rabin to Muller (a constructive approach)

Given a Rabin automaton A = 〈S, s0, T,Ω〉, such that

Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉}

let B = 〈S, s0, T,F〉 be the Muller automaton, where

F = {F ⊆ S | F ∩Ni = ∅ and F ∩ Pi 6= ∅ for some 1 ≤ i ≤ k}

Exercise 4 Let A = 〈S, s0, T, {Q1, . . . , Qt}〉 be a Muller automaton.

Consider the Rabin automaton A′ = 〈S, s0, T,Ω〉 where

Ω = {(S \Q1, Q1), . . . , (S \Qt, Qt)}

Give an example of A such that L(A) 6= L(A′).



From Muller to Rabin

Given a Muller automaton A = 〈S, s0, T,F〉, there exists a Rabin

automaton B such that L(A) = L(B)

Let F = {Q1, . . . , Qk}

Let B = 〈S′, s′0, T
′,Ω′〉 where:

• S′ = 2Q1 × . . .× 2Qk × S

• s′0 = 〈∅, . . . , ∅, s0〉



From Muller to Rabin

• T ′(〈S1, . . . , Sk, s〉, a) = 〈S′
1, . . . , S

′
k, s

′〉 where:

– s′ = T (s, a)

– S′
i = ∅ if Si = Qi, 1 ≤ i ≤ k

– S′
i = (Si ∪ {s′}) ∩Qi, 1 ≤ i ≤ k

• Pi = {〈S1, . . . , Si, . . . , Sk, s〉 | Si = Qi}, 1 ≤ i ≤ k

• Ni = {〈S1, . . . , Si, . . . , Sk, s〉 | s 6∈ Qi}, 1 ≤ i ≤ k



Exercises

Exercise 5 Build a Rabin automaton for the language: Σ = {a, b},

L = {w | if a occurs infinitely often then b occurs infinitely often in w}



The Big Picture

2O(n log n)
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McNaughton



ω-Regular Languages

If X ⊆ Σ∗ and Y ⊆ Σω

XY = {xy | x ∈ X, y ∈ Y } ∈ Σω

Xω = {x0x1 . . . | x0, x1, . . . ∈ X \ {ǫ}}

X∞ = X∗ ∪Xω

The class of ω-regular languages R∞(Σ) is the smallest class of languages

L ⊆ Σ∞ such that:

• ∅ ∈ R∞(Σ) and {a} ∈ R∞(Σ), for all a ∈ Σ

• if X,Y ∈ R∞(Σ) then X ∪ Y ∈ R∞(Σ)

• for each X ⊆ Σ∗ and Y ⊆ Σ∞, if X,Y ∈ R∞(Σ) then XY ∈ R∞(Σ)

• for each X ⊆ Σ∗, if X ∈ R∞(Σ) then X∗,Xω ∈ R∞(Σ)



Star Free ω-Languages

The class of star-free ω-languages is the smallest class SF∞(Σ) of

languages L ∈ Σ∗ such that:

• ∅, {a} ∈ SF∞(Σ), a ∈ Σ

• if X,Y ∈ SF∞(Σ) then X ∪ Y,X ∈ SF∞(Σ)

• if X ⊆ Σ∗, X ∈ SF (Σ), Y ∈ SF∞(Σ) then XY ∈ SF∞(Σ)

Example 1

• if B ⊂ Σ, then Σ∗BΣω is star-free

• if Σ = {a, b}, then (ab)ω = bΣω ∪ Σ∗aaΣω ∪ Σ∗bbΣω is star-free



The Big Picture

Theorem
Schutzenberger’s

FOLSF

AP


