Automata on Infinite Words

Definition of Büchi Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

A non-deterministic Büchi automaton (NBA) over Σ is a tuple $A = \langle S, I, T, F \rangle$, where:

- S is a finite set of *states*,
- $I \subseteq S$ is a set of *initial states*,
- $T \subseteq S \times \Sigma \times S$ is a *transition relation*,
- $F \subseteq S$ is a set of *final states*.

Acceptance Condition

A *run* of a Büchi automaton is defined over an infinite word $w : \alpha_1 \alpha_2 \dots$ as an infinite sequence of states $\pi : s_0 s_1 s_2 \dots$ such that:

- $s_0 \in I$ and
- $(s_i, \alpha_{i+1}, s_{i+1}) \in T$, for all $i \in \mathbb{N}$.

 $\inf(\pi) = \{s \mid s \text{ appears infinitely often on } \pi\}$

Run π of A is said to be *accepting* iff $inf(\pi) \cap F \neq \emptyset$.

The language of A, denoted $\mathcal{L}(A)$, is the set of all words accepted by A.

A language $L \subseteq \Sigma^{\omega}$ is ω -recognizable if there exists a Büchi automaton A such that $L = \mathcal{L}(A)$.

Let $\Sigma = \{0, 1\}$. Define Büchi automata for the following languages:

1.
$$L = \{ \alpha \in \Sigma^{\omega} \mid 0 \text{ occurs in } \alpha \text{ exactly once} \}$$

2. $L = \{ \alpha \in \Sigma^{\omega} \mid \text{after each 0 in } \alpha \text{ there is 1} \}$

3. $L = \{ \alpha \in \Sigma^{\omega} \mid \alpha \text{ contains finitely many 1's} \}$

4. $L = (01)^* \Sigma^{\omega}$

5. $L = \{ \alpha \in \Sigma^{\omega} \mid 0 \text{ occurs on all even positions in } \alpha \}$

Büchi Characterization Theorem

Lemma 1 If $L \subseteq \Sigma^*$ is a recognizable language, there exists a DFA $A = \langle S, \{s_0\}, T, F \rangle$ such that s_0 has no incoming transitions and $L = \mathcal{L}(A)$.

Given $W \subseteq \Sigma^*$, define $W^{\omega} = \{w_0 w_1 \dots | w_i \in W, i \ge 0\}$

Theorem 1 Let $W, V \subseteq \Sigma^*$ be recognizable languages. Then the languages W^{ω} and $V \cdot W^{\omega}$ are ω -recognizable.

Büchi Characterization Theorem

Let $A = \langle S, I, T, F \rangle$ be a Büchi automaton and $s, s' \in S$ be two states.

Let $W_{s,s'} = \{ w \in \Sigma^* \mid s \xrightarrow{w} s' \}.$

The language $W_{s,s'} \subseteq \Sigma^*$ is recognizable, for any $s, s' \in S$.

Theorem 2 An ω -langage $L \subseteq \Sigma^{\omega}$ is ω -recognizable iff L is a finite union of ω -languages $V \cdot W^{\omega}$, where $V, W \subseteq \Sigma^*$ are recognizable languages.

Proof idea: $L = \bigcup_{s \in I, s' \in F} W_{s,s'} \cdot W_{s',s'}^{\omega}$

Corollary 1 Any non-empty Büchi-recognizable language contains an ultimately periodic word of the form uvvv...

The Emptiness Problem

Theorem 3 Given a Büchi automaton A, $\mathcal{L}(A) \neq \emptyset$ iff there exist $u, v \in \Sigma^*$, $|u|, |v| \leq ||A||$, such that $uv^{\omega} \in \mathcal{L}(A)$.

In practical terms, A is non-empty iff there exists a state s which is reachable both from an initial state and from itself.

 $\mathbf{Q}:$ Is the membership problem decidable for Büchi automata?

Closure under union and projection are like in the finite automata case.

Intersection is a bit special.

Complementation of non-deterministic Büchi automata is a complex result.

Deterministic Büchi automata are not closed under complement.

Closure under Intersection

Let $A_1 = \langle S_1, I_1, T_1, F_1 \rangle$ and $A_2 = \langle S_2, I_2, T_2, F_2 \rangle$

Build $A_{\cap} = \langle S, I, T, F \rangle$:

- $S = S_1 \times S_2 \times \{1, 2, 3\},$
- $I = I_1 \times I_2 \times \{1\},$
- the definition of T is the following:

$$-((s_1, s_2, 1), a, (s'_1, s'_2, 1)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2 \text{ and } s_1 \notin F_1$$

$$-((s_1, s_2, 1), a, (s'_1, s'_2, 2)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2 \text{ and } s_1 \in F_1$$

$$-((s_1, s_2, 2), a, (s'_1, s'_2, 2)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2 \text{ and } s'_1 \notin F_2$$

$$-((s_1, s_2, 2), a, (s'_1, s'_2, 3)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2 \text{ and } s'_1 \in F_2$$

$$-((s_1, s_2, 3), a, (s'_1, s'_2, 1)) \in T \text{ iff } (s_i, a, s'_i) \in T_i, i = 1, 2$$

• $F = S_1 \times S_2 \times \{3\}$

Deterministic Büchi Automata

 ω -languages recognized by NBA $\supset \omega$ -languages recognized by DBA

Q: Why classical subset construction does not work for Büchi automata?

Let
$$A = \langle S, I, T, F \rangle$$
 and $A_d = \langle 2^S, \{I\}, T_d, \{Q \mid Q \cap F \neq \emptyset\} \rangle$.

Let $u_0 u_1 u_2 \ldots \in \mathcal{L}(A)$ be an infinite word. In A_d this gives:

$$I \xrightarrow{u_0} Q_1 \xrightarrow{u_1} Q_2 \xrightarrow{u_2} \dots$$

where each $Q_i \cap F$. However this does not necessarily correspond to an accepting path in A!

Deterministic Büchi Automata

Let $W \subseteq \Sigma^*$. Define $\overrightarrow{W} = \{ \alpha \in \Sigma^{\omega} \mid \alpha(0, n) \in W \text{ for infinitely many } n \}$

Theorem 4 A language $L \subseteq \Sigma^{\omega}$ is recognizable by a deterministic Büchi automaton iff there exists a recognizable language $W \subseteq \Sigma^*$ such that $L = \overrightarrow{W}$.

If $L = \mathcal{L}(A)$ then $W = \mathcal{L}(A')$ where A' is the DFA with the same definition as A, and with the finite acceptance condition.

Deterministic Büchi Automata

Theorem 5 There exists an ω -recognizable language that can be recognized by no deterministic Büchi automaton.

. . .

$$\Sigma = \{a, b\}$$
 and $L = \{\alpha \in \Sigma^{\omega} \mid \#_a(\alpha) < \infty\} = \Sigma^* b^{\omega}$

Suppose $L = \overrightarrow{W}$ for some $W \subseteq \Sigma^*$.

 $b^{\omega} \in L \Rightarrow b^{n_1} \in W$

 $b^{n_1}ab^{\omega} \in L \Rightarrow b^{n_1}ab^{n_2} \in W$

 $b^{n_1}ab^{n_2}a\ldots \in \overrightarrow{W} = L$, contradiction.

Deterministic Büchi Automata are not closed under complement

Theorem 6 There exists a DBA A such that no DBA recognizes the language $\Sigma^{\omega} \setminus \mathcal{L}(A)$.

$$\Sigma = \{a, b\}$$
 and $L = \{\alpha \in \Sigma^{\omega} \mid \#_a(\alpha) < \infty\} = \Sigma^* b^{\omega}.$

Let $V = \Sigma^* a$. There exists a DFA A such that $\mathcal{L}(A) = V$.

There exists a deterministic Büchi automaton B such that $\mathcal{L}(A) = \overrightarrow{V}$

But $\Sigma^{\omega} \setminus \overrightarrow{V} = L$ which cannot be recognized by any DBA.

Büchi Automata and S1S

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Any finite word $w \in \Sigma^*$ induces the *infinite* sets $p_a = \{p \mid w(p) = a\}$.

- $x \le y$: x is less than y,
- s(x) = y : y is the successor of x,
- $p_a(x)$: a occurs at position x in w

Remember that \leq and s can be defined one from another.

Problem Statement

Let $\mathcal{L}(\varphi) = \{ w \mid \mathfrak{m}_w \models \varphi \}$

A language $L \subseteq \Sigma^{\omega}$ is said to be S1S-*definable* iff there exists a S1S formula φ such that $L = \mathcal{L}(\varphi)$.

- 1. Given a Büchi automaton A build an S1S formula φ_A such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$
- 2. Given an S1S formula φ build a Büchi automaton A_{φ} such that $\mathcal{L}(A) = \mathcal{L}(\varphi)$

The Büchi recognizable and S1S-definable languages coincide

From Automata to Formulae

Let
$$A = \langle S, I, T, F \rangle$$
 with $S = \{s_1, \ldots, s_p\}$, and $\Sigma = \{0, 1\}^m$.

Build $\Phi_A(X_1, \ldots, X_m)$ such that $\forall w \in \Sigma^*$. $w \in \mathcal{L}(A) \iff \mathfrak{m}_w \models \Phi_A$

$$\Phi_A(X_1,\ldots,X_m) = \exists Y_1\ldots\exists Y_p \ . \ \Phi_S(\vec{Y}) \land \Phi_I(\vec{Y}) \land \Phi_T(\vec{Y},\vec{X}) \land \Phi_F(\vec{Y})$$

$$\Phi_F(\vec{Y}) = \forall x \exists y \, . \, x \le y \land x \ne y \land \bigvee_{s_i \in F} Y_i(y)$$

From Formulae to Automata

Let $\Phi(X_1, \ldots, X_p, x_{p+1}, \ldots, x_m)$ be a S1S formula.

Build an automaton A_{Φ} such that $\forall w \in \Sigma^*$. $w \in \mathcal{L}(A) \iff \llbracket \Phi \rrbracket_{\iota_w}^{\mathfrak{m}_w} =$ true

Let $\Phi(X_1, X_2, x_3, x_4)$ be:

- 1. $X_1(x_3)$
- 2. $x_3 \le x_4$

3. $X_1 = X_2$

From Formulae to Automata

 A_{Φ} is built by induction on the structure of Φ :

- for $\Phi = \phi_1 \land \phi_2$ we have $\mathcal{L}(A_{\Phi}) = \mathcal{L}(A_{\phi_1}) \cap \mathcal{L}(A_{\phi_2})$
- for $\Phi = \phi_1 \lor \phi_2$ we have $\mathcal{L}(A_{\Phi}) = \mathcal{L}(A_{\phi_1}) \cup \mathcal{L}(A_{\phi_2})$
- for $\Phi = \neg \phi$ we have $\mathcal{L}(A_{\Phi}) = \overline{\mathcal{L}(A_{\phi})}$ (requires complementation)
- for $\Phi = \exists X_i \ . \ \phi$, we have $\mathcal{L}(A_{\Phi}) = pr_i(\mathcal{L}(A_{\phi}))$.

Theorem 7 A language $L \subseteq \Sigma^{\omega}$ is definable in S1S iff it is ω -recognizable.

Corollary 2 The SAT problem for S1S is decidable.

Muller and Rabin Word Automata

Muller Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Definition 1 A Muller automaton over Σ is $A = \langle S, s_0, T, \mathcal{F} \rangle$, where:

- S is the finite set of states
- $s_0 \in S$ is the initial state
- $T: S \times \Sigma \mapsto S$ is the transition table
- $\mathcal{F} \subseteq 2^S$ is the set of accepting sets

Notice that Muller automata are deterministic and complete by definition.

Acceptance Condition

A *run* of a Muller automaton is defined over an infinite word $w : \alpha_1 \alpha_2 \dots$ as an infinite sequence of states $\pi : s_0 s_1 s_2 \dots$ such that:

• $T(s_i, \alpha_{i+1}) = s_{i+1}$, for all $i \in \mathbb{N}$.

Let $inf(\pi) = \{s \mid s \text{ appears infinitely often on } \pi\}.$

Run π of A is said to be *accepting* iff $inf(\pi) \in \mathcal{F}$.

 $L \subseteq \Sigma^{\omega}$ is *Muller-recognizable* iff there exists a MA A such that $L = \mathcal{L}(A)$.

Exercises

Exercise 1 Let $\Sigma = \{a, b\}$ and $A = \langle S, s_a, T, \mathcal{F} \rangle$, where:

- $S = \{s_a, s_b\},$
- $T(s_a, a) = s_a$, $T(s_a, b) = s_b$, $T(s_b, a) = s_a$ and $T(s_b, b) = s_b$,
- $\mathcal{F} = \{\{s_a, s_b\}\}$

What is $\mathcal{L}(A)$? What if A was Büchi with $F = \{s_a, s_b\}$?

Exercise 2 Build a Muller automaton recognizing the following language: $\Sigma = \{a, b\}, L = (a + b)^* a^{\omega}$

Closure Properties

Theorem 8 The class of Muller-recognizable languages is closed under union, intersection and complement.

Let $A = \langle S, s_0, T, \mathcal{F} \rangle$ be a Muller automaton.

Define $B = \langle S, s_0, T, 2^S \setminus \mathcal{F} \rangle$.

We have $\mathcal{L}(B) = \Sigma^{\omega} \setminus \mathcal{L}(A)$.

Closure Properties

Let $A_i = \langle S_i, s_{0,i}, T_i, \mathcal{F}_i \rangle$, i = 1, 2 be Muller automata.

Define $B = \langle S, s_0, T, \mathcal{F} \rangle$ where:

- $S = S_1 \times S_2$,
- $s_0 = \langle s_{0,1}, s_{0,2} \rangle$,
- $T(\langle s_1, s_2 \rangle, a) = \langle T(s_1, a), T(s_2, a) \rangle$
- $\mathcal{F} = \{\{\langle s_1, s'_1 \rangle, \dots, \langle s_k, s'_k \rangle\} \mid \{s_1, \dots, s_k\} \in \mathcal{F}_1 \text{ or } \{s'_1, \dots, s'_k\} \in \mathcal{F}_2\}$

We have $\mathcal{L}(B) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$.

For intersection it is enough to set

 $\mathcal{F} = \{\{\langle s_1, s'_1 \rangle, \dots, \langle s_k, s'_k \rangle\} \mid \{s_1, \dots, s_k\} \in \mathcal{F}_1 \text{ and } \{s'_1, \dots, s'_k\} \in \mathcal{F}_2\}$

$\mathbf{Deterministic}\ \mathbf{B\ddot{u}chi}\subseteq\mathbf{Muller}$

Theorem 9 For each deterministic Büchi automaton A there exists a Muller automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let $A = \langle S, \{s_0\}, T, F \rangle$ be a deterministic Büchi automaton.

Define $B = \langle S, s_0, T, \{ G \in 2^S \mid G \cap F \neq \emptyset \} \rangle$

$\mathbf{Muller} \subseteq \mathbf{Non-deterministic} \ \mathbf{B\"{u}chi}$

Theorem 10 For each Muller automaton A there exists a non-deterministic Büchi automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$.

Let $A = (S, s_0, T, \mathcal{F})$ be a Muller automaton, with $\mathcal{F} = \{F_1, \ldots, F_n\}$. Then B simulates A and guesses the accepting set F_i .

We introduce finite memory to accumulate F_i states. The Büchi automaton guesses when all the states outside F_i are finished.

When the memory is full we reset it to \emptyset , to ensure that we see F_i states again and again.

$\underline{\textbf{Muller}} \subseteq \underline{\textbf{Non-deterministic Büchi}}$

Define the Büchi automaton $B = (S_B, s_0, T_B, F_B)$ where:

•
$$S_B = S \cup (S \times 2^S \times \{1, \dots, n\})$$

- $F_B = \{(s, \emptyset, i) \mid s \in S, i \in \{1, \dots, n\}\}$
- T_B is defined as follows:

$$- (s, \alpha, t) \in T_B \text{ and } (s, \alpha, (t, \emptyset, i)) \in T_B \text{ if } T(s, \alpha) = t$$
$$- ((s, Q, i), \alpha, (t, Q \cup \{t\}, i)) \in T_B \text{ if } T(s, \alpha) = t \text{ and } Q \cup \{t\} \subset F_i$$
$$- ((s, Q, i), \alpha, (t, \emptyset, i)) \in T_B \text{ if } T(s, \alpha) = t \text{ and } Q \cup \{t\} = F_i$$

Now we prove that $\mathcal{L}(A) = \mathcal{L}(B)$.

Characterization of Muller-recognizable languages

A language $L \subseteq \Sigma^{\omega}$ is Muller-recognizable iff L is a Boolean combination of sets $\overrightarrow{W}, W \subseteq \Sigma^*$ recognizable, i.e. $L = \bigcup_i \left(\bigcap_j \overrightarrow{W_{ij}} \cap \bigcap_k (\Sigma^{\omega} \setminus \overrightarrow{W_{ik}})\right).$

" \Leftarrow " Any set $\overrightarrow{W_{ij}}$ is recognized by a deterministic Büchi automaton, hence also by a Muller automaton.

" \Rightarrow " Let $A = \langle S, s_0, T, \mathcal{F} \rangle$ be a Muller automaton recognizing L.

Let $A_q = \langle S, s_0, T, \{q\} \rangle, q \in S$, and $W_q = \mathcal{L}(A_q)$.

$$L = \bigcup_{Q \in \mathcal{F}} \left(\bigcap_{q \in Q} \ \overrightarrow{W_q} \ \cap \ \bigcap_{q \in S \setminus Q} (\Sigma^{\omega} \setminus \overrightarrow{W_q}) \right)$$

Rabin Word Automata

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet.

Definition 2 A Rabin automaton over Σ is $A = \langle S, s_0, T, \Omega \rangle$, where:

- S is the finite set of states
- $s_0 \in S$ is the initial state
- $T: S \times \Sigma \mapsto S$ is the transition table
- $\Omega = \{ \langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle \}$ is the set of accepting pairs, $N_i, P_i \subseteq S$.

Run π of A is said to be *accepting* iff

 $\inf(\pi) \cap N_i = \emptyset$ and $\inf(\pi) \cap P_i \neq \emptyset$

for some $1 \leq i \leq k$.

Exercises

Exercise 3 Let $\Sigma = \{a, b\}$. Write down a Rabin automaton for the following languages:

1. $L = \{w \mid a \text{ occurs infinitely often and } b \text{ occurs finitely often in } w\}$

2. $L = \{w \mid a \text{ occurs finitely often and } b \text{ occurs infinitely often in } w\}$

From Rabin to Muller

Given a Rabin automaton $A = \langle S, s_0, T, \Omega \rangle$, there exists a Muller automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let $\Omega = \{ \langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle \}.$

Let $A_i = \langle S, s_0, T, P_i \rangle$ and $B_i = \langle S, s_0, T, N_i \rangle$ be DFA.

$$\mathcal{L}(A) = \bigcup_{i=1}^{k} \left(\overrightarrow{\mathcal{L}(A_i)} \cap (\Sigma^{\omega} \setminus \overrightarrow{\mathcal{L}(B_i)}) \right)$$

From Rabin to Muller (a constructive approach)

Given a Rabin automaton $A = \langle S, s_0, T, \Omega \rangle$, such that

 $\Omega = \{ \langle N_1, P_1 \rangle, \dots, \langle N_k, P_k \rangle \}$

let $B = \langle S, s_0, T, \mathcal{F} \rangle$ be the Muller automaton, where

 $\mathcal{F} = \{ F \subseteq S \mid F \cap N_i = \emptyset \text{ and } F \cap P_i \neq \emptyset \text{ for some } 1 \le i \le k \}$

Exercise 4 Let $A = \langle S, s_0, T, \{Q_1, \dots, Q_t\} \rangle$ be a Muller automaton. Consider the Rabin automaton $A' = \langle S, s_0, T, \Omega \rangle$ where

 $\Omega = \{ (S \setminus Q_1, Q_1), \dots, (S \setminus Q_t, Q_t) \}$

Give an example of A such that $\mathcal{L}(A) \neq \mathcal{L}(A')$.

From Muller to Rabin

Given a Muller automaton $A = \langle S, s_0, T, \mathcal{F} \rangle$, there exists a Rabin automaton B such that $\mathcal{L}(A) = \mathcal{L}(B)$

Let $\mathcal{F} = \{Q_1, \ldots, Q_k\}$

Let $B = \langle S', s'_0, T', \Omega' \rangle$ where:

- $S' = 2^{Q_1} \times \ldots \times 2^{Q_k} \times S$
- $s'_0 = \langle \emptyset, \dots, \emptyset, s_0 \rangle$

From Muller to Rabin

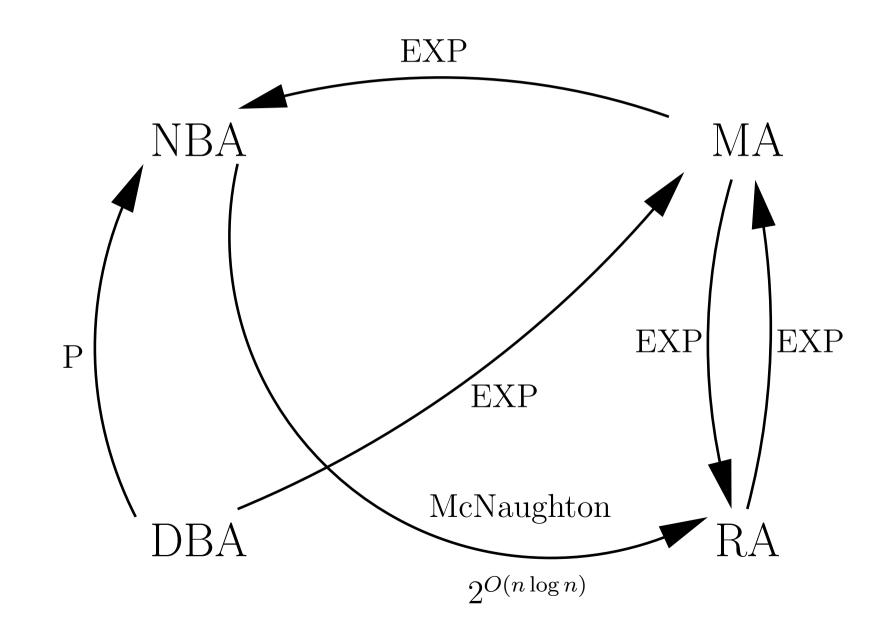
•
$$T'(\langle S_1, \dots, S_k, s \rangle, a) = \langle S'_1, \dots, S'_k, s' \rangle$$
 where:
 $-s' = T(s, a)$
 $-S'_i = \emptyset$ if $S_i = Q_i, 1 \le i \le k$
 $-S'_i = (S_i \cup \{s'\}) \cap Q_i, 1 \le i \le k$

•
$$P_i = \{ \langle S_1, \dots, S_i, \dots, S_k, s \rangle \mid S_i = Q_i \}, \ 1 \le i \le k$$

•
$$N_i = \{ \langle S_1, \dots, S_i, \dots, S_k, s \rangle \mid s \notin Q_i \}, \ 1 \le i \le k$$

Exercises

Exercise 5 Build a Rabin automaton for the language: $\Sigma = \{a, b\},\$ $L = \{w \mid if a occurs infinitely often then b occurs infinitely often in w\}$



ω -Regular Languages

If $X \subseteq \Sigma^*$ and $Y \subseteq \Sigma^{\omega}$

$$XY = \{xy \mid x \in X, y \in Y\} \in \Sigma^{\omega}$$
$$X^{\omega} = \{x_0x_1 \dots \mid x_0, x_1, \dots \in X \setminus \{\epsilon\}\}$$
$$X^{\infty} = X^* \cup X^{\omega}$$

The class of ω -regular languages $\mathcal{R}^{\infty}(\Sigma)$ is the smallest class of languages $L \subseteq \Sigma^{\infty}$ such that:

- $\emptyset \in \mathcal{R}^{\infty}(\Sigma)$ and $\{a\} \in \mathcal{R}^{\infty}(\Sigma)$, for all $a \in \Sigma$
- if $X, Y \in \mathcal{R}^{\infty}(\Sigma)$ then $X \cup Y \in \mathcal{R}^{\infty}(\Sigma)$
- for each $X \subseteq \Sigma^*$ and $Y \subseteq \Sigma^\infty$, if $X, Y \in \mathcal{R}^\infty(\Sigma)$ then $XY \in \mathcal{R}^\infty(\Sigma)$
- for each $X \subseteq \Sigma^*$, if $X \in \mathcal{R}^{\infty}(\Sigma)$ then $X^*, X^{\omega} \in \mathcal{R}^{\infty}(\Sigma)$

Star Free ω **-Languages**

The class of *star-free* ω -*languages* is the smallest class $SF^{\infty}(\Sigma)$ of languages $L \in \Sigma^*$ such that:

- $\emptyset, \{a\} \in SF^{\infty}(\Sigma), \ a \in \Sigma$
- if $X, Y \in SF^{\infty}(\Sigma)$ then $X \cup Y, \overline{X} \in SF^{\infty}(\Sigma)$
- if $X \subseteq \Sigma^*$, $X \in SF(\Sigma)$, $Y \in SF^{\infty}(\Sigma)$ then $XY \in SF^{\infty}(\Sigma)$

Example 1

- if $B \subset \Sigma$, then $\Sigma^* B \Sigma^{\omega}$ is star-free
- if $\Sigma = \{a, b\}$, then $(ab)^{\omega} = \overline{b\Sigma^{\omega} \cup \Sigma^* aa\Sigma^{\omega} \cup \Sigma^* bb\Sigma^{\omega}}$ is star-free

