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Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.



Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

◮ Given a logical specification, we can do either:

◮ VERIFICATION: prove that a given system satisfies the

specification

◮ SYNTHESIS: build a system that satisfies the specification



Example: Elevator

◮ Aim: build controller that moves elevator of 10 floor building

◮ Environment: Passengers pressing buttons to (1) call elevator

and (2) request floor

◮ System state:

1. Set of requested floor numbers: {0, 1}10

2. Current position of lift: {1, . . . , 10}

3. Indicator whose turn is next (assuming lift and passengers act in

alternation) {0, 1}



Infinite Games

Two players:

1. Controller is Player 0

2. Passengers are Player 1

A play of a game is an infinite sequence of states of elevator transition

system, where the two players choose moves alternatively.

How does the transition system look like?

◮ State space: {0, 1}10 × {1, . . . , 10} × {0, 1}

◮ Transitions:

◮ Player 0: (r1 . . . r10, j, 0) → [r′
1
. . . r′

10
, j′, 1] s.t. rj = 1, r′j = 0 and

∀i6=jri = r′i. Actions: open/closes doors and move lift

◮ Player 1: [r1 . . . r10, j, 1] → (r′
1
. . . r′

10
, j′, 0) s.t. j = j′, ∀i : ri ≤ r′i

Actions: request floors



Desired Properties

◮ Every requested floor is eventually reached

◮ Floors along the way are served if requested

◮ If no floor is request, elevator goes to ground floor

◮ ...

These are conditions on infinite sequences!

Player 0 (controller) wins the play if all conditions are satisfied

independent of the choices Player 1 makes. This corresponds to

finding a winning strategy for Player 0 in an infinite game.



Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Main result:

The synthesis problem is algorithmically solvable for finite-state

systems with respect to specifications given as ω-automata or

linear-time temporal logic.

Other: Nicer and more intuitive proofs for logics over trees
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Terminology



Terminology

Two-player games between Player 0 and 1

An infinite game 〈G,φ〉 consists of

◮ a game graph G and

◮ a winning condition φ.

G defines the “playground”, in which the two players compete.

φ defines which plays are won by Player 0.

If a play does not satisfy φ, then Player 1 wins on this play.



Game Graphs

A game graph is a tuple G = 〈S, S0, T 〉 where:

◮ S is a finite set of states,

◮ S0 ⊆ S is the set of Player-0 states (S1 = S \ S0 are the Player-1

states),

◮ T ⊆ S ×S is a transition relation. We assume that each state has

at least one successor.

s0

s4

s1 s2

s3
Player 0

Player 1



Plays

A play is an infinite sequence of states ρ = s0s1s2 · · · ∈ Sω such that

for all i ≥ 0 〈si, si+1〉 ∈ T .

It starts in s0 and it is built up as follows:

If si ∈ S0, then Player 0 chooses an edge starting in si, otherwise

Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From

S0-states Player 0 moves the token, from S1-states Player 1 moves the

token.

s0

s4

s1 s2

s3



Winning Condition

The winning condition describes the plays won by Player 0.

A winning condition or winning objective φ is a subset of plays, i.e.,

φ ⊆ Sω.

We use logical conditions (e.g., LTL formulas) or automata theoretic

acceptance conditions to describe φ.

Example:

◮ ✷✸s for some state s ∈ S

◮ All plays that stay within a safe region F ⊆ S are in φ.

◮ Given a priority function p : S → {0, 1, . . . , d}, all plays in which

the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game,

Reachability game, LTL game, Parity game,...



Types of Games

Given a play ρ, we define

◮ Occ(ρ) = {s ∈ S | ∃i ≥ 0 : si = s}

◮ Inf(ρ) = {s ∈ S | ∀i ≥ 0∃j > i : sj = s}

Given a set F ⊆ S,

Reachability Game φ = {ρ ∈ Sω | Occ(ρ) ∩ F 6= ∅}

Safety Game φ = {ρ ∈ Sω | Occ(ρ) ⊆ F}

Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ∩ F 6= ∅}

Co-Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ⊆ F}



Types of Games

Given a priority function p : S → {0, 1, . . . , d} or an LTL formula ϕ

Weak-Parity Game φ = {ρ ∈ Sω | min
s∈Occ(ρ) p(s) is even}

Parity Game φ = {ρ ∈ Sω | min
s∈Inf(ρ) p(s) is even}

LTL Game φ = {ρ ∈ Sω | ρ |= ϕ}

40 1 2 3

We will refer to the type of a game and give F , p, or ϕ instead of

defining φ.

We will also talk about Muller and Rabin games.



Strategies

A strategy for Player 0 from state s is a (partial) function

f : S∗S0 → S

specifying for any sequence of states s0, s1, . . . sk with s0 = s and

sk ∈ S0 a successor state sj such that (sk, sj) ∈ T .

A play ρ = s0s1 . . . is compatible with strategy f if for all si ∈ S0 we

have that si+1 = f(s0s1 . . . si).

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively, we

denote by Gf,g the (unique) play that is compatible with f and g.



Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if for

all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.



Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if for

all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets

W0 = {s ∈ S | Player 0 wins from s}

W1 = {s ∈ S | Player 1 wins from s}

Note each state s belongs at most to W0 or W1. Otherwise pick

winning strategies f and g from s for Player 0 and 1, respectively,

then Gf,g ∈ φ and Gf,g 6∈ φ: Contradiction.



Questions About Games

Solve a game (G,φ) with G = (S, S0, T ):

1. Decide for each state s ∈ S if s ∈ W0.

2. If yes, construct a suitable winning strategy from s.

Further interesting question:

◮ Optimize construction of winning strategy (e.g., time complexity)

◮ Optimize parameters of winning strategy (e.g., size of memory)



Example

s0

s4

s1 s2

s3

Safety game (G,F ) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0 and s4):

◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4



Example

s0

s4

s1 s2

s3

Safety game (G,F ) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0 and s4):

◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4

W0 = {s0, s3, s4}, W1 = {s1, s2}



Another Example

s0

s4s3

s1 s2

LTL game (G,ϕ) with ϕ = ✸s0 ∧✸s4 (visit s0 and s4)

Winning strategy for Player 0 from s0:

◮ From s0 to s3, from s3 to s4, and from s4 to s1.

Note: this strategy is not winning from s3 or s4.

Winning strategy for Player 0 from s3:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.



Determinacy

Recall: the winning regions are disjoint, i.e., W0 ∩W1 = ∅

Question: Is every state winning for some player?

A game (G,φ) with G = (S, S0, E) is called determined if

W0 ∪W1 = S holds.

Remarks:

1. We will show that all automata theoretic games we consider here

are determined.

2. There are games which are not determined (e.g., concurrent

games: even/odd sum, paper-rock-scissors)



Strategy Types

In general, a strategy is a function f : S+ → S.

(Note that sometimes we might define f only partially.)

1. Computable or recursive strategies: f is computable

2. Finite-state strategies: f is computable with a finite-state

automaton meaning that f has bounded information about the

past (history).

3. Memoryless or positional strategies: f only depends on the

current state of the game (no knowledge about history of play)



Positional Strategies

Given a game (G,φ) with G = (S, S0, E), a strategy f : S+ → S is

called positional or memoryless if for all words w,w′ ∈ S+ with

w = s0 . . . sn and w′ = s′0 . . . s
′
m such that sn = s′m, f(w) = f(w′)

holds.

A positional strategy for Player 0 is representable as

1. a function f : S0 → S

2. a set of edges containing for every Player-0 state s exactly one

edge starting in s (and for every Player-1 state s′ all edges

starting in s′)



Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).



Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

fA(s0 . . . sk) := λ(δ(m0, s0 . . . sk−1), sk) with sk ∈ S0

and the usual extension of δ to words: δ(m0, ǫ) = m0 and

δ(m0, s0...sk) = δ(δ(m0, s0...sk−1), sk). Any strategy f , such that

there exists an A with fA = f , is called finite-state strategy.



Recall Example

s0

s4s3

s1 s2

Objective: visit s0 and s4, i.e, {s0, s4} ⊆ Occ(ρ)

Winning strategy for Player 0 from s0, s3 and s4:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0



Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0



Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2



Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2



Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Note: the strategy in the extended grame graph is memoryless.



Reachability and Safety Games



Reachability and Safety Games

Theorem

Given a reachability game (G,F ) with G = (S, S0, E) and F ⊆ S,

then the winning regions W0 and W1 of Player 0 and 1, respectively,

are computable, and both players have corresponding memoryless

winning strategies.

Proof.

Define

Attri0(F ) := {s ∈ S | Player 0 can force a visit from s to F

in less than i moves}



Force Visit in Next Step

Given a set of states, compute the set of states ForceNext0(F ) from

which of Player 0 can force to visit F in the next step. I.e., for each

state s ∈ ForceNext0(F ) Player 0 can fix a strategy s.t. all plays

starting in s visit F in the first step.

ForceNext0(F ) = {s ∈ S0 | ∃s
′ ∈ S : (s, s′) ∈ E ∧ s′ ∈ F}∪

{s ∈ S1 | ∀s
′ ∈ S : (s, s′) ∈ E → s′ ∈ F}



Computing the Attractor

Construction of Attri0(F ):

Attr00(F ) = F

Attri+1
0 (F ) = Attri0(F ) ∪ ForceNext0(Attr

i
0(F ))



Example

s0

s4

s6

s1 s2

s3

s5 s7



Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}



Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}



Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Attr20 = {s0, s3, s4, s7}



Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Attr20 = {s0, s3, s4, s7}

Attr30 = {s0, s3, s4, s6, s7}

Attr40 = {s0, s3, s4, s5, s6, s7}



Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Attr20 = {s0, s3, s4, s7}

Attr30 = {s0, s3, s4, s6, s7}

Attr40 = {s0, s3, s4, s5, s6, s7}



Computing the Attractor

Construction of Attri0(F ):

Attr00(F ) = F

Attri+1
0 (F ) = Attri0(F ) ∪ ForceNext0(Attr

i
0(F ))

Then Attr00(F ) ⊆ Attr10(F ) ⊆ Attr20(F ) ⊆ . . . and since S is finite,

there exists k ≤ |S| s.t. Attrk0(F ) = Attrk+1
0 (F ).

The 0-Attractor is defined as:

Attr0(F ) :=
k⋃

i=0

Attri0(F )



Computing the Attractor

Construction of Attri0(F ):

Attr00(F ) = F

Attri+1
0 (F ) = Attri0(F ) ∪ ForceNext0(Attr

i
0(F ))

Then Attr00(F ) ⊆ Attr10(F ) ⊆ Attr20(F ) ⊆ . . . and since S is finite,

there exists k ≤ |S| s.t. Attrk0(F ) = Attrk+1
0 (F ).

The 0-Attractor is defined as:

Attr0(F ) :=
k⋃

i=0

Attri0(F )

Claim: W0 = Attr0(F ) and W1 = S \Attr0(F )



Duality Between Players

Assume we have a partition of the state space S = P0 ∪ P1 (i.e.,

P0 ∩ P1 = ∅) and we want to prove W0 = P0 and W1 = P1.

We want to prove P0 ⊇ W0, P0 ⊆ W0, P1 ⊇ W1, and P1 ⊆ W1.

Since we know that W0 ∩W1 = ∅ holds, it is sufficient to prove

P0 ⊆ W0 and P1 ⊆ W1.

P0 ⊆ W0 P1 ⊆ W1

S \ P0 ⊇ S \W0 S \ P1 ⊇ S \W1

P1 ⊇ S \W0 ⊇ W1 P0 ⊇ S \W1 ⊇ W0

P1 ⊇ W1 P0 ⊇ W0



0-Attractor

To show W0 = Attr0(F ) and W1 = S \Attr0(F ), we construct

winning strategies for Player 0 and 1.



0-Attractor

To show W0 = Attr0(F ) and W1 = S \Attr0(F ), we construct

winning strategies for Player 0 and 1.

Proof.

Attr0(F ) ⊆ W0

We prove for every i and for every state s ∈ Attri0(F ) that Player 0

has a positional winning strategy to reach F in ≤ i steps.

◮ (Base) s ∈ Attr00(F ) = F

◮ (Induction) s ∈ Attri+1
0 (F )

If s ∈ Attri0(F ), then we apply induction hypothesis.

Otherwise s ∈ ForceNext0(Attr
i
0(F )) \Attri0(F ) and Player 0 can

force a visit to Attri0(F ) in one step and from there she needs at

move i steps by induction hypothesis. So, F is reached after a

finite number of moves.



0-Attractor cont.

Proof cont.

S \ Attr0(F ) ⊆ W1

Assume s ∈ S \ Attr0(F ), then s /∈ ForceNext0(Attr0(F )) and

we have two cases:

(a) s ∈ S0 ∩ (S \ Attr0(F )): ∀s′ ∈ S . (s, s′) ∈ E → s′ 6∈ Attr0(F )

(b) s ∈ S1 ∩ (S \ Attr0(F )): ∃s′ ∈ S . (s, s′) ∈ E ∧ s′ 6∈ Attr0(F )

In S \ Attr0(F ) Player 1 can choose edges according to (b) leading

again to S \Attr0(F ) and by (a) Player 0 cannot escape from

S \ Attr0(F ). So, F will be avoided forever.

W0 = Attr0(F ) and W1 = S \Attr0(F )



Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7



Example of Attractor Strategy
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Example of Attractor Strategy
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Example of Attractor Strategy
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Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7



Safety Games

Given a safety game (G,F ) with G = (S, S0, E), i.e.,

φS = {ρ ∈ Sω | Occ(ρ) ⊆ F},

consider the reachability game (G,S \ F ), i.e.,

φR = {ρ ∈ Sω | Occ(ρ) ∩ (S \ F ) 6= ∅}.

Then, Sω \ φR = {ρ ∈ Sω | Occ(ρ) ∩ (S \ F ) = ∅}

= {ρ ∈ Sω | Occ(ρ) ⊆ F}.

Player 0 has a safety objective in (G,F ) ⇐⇒

Player 1 has a reachability objective in (G,S \ F ).

So, W0 in the safety game (G,F ) corresponds to W1 in the

reachability game (G,S \ F ).



Summary

We know how to solve reachability and safety games by positional

winning strategies.

The strategies are

◮ Player 0: Decrease distance to F

◮ Player 1: Stay outside of Attr0(F )

In LTL, ✸F = reachability and ✷F = safety.

Next, ✷✸F = Büchi and ✸✷F = Co-Büchi.



Hierarchy

Reachability Safety

Obligation: Staiger-Wagner, Weak-Parity

Recurrence: Büchi Persistence: co-Büchi

Reactivity: Muller, Parity

1.

2.

3.

4.



Büchi and co-Büchi Games



Büchi Game

Given a Büchi game (G,F ) over the game graph G = (S, S0, E) with

the set F ⊆ S of Büchi states, we aim to

◮ determine the winning regions of Player 0 and 1

◮ compute their respective winning strategies

Recall, Player 0 wins ρ iff she visits infinitely often states in F , i.e.,

φ = {ρ ∈ Sω | inf(ρ) ∩ F 6= ∅}.



Idea

Compute for i ≥ 1 the set Recuri0 of accepting states s ∈ F from

which Player 0 can force at least i revisits to F .

Then, we will show that

F ⊇ Recur10(F ) ⊇ Recur20(F ) ⊇ . . .

and we compute the winning region of Player 0 with

Recur0(F ) :=
⋂

i≤1

Recuri0(F )

Since F is finite, there exists k such that Recur0(F ) = Recurk0(F ).



One-Step Attractor

First, we define Recur0 formally using a modified version of Attractor.

We count revisits, so we need the set of states from which Player 0

can force a revisit to F , i.e., state from which she can force a visit in

≥ 1 steps.

We define a slightly modified attractor:

A0
0 = ∅

Ai+1
0 = Ai

0 ∪ ForceNext0(A
i
0 ∪ F )

Attr+0 (F ) =
⋃

i≥0

Ai
0



Visit versus Revisit

F

Attr+0 (F )

F

Attr0(F )



Recurrence Set

We define
Recur00(F ) := F

Recuri+1
0 (F ) := F ∩Attr+0 (Recur

i
0(F ))

Recur0(F ) :=
⋂

i≥0 Recur
i
0(F )

We show that there exists k such that Recur0(F ) :=
⋂k

i≥0 Recur
i
0(F )

by proving Recuri+1
0 (F ) ⊆ Recuri0(F ) for all i ≥ 0.

Proof.

◮ i = 0: F ∩Attr+0 (F ) ⊆ F

◮ i → i+ 1:

Recuri+1
0 (F ) = F ∩Attr+0 (Recur

i
0(F )) ⊆ F ∩Attr+0 (Recur

i−1
0 (F ))

= Recuri0(F ) since (i) Recuri0(F ) ⊆ Recuri−1
0 (F ) by ind. hyp. and

(ii) Attr+0 is monotone.



Recurrence Set cont.



Recurrence Set cont.

We show that all states in Attr0(Recur0(F )) are winning for Player 0,

i.e., Attr0(Recur0(F )) ⊆ W0. We construct a memoryless winning

strategy for Player 0 for all states in Attr0(Recur0(F )).

Proof.

We know that there exists k such that

Recurk+1
0 (F ) = Recurk0(F ) = F ∩Attr+0 (Recur

k
0(F )). So,

◮ for s ∈ Recurk0(F ) ∩ S0 Player 0 can choose an edge back to

Attr+0 (Recur
k
0(F )) and

◮ for s ∈ Recurk0(F ) ∩ S1 all edges lead back to Attr+0 (Recur
k
0(F )).

For all states in Attr0(Recur0(F )) \Recur0(F ), Player 0 can follow

the attractor strategy to reach Recur0(F ).



Recurrence Set cont.

We show S \ Attr0(Recur0(F )) ⊆ W1.

Proof.

We know that there exists k such that Recur0(F ) = Recurk0(F ), i.e.,

S \ Attr0(Recur0(F )) = S \Attr0(Recur
k
0(F )).

Show: Player 1 can force ≤ i visits to F from s 6∈ Attr0(Recur
i
0(F ))

i = 0: s 6∈ Attr0(F ), so Player 1 can avoid visiting F at all.

i → i+ 1: s 6∈ Attr0(Recur
i+1
0 (F )).

◮ s 6∈ Attr0(Recur
i
0(F )), Player 1 plays according to ind. hypothese

◮ Otherwise, s ∈ Attr0(Recur
i
0(F )) \ Attr0(Recur

i+1
0 (F )) and

Player 1 can avoid Attr0(Recur
i+1
0 (F )).



Büchi games

We have shown that Player 0 has a (memoryless) winning strategy

from every state in Attr0(Recur0(F )), so Attr0(Recur0(F )) ⊆ W0.

And, Player 1 has a (memoryless) winning strategy from every state

in S \ Attr0(Recur0(F )), so S \Attr0(Recur0(F )) ⊆ W1. This implies

the following theorem.

Theorem

Given a Büchi game ((S, S0, E), F ), the winning regions W0 and W1

are computable and form a partition, i.e., W0 ∪W1 = S. Both players

have memoryless winning strategies.



Co-Büchi Games

Given a Co-Büchi Game ((S, S0, E), F ), i.e.,

φC = {ρ ∈ Sω | Inf(ρ) ⊆ F}

consider the Büchi Game ((S, S0, E), S \ F ), i.e,

φB = {ρ ∈ Sω | Inf(ρ) ∩ (S \ F ) 6= ∅}.

Then, Sω \ φB = {ρ ∈ Sω | Inf(ρ) ∩ (S \ F ) = ∅}

= {ρ ∈ Sω | Inf(ρ) ⊆ F}.

Player 0 has a co-Büchi objective in (G,F ) ⇐⇒

Player 1 has a Büchi objective in (G,S \ F ).

So, W0 in the co-Büchi game (G,F ) corresponds to W1 in the Büchi

game (G,S \ F ).



Summary

We know how to solve Büchi and Co-Büchi games by positional

winning strategies.

In LTL,

◮ ✸F = reachability

◮ ✷F = safety

◮ ✷✸F = Büchi

◮ ✸✷F = Co-Büchi



Exercise

2. Consider the game graph shown in below and the following

winning conditions:

(a) Occ(ρ) ∩ {1} 6= ∅ and

(b) Occ(ρ) ⊆ {1, 2, 3, 4, 5, 6} and

(c) Inf(ρ) ∩ {4, 5} 6= ∅.

Compute the winning regions

and corresponding winning

strategies showing the interme-

diate steps (i.e., the Attractor

and Recurrence sets) of the

computation.


