
Infinite Games

Barbara Jobstmann

Cadence Design Systems

Ecole Polytechnique Fédérale de Lausanne

Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

Build Correct HW/SW Systems

◮ Use logic to specify correctness properties, e.g.:

◮ every job sent to the printer is eventually printed

◮ two jobs do not overlap (only one job is printed at a time)

◮ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can

be specified by automata and logical formulas.

◮ Given a logical specification, we can do either:

◮ VERIFICATION: prove that a given system satisfies the

specification

◮ SYNTHESIS: build a system that satisfies the specification

Example: Elevator

◮ Aim: build controller that moves elevator of 10 floor building

◮ Environment: Passengers pressing buttons to (1) call elevator

and (2) request floor

◮ System state:

1. Set of requested floor numbers: {0, 1}10

2. Current position of lift: {1, . . . , 10}

3. Indicator whose turn is next (assuming lift and passengers act in

alternation) {0, 1}

Infinite Games

Two players:

1. Controller is Player 0

2. Passengers are Player 1

A play of a game is an infinite sequence of states of elevator transition

system, where the two players choose moves alternatively.

How does the transition system look like?

◮ State space: {0, 1}10 × {1, . . . , 10} × {0, 1}

◮ Transitions:

◮ Player 0: (r1 . . . r10, j, 0) → [r′
1
. . . r′

10
, j′, 1] s.t. rj = 1, r′j = 0 and

∀i6=jri = r′i. Actions: open/closes doors and move lift

◮ Player 1: [r1 . . . r10, j, 1] → (r′
1
. . . r′

10
, j′, 0) s.t. j = j′, ∀i : ri ≤ r′i

Actions: request floors

Desired Properties

◮ Every requested floor is eventually reached

◮ Floors along the way are served if requested

◮ If no floor is request, elevator goes to ground floor

◮ ...

These are conditions on infinite sequences!

Player 0 (controller) wins the play if all conditions are satisfied

independent of the choices Player 1 makes. This corresponds to

finding a winning strategy for Player 0 in an infinite game.

Our Aim

Solution of the Synthesis Problem

1. Decide whether there exists such a winning strategy -

Realizability Problem

2. If “yes”, then construct the system - Synthesis Problem

Main result:

The synthesis problem is algorithmically solvable for finite-state

systems with respect to specifications given as ω-automata or

linear-time temporal logic.

Other: Nicer and more intuitive proofs for logics over trees

Outline

1. Terminology

2. Games

2.1 Reachability games

2.2 Buchi games

2.3 Obligation games

2.4 Muller games

3. About games and tree automata

Terminology

Terminology

Two-player games between Player 0 and 1

An infinite game 〈G,φ〉 consists of

◮ a game graph G and

◮ a winning condition φ.

G defines the “playground”, in which the two players compete.

φ defines which plays are won by Player 0.

If a play does not satisfy φ, then Player 1 wins on this play.

Game Graphs

A game graph is a tuple G = 〈S, S0, T 〉 where:

◮ S is a finite set of states,

◮ S0 ⊆ S is the set of Player-0 states (S1 = S \ S0 are the Player-1

states),

◮ T ⊆ S ×S is a transition relation. We assume that each state has

at least one successor.

s0

s4

s1 s2

s3
Player 0

Player 1

Plays

A play is an infinite sequence of states ρ = s0s1s2 · · · ∈ Sω such that

for all i ≥ 0 〈si, si+1〉 ∈ T .

It starts in s0 and it is built up as follows:

If si ∈ S0, then Player 0 chooses an edge starting in si, otherwise

Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From

S0-states Player 0 moves the token, from S1-states Player 1 moves the

token.

s0

s4

s1 s2

s3

Winning Condition

The winning condition describes the plays won by Player 0.

A winning condition or winning objective φ is a subset of plays, i.e.,

φ ⊆ Sω.

We use logical conditions (e.g., LTL formulas) or automata theoretic

acceptance conditions to describe φ.

Example:

◮ ✷✸s for some state s ∈ S

◮ All plays that stay within a safe region F ⊆ S are in φ.

◮ Given a priority function p : S → {0, 1, . . . , d}, all plays in which

the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game,

Reachability game, LTL game, Parity game,...

Types of Games

Given a play ρ, we define

◮ Occ(ρ) = {s ∈ S | ∃i ≥ 0 : si = s}

◮ Inf(ρ) = {s ∈ S | ∀i ≥ 0∃j > i : sj = s}

Given a set F ⊆ S,

Reachability Game φ = {ρ ∈ Sω | Occ(ρ) ∩ F 6= ∅}

Safety Game φ = {ρ ∈ Sω | Occ(ρ) ⊆ F}

Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ∩ F 6= ∅}

Co-Büchi Game φ = {ρ ∈ Sω | Inf(ρ) ⊆ F}

Types of Games

Given a priority function p : S → {0, 1, . . . , d} or an LTL formula ϕ

Weak-Parity Game φ = {ρ ∈ Sω | min
s∈Occ(ρ) p(s) is even}

Parity Game φ = {ρ ∈ Sω | min
s∈Inf(ρ) p(s) is even}

LTL Game φ = {ρ ∈ Sω | ρ |= ϕ}

40 1 2 3

We will refer to the type of a game and give F , p, or ϕ instead of

defining φ.

We will also talk about Muller and Rabin games.

Strategies

A strategy for Player 0 from state s is a (partial) function

f : S∗S0 → S

specifying for any sequence of states s0, s1, . . . sk with s0 = s and

sk ∈ S0 a successor state sj such that (sk, sj) ∈ T .

A play ρ = s0s1 . . . is compatible with strategy f if for all si ∈ S0 we

have that si+1 = f(s0s1 . . . si).

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively, we

denote by Gf,g the (unique) play that is compatible with f and g.

Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if for

all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

Winning Strategies and Regions

Given a game (G,φ) with G = (S, S0, E), a strategy f for Player 0

from s is called a winning strategy if for all Player-1 strategies g from

s, Gf,g ∈ φ holds. Analogously, a Player-1 strategy g is winning if for

all Player-0 strategies f , Gf,g 6∈ φ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets

W0 = {s ∈ S | Player 0 wins from s}

W1 = {s ∈ S | Player 1 wins from s}

Note each state s belongs at most to W0 or W1. Otherwise pick

winning strategies f and g from s for Player 0 and 1, respectively,

then Gf,g ∈ φ and Gf,g 6∈ φ: Contradiction.

Questions About Games

Solve a game (G,φ) with G = (S, S0, T):

1. Decide for each state s ∈ S if s ∈ W0.

2. If yes, construct a suitable winning strategy from s.

Further interesting question:

◮ Optimize construction of winning strategy (e.g., time complexity)

◮ Optimize parameters of winning strategy (e.g., size of memory)

Example

s0

s4

s1 s2

s3

Safety game (G,F) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0 and s4):

◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4

Example

s0

s4

s1 s2

s3

Safety game (G,F) with F = {s0, s1, s3, s4}, i.e., Occ(ρ) ⊆ F

A winning strategy for Player 0 (from state s0 and s4):

◮ From s0 choose s3 and from s4 choose s3

A winning strategy for Player 1 (from state s1 and s2):

◮ From s1 choose s2, from s2 choose s4

W0 = {s0, s3, s4}, W1 = {s1, s2}

Another Example

s0

s4s3

s1 s2

LTL game (G,ϕ) with ϕ = ✸s0 ∧✸s4 (visit s0 and s4)

Winning strategy for Player 0 from s0:

◮ From s0 to s3, from s3 to s4, and from s4 to s1.

Note: this strategy is not winning from s3 or s4.

Winning strategy for Player 0 from s3:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

Determinacy

Recall: the winning regions are disjoint, i.e., W0 ∩W1 = ∅

Question: Is every state winning for some player?

A game (G,φ) with G = (S, S0, E) is called determined if

W0 ∪W1 = S holds.

Remarks:

1. We will show that all automata theoretic games we consider here

are determined.

2. There are games which are not determined (e.g., concurrent

games: even/odd sum, paper-rock-scissors)

Strategy Types

In general, a strategy is a function f : S+ → S.

(Note that sometimes we might define f only partially.)

1. Computable or recursive strategies: f is computable

2. Finite-state strategies: f is computable with a finite-state

automaton meaning that f has bounded information about the

past (history).

3. Memoryless or positional strategies: f only depends on the

current state of the game (no knowledge about history of play)

Positional Strategies

Given a game (G,φ) with G = (S, S0, E), a strategy f : S+ → S is

called positional or memoryless if for all words w,w′ ∈ S+ with

w = s0 . . . sn and w′ = s′0 . . . s
′
m such that sn = s′m, f(w) = f(w′)

holds.

A positional strategy for Player 0 is representable as

1. a function f : S0 → S

2. a set of edges containing for every Player-0 state s exactly one

edge starting in s (and for every Player-1 state s′ all edges

starting in s′)

Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

Finite-state Strategies

A strategy automaton over a game graph G = (S, S0, E) is a

finite-state machine A = (M,m0, δ, λ) (Mealy machine) with input

and output alphabet S, where

◮ M is a finite set of states (called memory),

◮ m0 ∈ M is an initial state (the initial memory content),

◮ δ : M × S → M is a transition function (the memory update fct),

◮ λ : M × S → S is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

fA(s0 . . . sk) := λ(δ(m0, s0 . . . sk−1), sk) with sk ∈ S0

and the usual extension of δ to words: δ(m0, ǫ) = m0 and

δ(m0, s0...sk) = δ(δ(m0, s0...sk−1), sk). Any strategy f , such that

there exists an A with fA = f , is called finite-state strategy.

Recall Example

s0

s4s3

s1 s2

Objective: visit s0 and s4, i.e, {s0, s4} ⊆ Occ(ρ)

Winning strategy for Player 0 from s0, s3 and s4:

◮ From s0 to s3, from s4 to s3, and from s3 to s0 on first visit,

otherwise to s4.

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Extended Game

m0 m1

s0/s3
s1/−

s2/−

s4/s3

s0/s3
s1/−

s2/−

s3/s4
s4/s3

s3/s0

m0

s0

s4s3

s1 s2 s0

s4s3

m1

s1 s2

Note: the strategy in the extended grame graph is memoryless.

Reachability and Safety Games

Reachability and Safety Games

Theorem

Given a reachability game (G,F) with G = (S, S0, E) and F ⊆ S,

then the winning regions W0 and W1 of Player 0 and 1, respectively,

are computable, and both players have corresponding memoryless

winning strategies.

Proof.

Define

Attri0(F) := {s ∈ S | Player 0 can force a visit from s to F

in less than i moves}

Force Visit in Next Step

Given a set of states, compute the set of states ForceNext0(F) from

which of Player 0 can force to visit F in the next step. I.e., for each

state s ∈ ForceNext0(F) Player 0 can fix a strategy s.t. all plays

starting in s visit F in the first step.

ForceNext0(F) = {s ∈ S0 | ∃s
′ ∈ S : (s, s′) ∈ E ∧ s′ ∈ F}∪

{s ∈ S1 | ∀s
′ ∈ S : (s, s′) ∈ E → s′ ∈ F}

Computing the Attractor

Construction of Attri0(F):

Attr00(F) = F

Attri+1
0 (F) = Attri0(F) ∪ ForceNext0(Attr

i
0(F))

Example

s0

s4

s6

s1 s2

s3

s5 s7

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Attr20 = {s0, s3, s4, s7}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Attr20 = {s0, s3, s4, s7}

Attr30 = {s0, s3, s4, s6, s7}

Attr40 = {s0, s3, s4, s5, s6, s7}

Example

s0

s4

s6

s1 s2

s3

s5 s7 Attr00 = {s3, s4}

Attr10 = {s0, s3, s4}

Attr20 = {s0, s3, s4, s7}

Attr30 = {s0, s3, s4, s6, s7}

Attr40 = {s0, s3, s4, s5, s6, s7}

Computing the Attractor

Construction of Attri0(F):

Attr00(F) = F

Attri+1
0 (F) = Attri0(F) ∪ ForceNext0(Attr

i
0(F))

Then Attr00(F) ⊆ Attr10(F) ⊆ Attr20(F) ⊆ . . . and since S is finite,

there exists k ≤ |S| s.t. Attrk0(F) = Attrk+1
0 (F).

The 0-Attractor is defined as:

Attr0(F) :=
k⋃

i=0

Attri0(F)

Computing the Attractor

Construction of Attri0(F):

Attr00(F) = F

Attri+1
0 (F) = Attri0(F) ∪ ForceNext0(Attr

i
0(F))

Then Attr00(F) ⊆ Attr10(F) ⊆ Attr20(F) ⊆ . . . and since S is finite,

there exists k ≤ |S| s.t. Attrk0(F) = Attrk+1
0 (F).

The 0-Attractor is defined as:

Attr0(F) :=
k⋃

i=0

Attri0(F)

Claim: W0 = Attr0(F) and W1 = S \Attr0(F)

Duality Between Players

Assume we have a partition of the state space S = P0 ∪ P1 (i.e.,

P0 ∩ P1 = ∅) and we want to prove W0 = P0 and W1 = P1.

We want to prove P0 ⊇ W0, P0 ⊆ W0, P1 ⊇ W1, and P1 ⊆ W1.

Since we know that W0 ∩W1 = ∅ holds, it is sufficient to prove

P0 ⊆ W0 and P1 ⊆ W1.

P0 ⊆ W0 P1 ⊆ W1

S \ P0 ⊇ S \W0 S \ P1 ⊇ S \W1

P1 ⊇ S \W0 ⊇ W1 P0 ⊇ S \W1 ⊇ W0

P1 ⊇ W1 P0 ⊇ W0

0-Attractor

To show W0 = Attr0(F) and W1 = S \Attr0(F), we construct

winning strategies for Player 0 and 1.

0-Attractor

To show W0 = Attr0(F) and W1 = S \Attr0(F), we construct

winning strategies for Player 0 and 1.

Proof.

Attr0(F) ⊆ W0

We prove for every i and for every state s ∈ Attri0(F) that Player 0

has a positional winning strategy to reach F in ≤ i steps.

◮ (Base) s ∈ Attr00(F) = F

◮ (Induction) s ∈ Attri+1
0 (F)

If s ∈ Attri0(F), then we apply induction hypothesis.

Otherwise s ∈ ForceNext0(Attr
i
0(F)) \Attri0(F) and Player 0 can

force a visit to Attri0(F) in one step and from there she needs at

move i steps by induction hypothesis. So, F is reached after a

finite number of moves.

0-Attractor cont.

Proof cont.

S \ Attr0(F) ⊆ W1

Assume s ∈ S \ Attr0(F), then s /∈ ForceNext0(Attr0(F)) and

we have two cases:

(a) s ∈ S0 ∩ (S \ Attr0(F)): ∀s′ ∈ S . (s, s′) ∈ E → s′ 6∈ Attr0(F)

(b) s ∈ S1 ∩ (S \ Attr0(F)): ∃s′ ∈ S . (s, s′) ∈ E ∧ s′ 6∈ Attr0(F)

In S \ Attr0(F) Player 1 can choose edges according to (b) leading

again to S \Attr0(F) and by (a) Player 0 cannot escape from

S \ Attr0(F). So, F will be avoided forever.

W0 = Attr0(F) and W1 = S \Attr0(F)

Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7

Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7

Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7

Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7

Example of Attractor Strategy

s0

s4

s6

s1 s2

s3

s5 s7

Safety Games

Given a safety game (G,F) with G = (S, S0, E), i.e.,

φS = {ρ ∈ Sω | Occ(ρ) ⊆ F},

consider the reachability game (G,S \ F), i.e.,

φR = {ρ ∈ Sω | Occ(ρ) ∩ (S \ F) 6= ∅}.

Then, Sω \ φR = {ρ ∈ Sω | Occ(ρ) ∩ (S \ F) = ∅}

= {ρ ∈ Sω | Occ(ρ) ⊆ F}.

Player 0 has a safety objective in (G,F) ⇐⇒

Player 1 has a reachability objective in (G,S \ F).

So, W0 in the safety game (G,F) corresponds to W1 in the

reachability game (G,S \ F).

Summary

We know how to solve reachability and safety games by positional

winning strategies.

The strategies are

◮ Player 0: Decrease distance to F

◮ Player 1: Stay outside of Attr0(F)

In LTL, ✸F = reachability and ✷F = safety.

Next, ✷✸F = Büchi and ✸✷F = Co-Büchi.

Hierarchy

Reachability Safety

Obligation: Staiger-Wagner, Weak-Parity

Recurrence: Büchi Persistence: co-Büchi

Reactivity: Muller, Parity

1.

2.

3.

4.

Büchi and co-Büchi Games

Büchi Game

Given a Büchi game (G,F) over the game graph G = (S, S0, E) with

the set F ⊆ S of Büchi states, we aim to

◮ determine the winning regions of Player 0 and 1

◮ compute their respective winning strategies

Recall, Player 0 wins ρ iff she visits infinitely often states in F , i.e.,

φ = {ρ ∈ Sω | inf(ρ) ∩ F 6= ∅}.

Idea

Compute for i ≥ 1 the set Recuri0 of accepting states s ∈ F from

which Player 0 can force at least i revisits to F .

Then, we will show that

F ⊇ Recur10(F) ⊇ Recur20(F) ⊇ . . .

and we compute the winning region of Player 0 with

Recur0(F) :=
⋂

i≤1

Recuri0(F)

Since F is finite, there exists k such that Recur0(F) = Recurk0(F).

One-Step Attractor

First, we define Recur0 formally using a modified version of Attractor.

We count revisits, so we need the set of states from which Player 0

can force a revisit to F , i.e., state from which she can force a visit in

≥ 1 steps.

We define a slightly modified attractor:

A0
0 = ∅

Ai+1
0 = Ai

0 ∪ ForceNext0(A
i
0 ∪ F)

Attr+0 (F) =
⋃

i≥0

Ai
0

Visit versus Revisit

F

Attr+0 (F)

F

Attr0(F)

Recurrence Set

We define
Recur00(F) := F

Recuri+1
0 (F) := F ∩Attr+0 (Recur

i
0(F))

Recur0(F) :=
⋂

i≥0 Recur
i
0(F)

We show that there exists k such that Recur0(F) :=
⋂k

i≥0 Recur
i
0(F)

by proving Recuri+1
0 (F) ⊆ Recuri0(F) for all i ≥ 0.

Proof.

◮ i = 0: F ∩Attr+0 (F) ⊆ F

◮ i → i+ 1:

Recuri+1
0 (F) = F ∩Attr+0 (Recur

i
0(F)) ⊆ F ∩Attr+0 (Recur

i−1
0 (F))

= Recuri0(F) since (i) Recuri0(F) ⊆ Recuri−1
0 (F) by ind. hyp. and

(ii) Attr+0 is monotone.

Recurrence Set cont.

Recurrence Set cont.

We show that all states in Attr0(Recur0(F)) are winning for Player 0,

i.e., Attr0(Recur0(F)) ⊆ W0. We construct a memoryless winning

strategy for Player 0 for all states in Attr0(Recur0(F)).

Proof.

We know that there exists k such that

Recurk+1
0 (F) = Recurk0(F) = F ∩Attr+0 (Recur

k
0(F)). So,

◮ for s ∈ Recurk0(F) ∩ S0 Player 0 can choose an edge back to

Attr+0 (Recur
k
0(F)) and

◮ for s ∈ Recurk0(F) ∩ S1 all edges lead back to Attr+0 (Recur
k
0(F)).

For all states in Attr0(Recur0(F)) \Recur0(F), Player 0 can follow

the attractor strategy to reach Recur0(F).

Recurrence Set cont.

We show S \ Attr0(Recur0(F)) ⊆ W1.

Proof.

We know that there exists k such that Recur0(F) = Recurk0(F), i.e.,

S \ Attr0(Recur0(F)) = S \Attr0(Recur
k
0(F)).

Show: Player 1 can force ≤ i visits to F from s 6∈ Attr0(Recur
i
0(F))

i = 0: s 6∈ Attr0(F), so Player 1 can avoid visiting F at all.

i → i+ 1: s 6∈ Attr0(Recur
i+1
0 (F)).

◮ s 6∈ Attr0(Recur
i
0(F)), Player 1 plays according to ind. hypothese

◮ Otherwise, s ∈ Attr0(Recur
i
0(F)) \ Attr0(Recur

i+1
0 (F)) and

Player 1 can avoid Attr0(Recur
i+1
0 (F)).

Büchi games

We have shown that Player 0 has a (memoryless) winning strategy

from every state in Attr0(Recur0(F)), so Attr0(Recur0(F)) ⊆ W0.

And, Player 1 has a (memoryless) winning strategy from every state

in S \ Attr0(Recur0(F)), so S \Attr0(Recur0(F)) ⊆ W1. This implies

the following theorem.

Theorem

Given a Büchi game ((S, S0, E), F), the winning regions W0 and W1

are computable and form a partition, i.e., W0 ∪W1 = S. Both players

have memoryless winning strategies.

Co-Büchi Games

Given a Co-Büchi Game ((S, S0, E), F), i.e.,

φC = {ρ ∈ Sω | Inf(ρ) ⊆ F}

consider the Büchi Game ((S, S0, E), S \ F), i.e,

φB = {ρ ∈ Sω | Inf(ρ) ∩ (S \ F) 6= ∅}.

Then, Sω \ φB = {ρ ∈ Sω | Inf(ρ) ∩ (S \ F) = ∅}

= {ρ ∈ Sω | Inf(ρ) ⊆ F}.

Player 0 has a co-Büchi objective in (G,F) ⇐⇒

Player 1 has a Büchi objective in (G,S \ F).

So, W0 in the co-Büchi game (G,F) corresponds to W1 in the Büchi

game (G,S \ F).

Summary

We know how to solve Büchi and Co-Büchi games by positional

winning strategies.

In LTL,

◮ ✸F = reachability

◮ ✷F = safety

◮ ✷✸F = Büchi

◮ ✸✷F = Co-Büchi

Exercise

2. Consider the game graph shown in below and the following

winning conditions:

(a) Occ(ρ) ∩ {1} 6= ∅ and

(b) Occ(ρ) ⊆ {1, 2, 3, 4, 5, 6} and

(c) Inf(ρ) ∩ {4, 5} 6= ∅.

Compute the winning regions

and corresponding winning

strategies showing the interme-

diate steps (i.e., the Attractor

and Recurrence sets) of the

computation.

