Infinite Games: Motivation

Barbara Jobstmann

Cadence Design Systems Ecole Polytechnique Fédérale de Lausanne

Build Correct HW/SW Systems

- ▶ Use logic to specify correctness properties, e.g.:
 - every job sent to the printer is eventually printed
 - ▶ two jobs do not overlap (only one job is printed at a time)
 - ▶ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can be specified by automata and logical formulas.

Build Correct HW/SW Systems

- ▶ Use logic to specify correctness properties, e.g.:
 - every job sent to the printer is eventually printed
 - ▶ two jobs do not overlap (only one job is printed at a time)
 - ▶ a job that is canceled will be interupted

These are conditions on infinite sequences (system runs), and can be specified by automata and logical formulas.

- ▶ Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - ► SYNTHESIS: build a system that satisfies the specification

Example: Elevator

- ▶ Aim: build controller that moves elevator of 10 floor building
- ► Environment: Passengers pressing buttons to (1) call elevator and (2) request floor
- ► System state:
 - 1. Set of requested floor numbers: $\{0,1\}^{10}$
 - 2. Current position of lift: $\{1, \ldots, 10\}$
 - 3. Indicator whose turn is next (assuming lift and passengers act in alternation) $\{0,1\}$

Infinite Games

Two players:

- 1. Controller is Player 0
- 2. Passengers are Player 1

A play of a game is an infinite sequence of states of elevator transition system, where the two players choose moves alternatively.

How does the transition system look like?

- ▶ State space: $\{0,1\}^{10} \times \{1,\ldots,10\} \times \{0,1\}$
- ► Transitions:
 - ▶ Player 0: $(r_1 \dots r_{10}, j, 0) \rightarrow [r'_1 \dots r'_{10}, j', 1]$ s.t. $r'_j = 0$, $\forall_{i \neq j} r_i = r'_i$ Actions: open/closes doors and move lift
 - Player 1: $[r_1 \dots r_{10}, j, 1] \rightarrow (r'_1 \dots r'_{10}, j', 0)$ s.t. $j = j', \forall i : r_i \leq r'_i$ Actions: request floors

Desired Properties

- ▶ Every requested floor is eventually reached
- ▶ Floors along the way are served if requested
- ▶ If no floor is request, elevator goes to ground floor
- **...**

These are conditions on infinite sequences!

Player 0 (controller) wins the play if all conditions are satisfied independent of the choices Player 1 makes. This corresponds to finding a winning strategy for Player 0 in an infinite game.

Our Aim

Solution of the Synthesis Problem

- Decide whether there exists such a winning strategy -Realizability Problem
- 2. If "yes", then construct the system Synthesis Problem

Main result:

The synthesis problem is algorithmically solvable for finite-state systems with respect to specifications given as ω -automata or linear-time temporal logic.

Other: Nicer and more intuitive proofs for logics over trees

Outline

- 1. Terminology
- 2. Games
 - 2.1 Reachability games
 - 2.2 Buchi games
 - 2.3 Obligation games
 - 2.4 Muller games
- 3. About games and tree automata

Hierarchy

Reactivity: Muller, Parity 4. 3. Recurrence: Büchi Persistence: co-Büchi Obligation: Staiger-Wagner, Weak-Parity 2. Safety Reachability 1.

Terminology

Terminology

Two-player games between Player 0 and 1

An infinite game $\langle G, \phi \rangle$ consists of

- ightharpoonup a game graph G and
- \blacktriangleright a winning condition ϕ .

G defines the "playground", in which the two players compete.

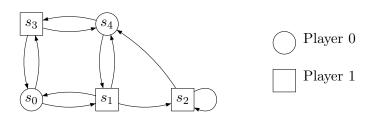
 ϕ defines which plays are won by Player 0.

If a play does not satisfy ϕ , then Player 1 wins on this play.

Game Graphs

A game graph is a tuple $G = \langle S, S_0, T \rangle$ where:

- \triangleright S is a finite set of states,
- ▶ $S_0 \subseteq S$ is the set of Player-0 states $(S_1 = S \setminus S_0 \text{ are the Player-1 states})$,
- ▶ $T \subseteq S \times S$ is a transition relation. We assume that each state has at least one successor.



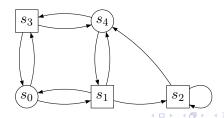
Plays

A play is an infinite sequence of states $\rho = s_0 s_1 s_2 \cdots \in S^{\omega}$ such that for all $i \geq 0 \ \langle s_i, s_{i+1} \rangle \in T$.

It starts in s_0 and it is built up as follows:

If $s_i \in S_0$, then Player 0 chooses an edge starting in s_i , otherwise Player 1 picks such an edge.

Intuitively, a token is moved from state to state via edges: From S_0 -states Player 0 moves the token, from S_1 -states Player 1 moves the token.



Winning Condition

The winning condition describes the plays won by Player 0.

A winning condition or winning objective ϕ is a subset of plays, i.e., $\phi \subseteq S^{\omega}$.

We use logical conditions (e.g., LTL formulas) or automata theoretic acceptance conditions to describe ϕ .

Example:

- $ightharpoonup \Box \diamondsuit s$ for some state $s \in S$
- ▶ All plays that stay within a safe region $F \subseteq S$ are in ϕ .
- ▶ Given a priority function $p: S \to \{0, 1, ..., d\}$, all plays in which the smallest priority visited is even.

Games are named after their winning condition, e.g., Safety game, Reachability game, LTL game, Parity game,...



Types of Games

Given a play ρ , we define

$$\operatorname{Inf}(\rho) = \{ s \in S \mid \forall i \ge 0 \exists j > i : s_j = s \}$$

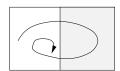
Given a set $F \subseteq S$,

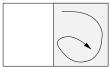
Reachability Game
$$\phi = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \cap F \neq \emptyset \}$$

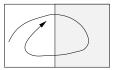
Safety Game
$$\phi = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \subseteq F \}$$

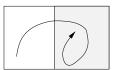
Büchi Game
$$\phi = \{ \rho \in S^{\omega} \mid Inf(\rho) \cap F \neq \emptyset \}$$

Co-Büchi Game
$$\phi = \{ \rho \in S^{\omega} \mid Inf(\rho) \subseteq F \}$$



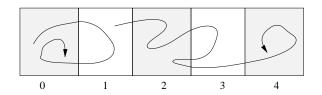






Types of Games

Given a priority function $p:S \to \{0,1,\ldots,d\}$ or an LTL formula φ Weak-Parity Game $\phi = \{\rho \in S^\omega \mid \min_{s \in \mathrm{Occ}(\rho)} p(s) \text{ is even}\}$ Parity Game $\phi = \{\rho \in S^\omega \mid \min_{s \in \mathrm{Inf}(\rho)} p(s) \text{ is even}\}$ LTL Game $\phi = \{\rho \in S^\omega \mid \rho \models \varphi\}$



We will refer to the type of a game and give F, p, or φ instead of defining ϕ .

We will also talk about Muller and Rabin games.

Strategies

A strategy for Player 0 from state s is a (partial) function

$$f: S^*S_0 \to S$$

specifying for any sequence of states $s_0, s_1, \dots s_k$ with $s_0 = s$ and $s_k \in S_0$ a successor state s_j such that $(s_k, s_j) \in T$.

A play $\rho = s_0 s_1 \dots$ is compatible with strategy f if for all s_i we have that $s_{i+1} = f(s_0 s_1 \dots s_i)$.

(Definitions for Player 1 are analogous.)

Given strategies f and g from s for Player 0 and 1, respectively, we denote by $G_{f,g}$ the (unique) play that is compatible with f and g.

Winning Strategies and Regions

Given a game (G, ϕ) with $G = (S, S_0, E)$, a strategy f for Player 0 from s is called a winning strategy if for all Player-1 strategies g from s, $G_{f,g} \in \phi$ holds. Analogously, a Player-1 strategy g is winning if for all Player-0 strategies f, $G_{f,g} \notin \phi$ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

Winning Strategies and Regions

Given a game (G, ϕ) with $G = (S, S_0, E)$, a strategy f for Player 0 from s is called a winning strategy if for all Player-1 strategies g from s, $G_{f,g} \in \phi$ holds. Analogously, a Player-1 strategy g is winning if for all Player-0 strategies f, $G_{f,g} \notin \phi$ holds.

Player 0 (resp. 1) wins from s if s/he has a winning strategy from s.

The winning regions of Player 0 and 1 are the sets

$$W_0 = \{ s \in S \mid \text{Player } 0 \text{ wins from } s \}$$

$$W_1 = \{ s \in S \mid \text{Player 1 wins from } s \}$$

Note each state s belongs at most to W_0 or W_1 . Otherwise pick winning strategies f and g from s for Player 0 and 1, respectively, then $G_{f,g} \in \phi$ and $G_{f,g} \notin \phi$: Contradiction.

Questions About Games

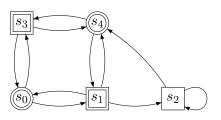
Solve a game (G, ϕ) with $G = (S, S_0, T)$:

- 1. Decide for each state $s \in S$ if $s \in W_0$.
- 2. If yes, construct a suitable winning strategy from s.

Further interesting question:

- ▶ Optimize construction of winning strategy (e.g., time complexity)
- ▶ Optimize parameters of winning strategy (e.g., size of memory)

Example



Safety game (G, F) with $F = \{s_0, s_1, s_3, s_4\}$, i.e., $\mathrm{Occ}(\rho) \subseteq F$

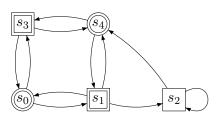
A winning strategy for Player 0 (from state s_0 and s_4):

▶ From s_0 choose s_3 and from s_4 choose s_3

A winning strategy for Player 1 (from state s_1 and s_2):

From s_1 choose s_2 , from s_2 choose s_4

Example



Safety game (G, F) with $F = \{s_0, s_1, s_3, s_4\}$, i.e., $\mathrm{Occ}(\rho) \subseteq F$

A winning strategy for Player 0 (from state s_0 and s_4):

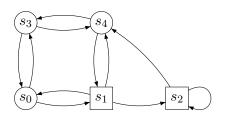
▶ From s_0 choose s_3 and from s_4 choose s_3

A winning strategy for Player 1 (from state s_1 and s_2):

▶ From s_1 choose s_2 , from s_2 choose s_4

$$W_0 = \{s_0, s_3, s_4\}, W_1 = \{s_1, s_2\}$$

Another Example



LTL game (G, φ) with $\varphi = \Diamond s_0 \wedge \Diamond s_4$ (visit s_0 and s_4)

Winning strategy for Player 0 from s_0 :

From s_0 to s_3 , from s_3 to s_4 , and from s_4 to s_1 .

Note: this strategy is not winning from s_3 or s_4 .

Winning strategy for Player 0 from s_3 :

From s_0 to s_3 , from s_4 to s_3 , and from s_3 to s_0 on first visit, otherwise to s_4 .

Determinacy

Recall: the winning regions are disjoint, i.e., $W_0 \cap W_1 = \emptyset$

Question: Is every state winning for some player?

A game (G, ϕ) with $G = (S, S_0, E)$ is called determined if

 $W_0 \cup W_1 = S$ holds.

Remarks:

- 1. We will show that all automata theoretic games we consider here are determined.
- 2. There are games which are not determined (e.g., concurrent games: even/odd sum, paper-rock-scissors)

Strategy Types

In general, a strategy is a function $f: S^+ \to S$. (Note that sometimes we might define f only partially.)

- 1. Computable or recursive strategies: f is computable
- 2. Finite-state strategies: f is computable with a finite-state automaton meaning that f has bounded information about the past (history).
- 3. Memoryless or positional strategies: f only depends on the current state of the game (no knowledge about history of play)

Positional Strategies

Given a game (G, ϕ) with $G = (S, S_0, E)$, a strategy $f : S^+ \to S$ is called positional or memoryless if for all words $w, w' \in S^+$ with $w = s_0 \dots s_n$ and $w' = s'_0 \dots s'_m$ such that $s_n = s'_m$, f(w) = f(w') holds.

A positional strategy for Player 0 is representable as

- 1. a function $f: S_0 \to S$
- 2. a set of edges containing for every Player-0 state s exactly one edge starting in s (and for every Player-1 state s' all edges starting in s')

Finite-state Strategies

A strategy automaton over a game graph $G = (S, S_0, E)$ is a finite-state machine $A = (M, m_0, \delta, \lambda)$ (Mealy machine) with input and output alphabet S, where

- ightharpoonup M is a finite set of states (called memory),
- ▶ $m_0 \in M$ is an initial state (the initial memory content),
- ▶ $\delta: M \times S \to M$ is a transition function (the memory update fct),
- ▶ $\lambda: M \times S \to S$ is a labeling function (called the choice function).

Finite-state Strategies

A strategy automaton over a game graph $G = (S, S_0, E)$ is a finite-state machine $A = (M, m_0, \delta, \lambda)$ (Mealy machine) with input and output alphabet S, where

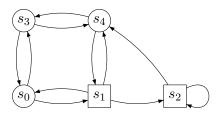
- \blacktriangleright M is a finite set of states (called memory),
- ▶ $m_0 \in M$ is an initial state (the initial memory content),
- ▶ $\delta: M \times S \to M$ is a transition function (the memory update fct),
- ▶ $\lambda: M \times S \to S$ is a labeling function (called the choice function).

The strategy for Player 0 computed by A is the function

$$f_A(s_0 \dots s_k) := \lambda(\delta(m_0, s_0 \dots s_{k-1}), s_k)$$
 with $s_k \in S_0$

and the usual extension of δ to words: $\delta(m_0, \epsilon) = m_0$ and $\delta(m_0, s_0...s_k) = \delta(\delta(m_0, s_0...s_{k-1}), s_k)$. Any strategy f, such that there exists an A with $f_A = f$, is called finite-state strategy.

Recall Example

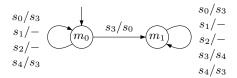


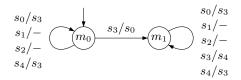
Objective: visit s_0 and s_4 , i.e, $\{s_0, s_4\} \subseteq Occ(\rho)$

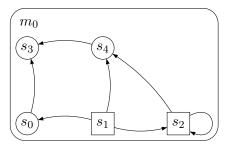
Winning strategy for Player 0 from s_0 , s_3 and s_4 :

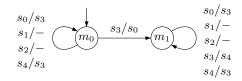
From s_0 to s_3 , from s_4 to s_3 , and from s_3 to s_0 on first visit, otherwise to s_4 . s_0/s_3

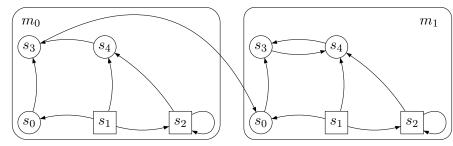
vise to
$$s_4$$
. s_0/s_3
 $s_1/ s_2/ s_4/s_3$
 s_1/s_0
 s_3/s_0
 $s_1/s_2/ s_3/s_4$
 s_4/s_3

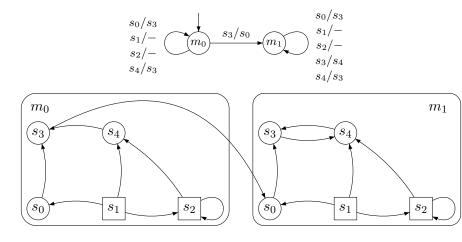












Note: the strategy in the extended grame graph is memoryless.

Reachability and Safety Games

Reachability and Safety Games

Theorem

Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq S$, then the winning regions W_0 and W_1 of Player 0 and 1, respectively, are computable, and both players have corresponding memoryless winning strategies.

Proof.

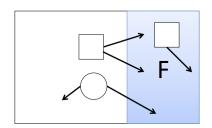
Define

 $\operatorname{Attr}_0^i(F) := \{ s \in S \mid \text{ Player 0 can force a visit from } s \text{ to } F$ in less than $i \text{ moves} \}$

Force Visit in Next Step

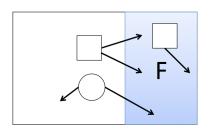
Given a set of states, compute the set of states $ForceNext_0(F)$ from which of Player 0 can force to visit F in the next step. I.e., for each state $s \in ForceNext_0(F)$ Player 0 can fix a strategy s.t. all plays starting in s visit F in the first step.

ForceNext₀(F) =
$$\{s \in S_0 \mid \exists s' \in S : (s, s') \in E \land s' \in F\} \cup \{s \in S_1 \mid \forall s' \in S : (s, s') \in E \rightarrow s' \in F\}$$



Force Visit in Next Step

ForceNext₀(F) =
$$\{s \in S_0 \mid \exists s' \in S : (s, s') \in E \land s' \in F\} \cup \{s \in S_1 \mid \forall s' \in S : (s, s') \in E \rightarrow s' \in F\}$$

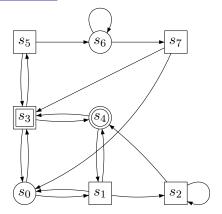


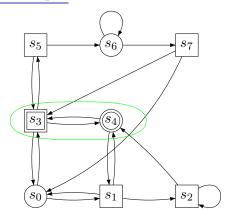
 $ForceNext_0(A \cup B) \supseteq ForceNext_0(A) \cup ForceNext_0(B)$

Computing the Attractor

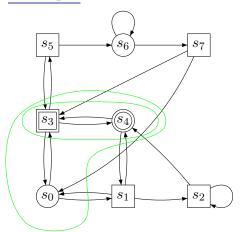
Construction of $\operatorname{Attr}_0^i(F)$:

$$\begin{array}{lcl} \operatorname{Attr}_0^0(F) & = & F \\ \operatorname{Attr}_0^{i+1}(F) & = & \operatorname{Attr}_0^{i}(F) \cup \operatorname{ForceNext}_0(\operatorname{Attr}_0^{i}(F)) \end{array}$$

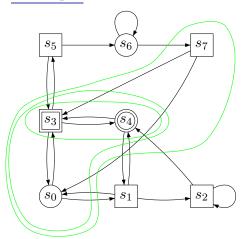




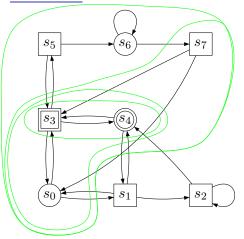
$$Attr_0^0 = \{s_3, s_4\}$$



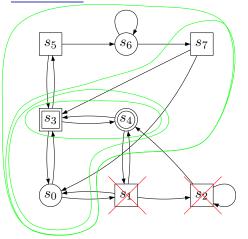
$$Attr_0^0 = \{s_3, s_4\} Attr_0^1 = \{s_0, s_3, s_4\}$$



$$\begin{aligned} & \text{Attr}_0^0 = \{s_3, s_4\} \\ & \text{Attr}_0^1 = \{s_0, s_3, s_4\} \\ & \text{Attr}_0^2 = \{s_0, s_3, s_4, s_7\} \end{aligned}$$



$$\begin{aligned} & \text{Attr}_0^0 = \{s_3, s_4\} \\ & \text{Attr}_0^1 = \{s_0, s_3, s_4\} \\ & \text{Attr}_0^2 = \{s_0, s_3, s_4, s_7\} \\ & \text{Attr}_0^3 = \{s_0, s_3, s_4, s_6, s_7\} \\ & \text{Attr}_0^4 = \{s_0, s_3, s_4, s_5, s_6, s_7\} \end{aligned}$$



$$Attr_0^0 = \{s_3, s_4\}$$

$$Attr_0^1 = \{s_0, s_3, s_4\}$$

$$Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

$$Attr_0^3 = \{s_0, s_3, s_4, s_6, s_7\}$$

$$Attr_0^4 = \{s_0, s_3, s_4, s_5, s_6, s_7\}$$

Computing the Attractor

Construction of $Attr_0^i(F)$:

$$\begin{array}{lcl} \operatorname{Attr}_0^0(F) & = & F \\ \operatorname{Attr}_0^{i+1}(F) & = & \operatorname{Attr}_0^{i}(F) \cup \operatorname{ForceNext}_0(\operatorname{Attr}_0^{i}(F)) \end{array}$$

Then $\operatorname{Attr}_0^0(F) \subseteq \operatorname{Attr}_0^1(F) \subseteq \operatorname{Attr}_0^2(F) \subseteq \ldots$ and since S is finite, there exists $k \leq |S|$ s.t. $\operatorname{Attr}_0^k(F) = \operatorname{Attr}_0^{k+1}(F)$.

The 0-Attractor is defined as:

$$\operatorname{Attr}_0(F) := \bigcup_{i=0}^{|S|} \operatorname{Attr}_0^i(F)$$

Computing the Attractor

Construction of $Attr_0^i(F)$:

$$\begin{array}{rcl}
\operatorname{Attr}_0^0(F) & = & F \\
\operatorname{Attr}_0^{i+1}(F) & = & \operatorname{Attr}_0^{i}(F) \cup \operatorname{ForceNext}_0(\operatorname{Attr}_0^{i}(F))
\end{array}$$

Then $\operatorname{Attr}_0^0(F) \subseteq \operatorname{Attr}_0^1(F) \subseteq \operatorname{Attr}_0^2(F) \subseteq \ldots$ and since S is finite, there exists $k \leq |S|$ s.t. $\operatorname{Attr}_0^k(F) = \operatorname{Attr}_0^{k+1}(F)$.

The 0-Attractor is defined as:

$$\operatorname{Attr}_0(F) := \bigcup_{i=0}^{|S|} \operatorname{Attr}_0^i(F)$$

Claim: $W_0 = \text{Attr}_0(F)$ and $W_1 = S \setminus \text{Attr}_0(F)$

Duality Between Players

Assume we have a partition of the state space $S = P_0 \cup P_1$ (i.e., $P_0 \cap P_1 = \emptyset$) and we want to prove $W_0 = P_0$ and $W_1 = P_1$.

We want to prove $P_0 \supseteq W_0$, $P_0 \subseteq W_0$, $P_1 \supseteq W_1$, and $P_1 \subseteq W_1$.

Since we know that $W_0 \cap W_1 = \emptyset$ holds, it is sufficient to prove $P_0 \subseteq W_0$ and $P_1 \subseteq W_1$.

$$P_{0} \subseteq W_{0}$$

$$P_{1} \subseteq W_{1}$$

$$S \setminus P_{0} \supseteq S \setminus W_{0}$$

$$P_{1} \supseteq S \setminus W_{0} \supseteq W_{1}$$

$$P_{1} \supseteq W_{1}$$

$$P_{0} \supseteq S \setminus W_{1} \supseteq W_{0}$$

$$P_{0} \supseteq W_{0}$$

0-Attractor

To show $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$, we construct winning strategies for Player 0 and 1.

<u>0-Attractor</u>

To show $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$, we construct winning strategies for Player 0 and 1.

Proof.

$$\operatorname{Attr}_0(F) \subseteq W_0$$

We prove for every i and for every state $s \in \operatorname{Attr}_0^i(F)$ that Player 0 has a positional winning strategy to reach F in $\leq i$ steps.

- (Base) $s \in \operatorname{Attr}_0^0(F) = F$
- ▶ (Induction) $s \in \operatorname{Attr}_0^{i+1}(F)$ If $s \in \operatorname{Attr}_0^i(F)$, then we apply induction hypothesis.

Otherwise $s \in \text{ForceNext}_0(\text{Attr}_0^i(F)) \setminus \text{Attr}_0^i(F)$ and Player 0 can force a visit to $\text{Attr}_0^i(F)$ in one step and from there she needs at move i steps by induction hypothesis. So, F is reached after a finite number of moves.

<u>0-Attractor cont.</u>

Proof cont.

$$S \setminus \operatorname{Attr}_0(F) \subseteq W_1$$

Assume $s \in S \setminus \text{Attr}_0(F)$, then $s \notin \text{ForceNext}_0(\text{Attr}_0(F))$ and we have two cases:

(a)
$$s \in S_0 \cap S \setminus \text{Attr}_0(F) \ \forall s' \in S \colon (s, s') \in E \to s' \not\in \text{Attr}_0(F)$$

(b)
$$s \in S_1 \cap S \setminus \operatorname{Attr}_0(F) \exists s' \in S : (s, s') \in E \land s' \not\in \operatorname{Attr}_0(F)$$

In $S \setminus \text{Attr}_0(F)$ Player 1 can choose edges according to (b) leading again to $S \setminus \text{Attr}_0(F)$ and by (a) Player 0 cannot escape from $S \setminus \text{Attr}_0(F)$. So, F will be avoided forever.

$$W_0 = \operatorname{Attr}_0(F)$$
 and $W_1 = S \setminus \operatorname{Attr}_0(F)$

Safety Games

Given a safety game (G, F) with $G = (S, S_0, E)$, i.e.,

$$\phi_S = \{ \rho \in S^\omega \mid \mathrm{Occ}(\rho) \subseteq F \},$$

consider the reachability game $(G, S \setminus F)$, i.e.,

$$\phi_R = \{ \rho \in S^\omega \mid \operatorname{Occ}(\rho) \cap (S \setminus F) \neq \emptyset \}.$$

Then,
$$S^{\omega} \setminus \phi_R = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \cap (S \setminus F) = \emptyset \}$$

= $\{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \subseteq F \}.$

Player 0 has a safety objective in $(G, F) \iff$

Player 1 has a reachability objective in $(G, S \setminus F)$.

So, W_0 in the safety game (G, F) corresponds to W_1 in the reachability game $(G, S \setminus F)$.

Summary

We know how to solve reachability and safety games by positional winning strategies.

The strategies are

- \triangleright Player 0: Decrease distance to F
- ▶ Player 1: Stay outside of $Attr_0(F)$

In LTL, $\Diamond F$ = reachability and $\Box F$ = safety.

Next, $\Box \Diamond F = \text{B\"{u}chi}$ and $\Diamond \Box F = \text{Co-B\"{u}chi}$.

Exercise

1. Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq Q$, give an algorithm that computes the 0-Attractor(F) in time O(|E|).

Exercise

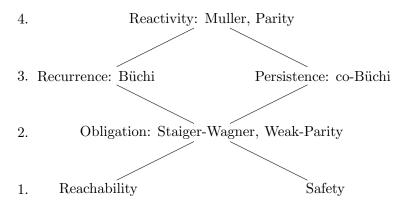
1. Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq Q$, give an algorithm that computes the 0-Attractor(F) in time O(|E|).

Solution:

- 1. Preprocessing: Compute for every state $s \in S_1$ outdegree out(s)
- 2. Set n(s) := out(s) for each $s \in S_1$
- 3. To breadth-first search backwards from F with the following conventions:
 - ightharpoonup mark all $s \in F$
 - ▶ mark $s \in S_0$ if reached from marked state
 - ▶ mark $s \in S_1$ if n(s) = 0, other set n(s) := n(s) 1.

The marked vertices are the ones of $Attr_0(F)$.

Hierarchy



Büchi and co-Büchi Games

Büchi Game

Given a Büchi game (G, F) over the game graph $G = (S, S_0, E)$ with the set $F \subseteq S$ of Büchi states, we aim to

- \triangleright determine the winning regions of Player 0 and 1
- compute their respective winning strategies

Recall, Player 0 wins ρ iff she visits infinitely often states in F, i.e., $\phi = \{ \rho \in S^\omega \mid \inf(\rho) \cap F \neq \emptyset \}.$

<u>Idea</u>

Compute for $i \geq 1$ the set Recur_0^i of accepting states $s \in F$ from which Player 0 can force at least i revisits to F.

Then, we will show that

$$F \supseteq \operatorname{Recur}_0^1(F) \supseteq \operatorname{Recur}_0^2(F) \supseteq \dots$$

and we compute the winning region of Player 0 with

$$\mathrm{Recur}_0(F) := \bigcap_{i < 1} Recur_0^i(F)$$

Again, since F is finite, there exists k such that $Recur_0(F) = Recur_0^k(F)$.

Claim:
$$W_0 = Attr_0(Recur_0(F))$$

Idea

Compute for $i \geq 1$ the set Recur_0^i of accepting states $s \in F$ from which Player 0 can force at least i revisits to F.

$$F \supseteq \operatorname{Recur}_0^1(F) \supseteq \operatorname{Recur}_0^2(F) \supseteq \dots$$

and we compute the winning region of Player 0 with

$$Recur_0(F) := \bigcap_{i \le 1} Recur_0^i(F)$$

Again, since F is finite, there exists k such that

 $Recur_0(F) = Recur_0^k(F)$.

Then, we will show that

Claim: $W_0 = Attr_0(Recur_0(F))$

First, we define Recur₀ formally using a modified version of Attractor.

One-Step Attractor

We count revisits, so we need the set of states from which Player 0 can force a revisit to F, i.e., state from which she can force a visit in ≥ 1 steps.

We define a slightly modified attractor:

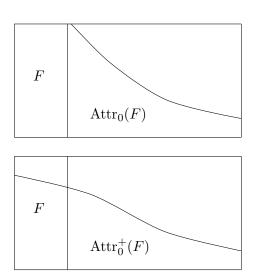
$$A_0^0 = \emptyset$$

 $A_0^{i+1} = A_0^i \cup \text{ForceNext}_0(A_0^i \cup F)$

$$\operatorname{Attr}_0^+(F) = \bigcup_{i \ge 0} A_0^i$$

 $\operatorname{Attr}_0^+(F)$ is the set of states from which Player 0 can force a revisit to F.

<u>Visit versus Revisit</u>



Recurrence Set

We define

$$\begin{aligned} &\operatorname{Recur}_0^0(F) := F \\ &\operatorname{Recur}_0^{i+1}(F) := F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F)) \\ &\operatorname{Recur}_0(F) := \bigcap_{i \geq 0} \operatorname{Recur}_0^i(F) \end{aligned}$$

We show that there exists k such that $\operatorname{Recur}_0(F) := \bigcap_{i \geq 0}^k \operatorname{Recur}_0^i(F)$ by proving $\operatorname{Recur}_0^{i+1}(F) \subseteq \operatorname{Recur}_0^i(F)$ for all $i \geq 0$.

Proof.

- i = 0: $F \cap \operatorname{Attr}_0^+(F) \subseteq F$
- $i \rightarrow i + 1$:

$$\operatorname{Recur}_0^{i+1}(F) = F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F)) \subseteq F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^{i-1}(F))$$

$$= \operatorname{Recur}_0^i(F) \text{ since (i) } \operatorname{Recur}_0^i(F) \subseteq \operatorname{Recur}_0^{i-1}(F) \text{ by ind. hyp. and}$$
(ii)
$$\operatorname{Attr}_0^+ \text{ is monotone.}$$

Recurrence Set cont.

We show that all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$ are winning for Player 0, i.e., $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. We construct a memoryless winning strategy for Player 0 for all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$.

Proof.

We know that there exists k such that

$$\operatorname{Recur}_0^{k+1}(F) = \operatorname{Recur}_0^k(F) = F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F)).$$
 So,

- ▶ for $s \in \operatorname{Recur}_0^k(F) \cap S_0$ Player 0 can choose an edge back to $\operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F))$ and
- ▶ for $s \in \operatorname{Recur}_0^k(F) \cap S_1$ all edges lead back to $\operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F))$.

For all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \setminus \operatorname{Recur}_0(F)$, Player 0 can follow the attractor strategy to reach $\operatorname{Recur}_0(F)$.

Recurrence Set cont.

We show $S \setminus \text{Attr}_0(\text{Recur}_0(F)) \subseteq W_1$.

Proof.

Show: Player 1 can force $\leq i$ visits to F from $s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^i(F))$ i = 0: $s \notin \operatorname{Attr}_0(F)$, so Player 1 can avoid visiting F at all. $i \to i+1$: $s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$.

- ▶ $s \notin Attr_0(Recur_0^i(F))$, Player 1 plays according to ind. hypothese
- ▶ Otherwise, $s \in \operatorname{Attr}_0(\operatorname{Recur}_0^i(F)) \setminus \operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$ and Player 1 can avoid $\operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$.

Büchi games

We have shown that Player 0 has a (memoryless) winning strategy from every state in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. And, Player 1 has a (memoryless) winning strategy from every state in $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_1$. This implies the following theorem.

Theorem

Given a Büchi game $((S, S_0, E), F)$, the winning regions W_0 and W_1 are computable and form a partition, i.e., $W_0 \cup W_1 = S$. Both players have memoryless winning strategies.

Co-Büchi Games

Given a Co-Büchi Game $((S, S_0, E), F)$, i.e.,

$$\phi_C = \{ \rho \in S^\omega \mid \operatorname{Inf}(\rho) \subseteq F \}$$

consider the Büchi Game $((S, S_0, E), S \setminus F)$, i.e,

$$\phi_B = \{ \rho \in S^\omega \mid \operatorname{Inf}(\rho) \cap (S \setminus F) \neq \emptyset \}.$$

Then,
$$S^{\omega} \setminus \phi_B = \{ \rho \in S^{\omega} \mid \operatorname{Inf}(\rho) \cap (S \setminus F) = \emptyset \}$$

= $\{ \rho \in S^{\omega} \mid \operatorname{Inf}(\rho) \subseteq F \}.$

Player 0 has a co-Büchi objective in $(G, F) \iff$

Player 1 has a Büchi objective in $(G, S \setminus F)$.

So, W_0 in the co-Büchi game (G, F) corresponds to W_1 in the Büchi game $(G, S \setminus F)$.

Summary

We know how to solve Büchi and Co-Büchi games by positional winning strategies.

In LTL,

- $\triangleright \Diamond F = \text{reachability}$
- ightharpoonup $\Box F = \text{safety}$
- $ightharpoonup \Box \diamondsuit F = \text{B\"{u}chi}$
- $\triangleright \Diamond \Box F = \text{Co-B\"{u}chi}$

Exercise

- 2. Consider the game graph shown in below and the following winning conditions:
 - (a) $Occ(\rho) \cap \{1\} \neq \emptyset$ and
 - (b) $Occ(\rho) \subseteq \{1, 2, 3, 4, 5, 6\}$ and
 - (c) $Inf(\rho) \cap \{4, 5\} \neq \emptyset$.

Compute the winning regions and corresponding winning strategies showing the intermediate steps (i.e., the Attractor and Recurrence sets) of the computation.

