Automata on Finite Words



Definition

A nondeterministic finite automaton (NFA) over ¥ is a 4-tuple
A= (S 1,T, F), where:

e S is a finite set of states,
o /] C Sis a set of initial states,

o I'C S x> xS isa transition relation,

o ['C Sis asetof final states.

We denote T'(s,a) = {s' € S| (s,a,s") € T}. When T is clear from the

context we denote (s,a,s’) € T by s = 5.



Runs and Acceptance Conditions

Given a finite word w € X*, w = ajay ... oy, a run of A over w is a finite

sequence of states si,s2,...,Sp,Spa1 such that s; € I and s; SN s; 11 for
all 1 <17 <n.

. w
A run over w between s; and s; is denoted as s; — s;.

The run is said to be accepting if and only if s,+1 € F. If A has an

accepting run over w, then we say that A accepts w.
The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S C X* is recognizable if there exists an automaton A such

that S = L(A).



Determinism and Completeness

Definition 1 An automaton A = (S,I,T,F) is deterministic (DFA) if
and only if |I| <1 and, for each s € S and for each o € X, |T'(s, )| < 1.

If A is deterministic we write T'(s, ) = s’ instead of T'(s,a) = {s'}.

Definition 2 An automaton A = (S,I,T,F) is complete if and only if
|I| > 1 and, for each s € S and for each o € %, |T'(s, )| > 1.



Determinism and Completeness

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ay such that
L(A) = L(Ag).

Let Ay = (2°,{I},Ty,{G C S| GNF # (}), where

(S1,a,82) €Ty — Sy ={s|3Ise 1. (5,,5) €T}

This definition is known as subset construction.

Exercise 1 Let ¥ ={a,b} and L, = {uav | u,v € ¥*, |v| =n — 1}, for
each integer n > 1. Build an NFA that recognizes L,, and apply subset

construction to 1t.



Completion

Lemma 1 For every NFA A there exists a complete NFA A. such that
L(A) = L(A.).

Let A, = (SU{c},I,T., F), where o € S is a new sink state. The

transition relation 7, is defined as:
Vse SVaeX . (s,a,0) €T, — Vs'eS.(s,a,8)&T

and Va € X . (0,a,0) € T,.

Remark: The subset construction yields a complete deterministic

automaton, with sink state 0.



Closure Properties

Theorem 2 Let Ay = (S1,11,T1, F1) and Ay = (So, Is,T5, F5) be two
NFA, such that S; NSy = (. There exists automata Ay, A, and An that
recognize the languages X* \ L(A1), L(A1) U L(A2), and L(A1) N L(A2),

respectivelly.

Let A" = (S",I', T, F’) be the complete and deterministic (why?)
automaton such that £(A;) = L(A4'), and Ay = (8", I',T",S"\ F').

Let A, = <Sl U Se, [1 Uy, Ty UTs, Fy U F2>.

Let An = <Sl X So, 11 X Iy, 1R, F1 X F2> where:

((s1,t1), a, (s2,t9)) € Th <= (s1,qa,82) € T7 and (t1, a,ta) € Th



On the Exponential Blowup of Complementation

Theorem 3 For everyn € N, n > 1, there exists an automaton A, with
size(A) = n + 1 such that no deterministic automaton with less than 2"

states recognizes the complement of L(A).

Let ¥ ={a,b} and L, = {uav | u,v € ¥*,|v| =n — 1}, for all n > 1.

There exists a NFA with exactly n + 1 states which recognizes L,,.

Suppose that B = (S,{so}, T, F), is a (complete) DFA with |S| < 2" that
accepts X%\ L.



On the Exponential Blowup of Complementation

[{w € ¥* | lw| =n}| =2" and |S|| < 2" (by the pigeonhole principle)

Uav ubv
= Juavy, ubvy . luavi| = |ubve| =n and s € S . sp — s and sg —— s

Let s, be the (unique) state of B such that s — s;.

Since |uavi| = n, then uaviu € L, = uaviu € L(B), i.e. s is not

accepting.

On the other hand, ubvou € L, = ubvou € L(B), i.e. s is accepting,

contradiction.



Projections

Let the input alphabet be > = X1 X X9. Any word w € X* can be uniquely

identified to a pair (w1, wq) € X7 x X5 such that |wi| = |we| = |w|.

The projection operations are
pri(L) ={v e X5 | (u,v) € L, for some u € 37} and
pro(L) = {u € X7 | (u,v) € L, for some v € 33}.

Theorem 4 If the language L C (31 X X2)* is recognizable, then so are
the projections pr;(L), fori=1,2.



Remark

The operations of union, intersection and complement correspond to the

boolean V, A and —.

The projection corresponds to the first-order existential quantifier dx.



The Myhill-Nerode Theorem

Let A= (S,I,T,F) be an automaton over the alphabet >*.

Define the relation ~4 C >* x X* as:

U~V = Vs, €S .55 = 555

~ 4 is an equivalence relation of finite index

Let L C X* be a language. Define the relation ~;C »* x X* as:

un~Lv <= VweX . uwe L < vw € L]

~ 1, 18 an equivalence relation



The Myhill-Nerode Theorem

Theorem 5 A language L C X% is recognizable iff ~1 is of finite index.

“=" Suppose L = L(A) for some automaton A.
~ 4 is of finite index.
for all u,v € X* we have u ~4 v = u ~ v

index of ~; < index of ~4 < 0



The Myhill-Nerode Theorem

“<” ~y is an equivalence relation of finite index, and let |u] denote the

equivalence class of u € >*.

A =(S,I,T,F), where:
o S={lu] | ueX,
o 1=
o [u] %] = ua~p v,

o '={|u] | ue L}

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.



Pumping Lemma

Lemma 2 (Pumping) Let A= (S,1,T,F) be a finite automaton with
size(A) =n, and w € L(A) be a word of length |w| > n. Then there exists
three words u,v,t € X* such that:

1. |v| >1,
2. w = uvt and,

3. for all k > 0, uv*t € L(A).



Example

L ={a™b" | n € N} is not recognizable:

Suppose that there exists an automaton A with size(A) = N, such that
L=L(A).

Consider the word a™b"” € L = L(A), such that 2n > N.

There exists words u, v, w such that |v| > 1, uvw = a™b" and wv*w € L for
all £k > 1.

e v=2a", for some m € N.
e v =2a"bP for some m,p € N.

e v=>0" for some m € N.



Decidability

Given nondeterministic finite automata A and B:
e Emptiness L(A) =07
e Inclusion L(A) C L(B) ?
e Equivalence L(A) = L(B) ?
e Infinity |L(A)| < 0 7

e Universality £(A) = ¥* 7



Emptiness

Theorem 6 Let A be an automaton with size(A) =n. If L(A) £ 0, then
there exists a word of length less than n that is accepted by A.

Let u be the shortest word in L(A).

If |u| < n we are done.

If |u| > n, there exists ui,v,us € X* such that |v| > 1 and ujvus = u.

Then uijus € L(A) and |ujus| < |ujvus|, contradiction.



Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.

Although complexity varies from problem to problem:
e Emptiness (L£(A) = 00) belongs to NLOGSPACE
e Inclusion (L(A) C L(B)) is PSPACE-complete
e Equivalence (L(A) = L(B)) is PSPACE-complete
e Infinity (|£(A)| < oo) belongs to NLOGSPACE
e Universality (£L(A) = X*) is PSPACE-complete



Automata on Finite Words and WS1S



WSI1S

Let ¥ = {a,b,...} be a finite alphabet.

Any finite word w € ¥* induces the finite sets p, = {p | w(p) = a}.
e v <y : xisless than y,
e s(x) =1y : y is the successor of x,

e p.(x) : a occurs at position z in w

Remember that < and s(.) can be defined one from another.



Problem Statement

Given a sentence p in WS1S, let L(p) = {w | my, &= ¢}, where
my, = (dom(w), {Pa}ecy, <), such that:

o dom(w)=140,1,...,n—1},

e p, =1{x € dom(w) | w(x) = a}l,

A language L C Y* is said to be WS15-definable iff there exists a WS1S
sentence ¢ such that L = L(y).

1. Given A build ¢4 such that £(A) = L(p)
2. Given ¢ build A, such that L(A) = L(p)

The recognizable and WS1S-definable languages coincide



Coding of X

Let m € N be the smallest number such that || < 2™.
W.lo.g. assume that ¥ ={0,1}™, and let X1 ... X,, Zp11,...2m

A word w € X* induces an interpretation of Xy ... Xy, Xpi1, ... Tm:
® i € 1y(X;) iff the j-th element of w; is 1, and

® y(x;) =1 iff w; has 1 on the j-th position and, for all k£ # ¢ wy, has 0
on the j-th position.



Example

Example 1 Let 3 = {a,b,c,d}, encoded as a = (00), b = (01), ¢ = (10)
and d = (11). Then the word abbaacdd induces the valuation
X, = {5,6,7}, Xo = {1,2,6,7}. O



From Automata to Formulae

Let A= (S,I,T,F) with S = {s1,...,5p}, and X = {0,1}".
Build ®4(X1, ..., Xy,) such that Vw € ¥* . w € L(A) <= [P4]," = true

Let a € {0,1}™. Let ®,(z, X1,...,X,,) be the conjunction of:
e X;(x) if the a; =1, and

e —X;(x) otherwise.

For all w € ¥* we have m,, =Vz . \/, 5 B4(z, X)

Notice that &, A & is unsatisfiable, for a # b.



Coding of S

Let {Y71,...,Y,} be set variables.

Y; is the set of all positions labeled by A with state s; during some run

Os(Yi,...,Y,) : Vz. \/ Yilz) A N\ —32.Yi(2) AY(2)
1<:<p I<i<y<p



Coding of [

Every run starts from an initial state:

®r(Yy,...,Y,) : JavVy . x <yA \/ Yi(z)
s, el



Coding of T

. o« e a
Consider the transition s; — s;:

Op(X1,..., Xm, Y1,...,Yp) 1 Vo . alast(x)\Y;(2)APq(2, X) = \/  Yj(s(x))
eT

(Si7a78j)

where last(z) =Vy .y < x



Coding of F

The last state on the run is a final state:

Op(Y1,...,Y,) @ o last(z) A \/ Yi(a
S;EF

@A:HYl...HYp.CI)S/\CDIACI)TACDF



From Formulae to Automata

Let ®(X1,...,Xp, Zp+1,...,Tm) be a WS1S formula.

Build an automaton Ag such that Vw € ¥* . w € L(A) < [®]"* = true

Lw

Let ®(X1, Xo,x3,14) be:
1. X1(£B3>
2. x3 < 24

3. X1 =X



From Formulae to Automata

Ag is built by induction on the structure of &:
o for ® = 1 A ¢p2 we have L(Ag) = L(Ap,) N L(Ay,)
o for ® = ¢1 V ¢p2 we have L(Ag) = L(Ap,) U L(As,)

o for & = —¢ we have L(As) = L(Ay)
o for & =3X; . ¢, we have L(Ag) = pri(L(Ay)).



Consequences

Theorem 8 A language L C X* is definable in WS1S iff it is recognizable.

Corollary 1 The SAT problem for WS1S s decidable.

Exercise 2 Prove that there is no WS18 formula p(x,y, z) that defines
the relation {(m,n,p) € N> | m +n = p}.



Regular, Star Free and Aperiodic Languages



Regular Languages

Let X be an alphabet, and X,Y C »*

XY = {zy|rzeXandyeY}
X* = A{z1...2p | n>0, 21,...,2, € X}

The class of reqular languages R(X) is the smallest class of languages
L C Y>* such that:

e . {e} e R(Y)
o {a} e R(X), forall a € X
o if X,Y € R(X) then X UY, XY, X* € R(X)



Regular, rational and recognizable languages

Theorem 9 (Kleene) A set of finite words is recognizable if and only if

it 18 reqular.

Proof in every textbook.

Rational = regular, in older books e.g.

Samuel Eilenberg. Automata, Languages and Machines. Academic Press, 1974

NB: if regular and recognizable languages are the same, then regular

languages are closed under boolean operations



Star Free Languages

The class of star-free languages is the smallest class SF'(X) of languages
L € X>* such that:

e ).{e} € SF(X) and {a} € SF(X) for all a € &
e if X,Y € SF(X) then XUY, XY, X € SF(X) (hence XNY € SF(X))

Example 2
o X% = () is star-free

o if BC X, then ¥*BY* = |Jyc g X"0X" is star-free

o if BCYX, then B¥ = X*BY* is star-free

o if ¥ ={a,b}, then (ab)* = bX* U X*a U X*aaX* U X*bbX* is star-free

Exercise 3 If ¥ = {a,b,c}, write (ab)* as a star-free language.



SF = FOL (= AP)

FOL

Schutzenberger’s
Theorem



The Splitting Lemma

Lemma 3 Let A, B C X be subalphabets such that AN B = 0. Then, for
each star-free language L € SF(X), we have:

where a; € A and K;,L; € SF(B), for all1 <i<n.

W.l.o.g. we prove the case A = {a} (why?) by induction on L:
o If L ={a} then L N B*AB* = {e}a{e}.
o If L ={d'}, d’ # a, then LN B*AB* = (al).
o If L =% then LN B*AB* = B*AB~*.
o If L = L, ULy then LN B*AB* = (L, N B*AB*) U (Ly N B*AB*).



The Splitting Lemma

® IfLZLl 'L2 then
LN B*AB* = (L1 M B*) ° (L2 M B*AB*) U (L1 M B*AB*) : (L2 M B*)

o Else, if L = ¥*\ L', by the inductive hypothesis L' = |J,,,, K;aL;.

We assume w.l.o.g that {K/}"_, form a patition of B*:

— if Kj N K # 0, rewrite
KgaLguK;aL; — (K;\K;)aL;u(K; \K,g)aL; u(KémK})a(LQUL;)
— if Uiz Ki € B, add (B*\ U;_; Kj)ad to {KjaL;}i,

(*\ L')n B*aB* = | | Kja(B*\ L))
1=1



Subword Formulae

Let w = apay ...ap—1 be a finite word, and w(i, j) = a;a;41...a;—1 be a
subword of w, 0 <i<nand 0 <5< n,i<].

Proposition 3 For each FOL sentence o there exists a formula p|x,y]
such that, for each w € ¥* and each 0 <1 < j < |w|:

My

By induction on the structure of :

(m@)lz,yl = —(elz,y])
(e Az, y] = (elz,y]) A (Plz,y))
(Fz.p)z,y] = Fz.x<zAz<yAypz,y]



Star Free Languages are FOL-definable

For each L € SF(X), there exists an FOL sentence ¢y, such that:
L={weX™|[my oL}
By induction on the structure of L:
D={we>X*|my, =L} {a} ={w € ¥* | my, = pa(0) A last(0)}
XUY={weX*|m,FoxVey} X={we¥ |my} -px}

X - Y={weX | m,Edydz . 0<y < zApx|[0,y] ANoyly, z] Alast(z)}



FOL-definable Languages are Star Free

Let ¢ be an FOL formula with F'V () =V and let ¥y = X x {0,1}V.

*

Encode each pair (w,¢), with ¢ : V' — [0, |w| — 1] as a word (w,t) € X}

(ag...ax_1,t) = (ag,70) .. (Ak_1,Tk—-1), Ti(x) =1 <= 1(x) =1

and let My = {(w,¢) |w e X*0: V = [0, |w| — 1]}.
Let X377 = {(a,7) |a € &, 7(x) =i}, for i = 0,1

My = N SFO D) € SF(Sy)
eV



FOL-definable Languages are Star Free

[pa(z)]y, = {(w,0) eNv|w=aqg...ap_1, a,,) = a}
[ <yly = {(w,0) e Nv[uz)<(y)}
lovyly = loly Uldly
[[ﬁQb:v = Ny \ [[¢]]V
Bz . ¢ly = {(w,)) eNv [Fie0|lw—1]. (w,fz i) €[]y

Proposition 4 If p € FOL and FV (¢) CV, then [¢]\, € SF(Zv).

[pa(@)]y = My NO(EES-{(a,7) | 7(z) =1} - %)
[ <y]ly, = Nyn(EE-Z3E- 5% E?‘J/zl LX)



FOL-definable Languages are Star Free

Proposition 5 If ¢ € FOL and FV (p) CV, then |¢],, € SF(Xy).

If p =dx . ¢, we assume w.l.o.g. that z € V («a-conversion)

= U, KlaL’ (Splitting Lemma)

17711

where K, L € SF(X7 Vu{ ;) and a; € EVu{ , forall 1 <i<n

Let 7 : E%/u{ , — Xy be the bijective (why?) renaming (a,7) = (a,7lv)
Let K; = n(K}), Li = (L)) and a; = (a,7ly) <= a; = (a,7)

[[3:6 . ¢]]V = U Kz-a,iLz
1=1

NB: SF languages are preserved by bijective renamings (why bijective 7)



Aperiodic Languages

Definition 3 A language L C X* is said to be aperiodic iff:
Ing¥n > noVu,v,t € X¥ . ww™ € L <— w"Tte L

no 1S called the index of L.

FExample 38 0*1" is aperiodic. Let ng = 2. We have three cases:
1. u,v € 0" andt € 0°1* :
Vn>2.uv"t € L
2. ue0*,ve0T1lT andt € 1* :
Vn>2.uw"teg L

3. ue01",vel” andt e 1* :

Vn>2.uw"t €L



Periodic Languages

Conversely, a language L C »* is said to be periodic iff:

Vnodn > ngJu,v,t € X . (uv™t € LAuwv" ™t € L)V (uv™t € LAuw™ 't & L)

Example 4 (00)*1 is periodic.

Given ng take the next even number n > ng, u =¢, v =0 andt =1. Then
wv™ € (00)*1 and uwv™ Tt ¢ (00)*1. O

Exercise 4 Is (00)*1 WS1S-definable ¢

Ezxercise 5 Is the language (ab)* periodic or aperiodic ?



The Big Picture

/ \
FOL

Schutzenberger’s /
Theorem /



From Star-free to Aperiodic

Proposition 6 If L € SF(X) then L is aperiodic.

Prove the existence of an integer N (L) such that
Vn > N(L) VuVovt . wo™ € L < w" 't e L

. Suppose v # €. By induction on the structure of L:
e ): N() =0, since Vn >0 . uv™t € L
e {a},aeX: N{a}) =2, since Vn > 2 . uv™t ¢ L
e X : N(X)= N(X), trivial
e XUY : N(XUY)=max{N(X),N(Y)}, trivial

e XY : NXY)=N(X)+ N(Y)+ 1, since for all
n=mn;+ne+1>N(X)+ N(Y)+ 1, we have either ny > N(X) or
no > N(Y). Then uv™t = (uv™r)(sv™t), where rs = v and
w™r € X, sv™teY. Ifng > NX), ww™r e X = w" ™ e XY O



