Automata on Finite Words

Definition

A nondeterministic finite automaton (NFA) over Σ is a 4 -tuple $A=\langle S, I, T, F\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T \subseteq S \times \Sigma \times S$ is a transition relation,
- $F \subseteq S$ is a set of final states.

We denote $T(s, \alpha)=\left\{s^{\prime} \in S \mid\left(s, \alpha, s^{\prime}\right) \in T\right\}$. When T is clear from the context we denote $\left(s, \alpha, s^{\prime}\right) \in T$ by $s \xrightarrow{\alpha} s^{\prime}$.

Determinism and Completeness

Definition 1 An automaton $A=\langle S, I, T, F\rangle$ is deterministic (DFA) iff $\|I\| \leq 1$ and, for each $s \in S$ and for each $\alpha \in \Sigma,\|T(s, \alpha)\| \leq 1$.

If A is deterministic we write $T(s, \alpha)=s^{\prime}$ instead of $T(s, \alpha)=\left\{s^{\prime}\right\}$.

Definition 2 An automaton $A=\langle S, I, T, F\rangle$ is complete iff $\|I\| \geq 1$ and, for each $s \in S$ and for each $\alpha \in \Sigma,\|T(s, \alpha)\| \geq 1$.

Runs and Acceptance Conditions

Given a finite word $w \in \Sigma^{*}, w=\alpha_{1} \alpha_{2} \ldots \alpha_{n}$, a run of A over w is a finite sequence of states $s_{1}, s_{2}, \ldots, s_{n}, s_{n+1}$ such that $s_{1} \in I$ and $s_{i} \xrightarrow{\alpha_{i}} s_{i+1}$ for all $1 \leq i \leq n$.

A run over w between s_{i} and s_{j} is denoted as $s_{i} \xrightarrow{w} s_{j}$.

The run is said to be accepting iff $s_{n+1} \in F$. If A has an accepting run over w, then we say that A accepts w.

The language of A, denoted $\mathcal{L}(A)$ is the set of all words accepted by A.

A set of words $S \subseteq \Sigma^{*}$ is recognizable if there exists an automaton A such that $S=\mathcal{L}(A)$.

Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each input word.

Proposition 2 If A is complete, then it has at least one run for each input word.

Determinization

Theorem 1 For every NFA A there exists a DFA A_{d} such that $\mathcal{L}(A)=\mathcal{L}\left(A_{d}\right)$.

Let $A_{d}=\left\langle 2^{S},\{I\}, T_{d},\{G \subseteq S \mid G \cap F \neq \emptyset\}\right\rangle$, where

$$
\left(S_{1}, \alpha, S_{2}\right) \in T_{d} \Longleftrightarrow S_{2}=\left\{s^{\prime} \mid \exists s \in S_{1} \cdot\left(s, \alpha, s^{\prime}\right) \in T\right\}
$$

This definition is known as subset construction.

Exercise 1 Let $\Sigma=\{a, b\}$ and $L_{n}=\left\{u a v\left|u, v \in \Sigma^{*},|v|=n-1\right\}\right.$, for each integer $n \geq 1$. Build an NFA that recognizes L_{n} and apply subset construction to it.

Completion

Lemma 1 For every NFA A there exists a complete NFA A_{c} such that $\mathcal{L}(A)=\mathcal{L}\left(A_{c}\right)$.

Let $A_{c}=\left\langle S \cup\{\sigma\}, I, T_{c}, F\right\rangle$, where $\sigma \notin S$ is a new sink state. The transition relation T_{c} is defined as:

$$
\forall s \in S \forall \alpha \in \Sigma .(s, \alpha, \sigma) \in T_{c} \Longleftrightarrow \forall s^{\prime} \in S .\left(s, \alpha, s^{\prime}\right) \notin T
$$

and $\forall \alpha \in \Sigma .(\sigma, \alpha, \sigma) \in T_{c}$.

Remark: The subset construction yields a complete deterministic automaton, with sink state \emptyset.

Closure Properties

Theorem 2 Let $A_{1}=\left\langle S_{1}, I_{1}, T_{1}, F_{1}\right\rangle$ and $A_{2}=\left\langle S_{2}, I_{2}, T_{2}, F_{2}\right\rangle$ be two $N F A$, such that $S_{1} \cap S_{2}=\emptyset$. There exists automata $\overline{A_{1}}, A_{\cup}$ and A_{\cap} that recognize the languages $\Sigma^{*} \backslash \mathcal{L}\left(A_{1}\right)$, $\mathcal{L}\left(A_{1}\right) \cup \mathcal{L}\left(A_{2}\right)$, and $\mathcal{L}\left(A_{1}\right) \cap \mathcal{L}\left(A_{2}\right)$, respectivelly.

Let $A^{\prime}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, F^{\prime}\right\rangle$ be the complete and deterministic (why?) automaton such that $\mathcal{L}\left(A_{1}\right)=\mathcal{L}\left(A^{\prime}\right)$, and $\bar{A}_{1}=\left\langle S^{\prime}, I^{\prime}, T^{\prime}, S^{\prime} \backslash F^{\prime}\right\rangle$.

Let $A_{\cup}=\left\langle S_{1} \cup S_{2}, I_{1} \cup I_{2}, T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle$.

Let $A_{\cap}=\left\langle S_{1} \times S_{2}, I_{1} \times I_{2}, T_{\cap}, F_{1} \times F_{2}\right\rangle$ where:

$$
\left(\left\langle s_{1}, t_{1}\right\rangle, \alpha,\left\langle s_{2}, t_{2}\right\rangle\right) \in T_{\cap} \Longleftrightarrow\left(s_{1}, \alpha, s_{2}\right) \in T_{1} \text { and }\left(t_{1}, \alpha, t_{2}\right) \in T_{2}
$$

On the Exponential Blowup of Complementation

Theorem 3 For every $n \in \mathbb{N}, n \geq 1$, there exists an automaton A, with size $(A)=n+1$ such that no deterministic automaton with less than 2^{n} states recognizes the complement of $\mathcal{L}(A)$.

Let $\Sigma=\{a, b\}$ and $L_{n}=\left\{u a v\left|u, v \in \Sigma^{*},|v|=n-1\right\}\right.$, for all $n \geq 1$.

There exists a NFA with exactly $n+1$ states which recognizes L_{n}.

Suppose that $B=\left\langle S,\left\{s_{0}\right\}, T, F\right\rangle$, is a (complete) DFA with $\|S\|<2^{n}$ that accepts $\Sigma^{*} \backslash L_{n}$.

On the Exponential Blowup of Complementation

$\left\|\left\{w \in \Sigma^{*}| | w \mid=n\right\}\right\|=2^{n}$ and $\|S\|<2^{n}$ (by the pigeonhole principle)
$\Rightarrow \exists u a v_{1}, u b v_{2} \cdot\left|u a v_{1}\right|=\left|u b v_{2}\right|=n$ and $s \in S \cdot s_{0} \xrightarrow{u a v_{1}} s$ and $s_{0} \xrightarrow{u b v_{2}} s$

Let s_{1} be the (unique) state of B such that $s \xrightarrow{u} s_{1}$.

Since $\left|u a v_{1}\right|=n$, then $\operatorname{uav}_{1} u \in L_{n} \Rightarrow u a v_{1} u \notin \mathcal{L}(B)$, i.e. s is not accepting.

On the other hand, $u b v_{2} u \notin L_{n} \Rightarrow u b v_{2} u \in \mathcal{L}(B)$, i.e. s is accepting, contradiction.

Projections

Let the input alphabet $\Sigma=\Sigma_{1} \times \Sigma_{2}$. Any word $w \in \Sigma^{*}$ can be uniquely identified to a pair $\left\langle w_{1}, w_{2}\right\rangle \in \Sigma_{1}^{*} \times \Sigma_{2}^{*}$ such that $\left|w_{1}\right|=\left|w_{2}\right|=|w|$.

The projection operations are
$\operatorname{pr}_{1}(L)=\left\{u \in \Sigma_{1}^{*} \mid\langle u, v\rangle \in L\right.$, for some $\left.v \in \Sigma_{2}^{*}\right\}$ and $p_{2}(L)=\left\{v \in \Sigma_{2}^{*} \mid\langle u, v\rangle \in L\right.$, for some $\left.u \in \Sigma_{1}^{*}\right\}$.

Theorem 4 If the language $L \subseteq\left(\Sigma_{1} \times \Sigma_{2}\right)^{*}$ is recognizable, then so are the projections $p_{i}(L)$, for $i=1,2$.

Remark

The operations of union, intersection and complement correspond to the boolean \vee, \wedge and \neg.

The projection corresponds to the first-order existential quantifier $\exists x$.

The Myhill-Nerode Theorem

Let $A=\langle S, I, T, F\rangle$ be an automaton over the alphabet Σ^{*}.

Define the relation $\sim_{A} \subseteq \Sigma^{*} \times \Sigma^{*}$ as:

$$
u \sim_{A} v \Longleftrightarrow\left[\forall s, s^{\prime} \in S . s \xrightarrow{u} s^{\prime} \Longleftrightarrow s \xrightarrow{v} s^{\prime}\right]
$$

\sim_{A} is an equivalence relation of finite index

Let $L \subseteq \Sigma^{*}$ be a language. Define the relation $\sim_{L} \subseteq \Sigma^{*} \times \Sigma^{*}$ as:

$$
u \sim_{L} v \Longleftrightarrow\left[\forall w \in \Sigma^{*} . u w \in L \Longleftrightarrow v w \in L\right]
$$

\sim_{L} is an equivalence relation

The Myhill-Nerode Theorem

Theorem 5 A language $L \subseteq \Sigma^{*}$ is recognizable iff \sim_{L} is of finite index.
" \Rightarrow " Suppose $L=\mathcal{L}(A)$ for some automaton A.
\sim_{A} is of finite index.
for all $u, v \in \Sigma^{*}$ we have $u \sim_{A} v \Rightarrow u \sim_{L} v$
index of $\sim_{L} \leq$ index of $\sim_{A}<\infty$

The Myhill-Nerode Theorem

$" \Leftarrow " \sim_{L}$ is an equivalence relation of finite index, and let $[u]$ denote the equivalence class of $u \in \Sigma^{*}$.
$A=\langle S, I, T, F\rangle$, where:

- $S=\left\{[u] \mid u \in \Sigma^{*}\right\}$,
- $I=[\epsilon]$,
- $[u] \xrightarrow{\alpha}[v] \Longleftrightarrow u \alpha \sim_{L} v$,
- $F=\{[u] \mid u \in L\}$.

Isomorphism and Canonical Automata

Two automata $A_{i}=\left\langle S_{i}, I_{i}, T_{i}, F_{i}\right\rangle, i=1,2$ are said to be isomorphic iff there exists a bijection $h: S_{1} \rightarrow S_{2}$ such that, for all $s, s^{\prime} \in S_{1}$ and for all $\alpha \in \Sigma$ we have :

- $s \in I_{1} \Longleftrightarrow h(s) \in I_{2}$,
- $\left(s, \alpha, s^{\prime}\right) \in T_{1} \Longleftrightarrow\left(h(s), \alpha, h\left(s^{\prime}\right)\right) \in T_{2}$,
- $s \in F_{1} \Longleftrightarrow h(s) \in F_{2}$.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.

Pumping Lemma

Lemma 2 (Pumping) Let $A=\langle S, I, T, F\rangle$ be a finite automaton with size $(A)=n$, and $w \in \mathcal{L}(A)$ be a word of length $|w| \geq n$. Then there exists three words $u, v, t \in \Sigma^{*}$ such that:

1. $|v| \geq 1$,
2. $w=u v t$ and,
3. for all $k \geq 0, u v^{k} t \in \mathcal{L}(A)$.

Example

$L=\left\{a^{n} b^{n} \mid n \in \mathbb{N}\right\}$ is not recognizable:

Suppose that there exists an automaton A with $\operatorname{size}(A)=N$, such that $L=\mathcal{L}(A)$.

Consider the word $a^{N} b^{N} \in L=\mathcal{L}(A)$.

There exists words u, v, w such that $|v| \geq 1, u v w=a^{N} b^{N}$ and $u v^{k} w \in L$ for all $k \geq 1$.

- $v=a^{m}$, for some $m \in \mathbb{N}$.
- $v=a^{m} b^{p}$ for some $m, p \in \mathbb{N}$.
- $v=b^{m}$, for some $m \in \mathbb{N}$.

Decidability

Given nondeterministic finite automata A and B :

- Emptiness $\mathcal{L}(A)=\emptyset$?
- Inclusion $\mathcal{L}(A) \subseteq \mathcal{L}(B)$?
- Equivalence $\mathcal{L}(A)=\mathcal{L}(B)$?
- Infinity $\|\mathcal{L}(A)\|<\infty$?
- Universality $\mathcal{L}(A)=\Sigma^{*}$?

Emptiness

Theorem 6 Let A be an automaton with size $(A)=n$. If $\mathcal{L}(A) \neq \emptyset$, then there exists a word of length less than n that is accepted by A.

Let u be the shortest word in $\mathcal{L}(A)$.

If $|u|<n$ we are done.

If $|u| \geq n$, there exists $u_{1}, v, u_{2} \in \Sigma^{*}$ such that $|v|>1$ and $u_{1} v u_{2}=u$.

Then $u_{1} u_{2} \in \mathcal{L}(A)$ and $\left|u_{1} u_{2}\right|<\left|u_{1} v u_{2}\right|$, contradiction.

Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems are decidable for automata on finite words.

Although complexity varies from problem to problem:

- Emptiness $(\mathcal{L}(A)=\emptyset)$ belongs to NLOGSPACE
- Inclusion $(\mathcal{L}(A) \subseteq \mathcal{L}(B))$ is PSPACE-complete
- Equivalence $(\mathcal{L}(A)=\mathcal{L}(B))$ is PSPACE-complete
- Infinity $(\|\mathcal{L}(A)\|<\infty)$ belongs to NLOGSPACE
- Universality $\left(\mathcal{L}(A)=\Sigma^{*}\right)$ is PSPACE-complete

Automata on Finite Words and WS1S

WS1S

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet.

Any finite word $w \in \Sigma^{*}$ induces the finite sets $p_{a}=\{p \mid w(p)=a\}$.

- $x \leq y: x$ is less than y,
- $s(x)=y: y$ is the successor of x,
- $p_{a}(x): a$ occurs at position x in w

Remember that \leq and $s($.$) can be defined one from another.$

Problem Statement

Given a sentence φ in WS1S, let $\mathcal{L}(\varphi)=\left\{w \mid \mathfrak{m}_{w} \models \varphi\right\}$, where $\mathfrak{m}_{w}=\left\langle\operatorname{dom}(w),\left\{\overline{p_{a}}\right\}_{a \in \Sigma}, \leq\right\rangle$, such that:

- $\operatorname{dom}(w)=\{0,1, \ldots, n-1\}$,
- $\overline{p_{a}}=\{x \in \operatorname{dom}(w) \mid w(x)=a\}$,

A language $L \subseteq \Sigma^{*}$ is said to be WS1S-definable iff there exists a WS1S sentence φ such that $L=\mathcal{L}(\varphi)$.

1. Given A build φ_{A} such that $\mathcal{L}(A)=\mathcal{L}(\varphi)$
2. Given φ build A_{φ} such that $\mathcal{L}(A)=\mathcal{L}(\varphi)$

The recognizable and WS1S-definable languages coincide

$\underline{\text { Coding of } \Sigma}$

Let $m \in \mathbb{N}$ be the smallest number such that $\|\Sigma\| \leq 2^{m}$.
W.l.o.g. assume that $\Sigma=\{0,1\}^{m}$, and let $X_{1} \ldots X_{p}, x_{p+1}, \ldots x_{m}$

A word $w \in \Sigma^{*}$ induces an interpretation of $X_{1} \ldots X_{p}, x_{p+1}, \ldots x_{m}$:

- $i \in \iota_{w}\left(X_{j}\right)$ iff the j-th element of w_{i} is 1 , and
- $\iota_{w}\left(x_{j}\right)=i$ iff w_{i} has 1 on the j-th position and, for all $k \neq i w_{k}$ has 0 on the j-th position.

Example

Example 1 Let $\Sigma=\{a, b, c, d\}$, encoded as $a=(00), b=(01), c=(10)$ and $d=(11)$. Then the word abbaacdd induces the valuation $X_{1}=\{5,6,7\}, X_{2}=\{1,2,6,7\}$.

From Automata to Formulae

Let $A=\langle S, I, T, F\rangle$ with $S=\left\{s_{1}, \ldots, s_{p}\right\}$, and $\Sigma=\{0,1\}^{m}$.

Build $\Phi_{A}\left(X_{1}, \ldots, X_{m}\right)$ such that $\forall w \in \Sigma^{*} . w \in \mathcal{L}(A) \Longleftrightarrow \llbracket \Phi_{A} \rrbracket_{\imath_{w}}^{\mathfrak{m}_{w}}=$ true

Let $a \in\{0,1\}^{m}$. Let $\Phi_{a}\left(x, X_{1}, \ldots, X_{m}\right)$ be the conjunction of:

- $X_{i}(x)$ if the $a_{i}=1$, and
- $\neg X_{i}(x)$ otherwise.

For all $w \in \Sigma^{*}$ we have $\mathfrak{m}_{w} \models \forall x . \bigvee_{a \in \Sigma} \Phi_{a}(x, \vec{X})$

Notice that $\Phi_{a} \wedge \Phi_{b}$ is unsatisfiable, for $a \neq b$.

Coding of S

Let $\left\{Y_{0}, \ldots, Y_{p}\right\}$ be set variables.
Y_{i} is the set of all positions labeled by A with state s_{i} during some run

$$
\Phi_{S}\left(Y_{1}, \ldots, Y_{p}\right): \forall z \cdot \bigvee_{1 \leq i \leq p} Y_{i}(z) \wedge \bigwedge_{1 \leq i<j \leq p} \neg \exists z \cdot Y_{i}(z) \wedge Y_{j}(z)
$$

Coding of I
Every run starts from an initial state:

$$
\Phi_{I}\left(Y_{1}, \ldots, Y_{p}\right): \exists x \forall y . x \leq y \wedge \bigvee_{s_{i} \in I} Y_{i}(x)
$$

Coding of T

Consider the transition $s_{i} \xrightarrow{a} s_{j}$:

$$
\Phi_{T}\left(X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{p}\right): \forall x . \neg \operatorname{len}(x) \wedge Y_{i}(x) \wedge \Phi_{a}(x, \vec{X}) \rightarrow \bigvee_{\left(s_{i}, a, s_{j}\right) \in T} Y_{j}(s(x))
$$

where $\operatorname{len}(x)=\forall y . y \leq x$

Coding of F

The last state on the run is a final state:

$$
\begin{gathered}
\Phi_{F}\left(Y_{1}, \ldots, Y_{p}\right): \exists x \cdot l e n(x) \wedge \bigvee_{s_{i} \in F} Y_{i}(x) \\
\Phi_{A}=\exists Y_{1} \ldots \exists Y_{p} . \Phi_{S} \wedge \Phi_{I} \wedge \Phi_{T} \wedge \Phi_{F}
\end{gathered}
$$

From Formulae to Automata

Let $\Phi\left(X_{1}, \ldots, X_{p}, x_{p+1}, \ldots, x_{m}\right)$ be a WS1S formula.

Build an automaton A_{Φ} such that $\forall w \in \Sigma^{*} \cdot w \in \mathcal{L}(A) \Longleftrightarrow \llbracket \Phi \rrbracket_{\iota_{w}}^{\mathfrak{m}_{w}}=$ true

Let $\Phi\left(X_{1}, X_{2}, x_{3}, x_{4}\right)$ be:

1. $X_{1}\left(x_{3}\right)$
2. $x_{3} \leq x_{4}$
3. $X_{1}=X_{2}$

From Formulae to Automata

A_{Φ} is built by induction on the structure of Φ :

- for $\Phi=\phi_{1} \wedge \phi_{2}$ we have $\mathcal{L}\left(A_{\Phi}\right)=\mathcal{L}\left(A_{\phi_{1}}\right) \cap \mathcal{L}\left(A_{\phi_{2}}\right)$
- for $\Phi=\phi_{1} \vee \phi_{2}$ we have $\mathcal{L}\left(A_{\Phi}\right)=\mathcal{L}\left(A_{\phi_{1}}\right) \cup \mathcal{L}\left(A_{\phi_{2}}\right)$
- for $\Phi=\neg \phi$ we have $\mathcal{L}\left(A_{\Phi}\right)=\overline{\mathcal{L}\left(A_{\phi}\right)}$
- for $\Phi=\exists X_{i} . \phi$, we have $\mathcal{L}\left(A_{\Phi}\right)=\operatorname{pr}_{i}\left(\mathcal{L}\left(A_{\phi}\right)\right)$.

Theorem 8 A language $L \subseteq \Sigma^{*}$ is definable in WS1S iff it is recognizable.

Corollary 1 The SAT problem for WS1S is decidable.

Regular, Star Free and Aperiodic Languages

Regular Languages

Let Σ be an alphabet, and $X, Y \subseteq \Sigma^{*}$

$$
\begin{aligned}
X Y & =\{x y \mid x \in X \text { and } y \in Y\} \\
X^{*} & =\left\{x_{1} \ldots x_{n} \mid n \geq 0, x_{1}, \ldots, x_{n} \in X\right\}
\end{aligned}
$$

The class of regular languages $\mathcal{R}(\Sigma)$ is the smallest class of languages $L \subseteq \Sigma^{*}$ such that:

- $\emptyset,\{\epsilon\} \in \mathcal{R}(\Sigma)$
- $\{\alpha\} \in \mathcal{R}(\Sigma)$, for all $\alpha \in \Sigma$
- if $X, Y \in \mathcal{R}(\Sigma)$ then $X \cup Y, X Y, X^{*} \in \mathcal{R}(\Sigma)$

Regular, rational and recognizable languages

Theorem 9 (Kleene) A set of finite words is recognizable if and only if it is regular.

Proof in every textbook.

Rational $=$ regular, in older books e.g.

Samuel Eilenberg. Automata, Languages and Machines. Academic Press, 1974

Star Free Languages

The class of star-free languages is the smallest class $S F(\Sigma)$ of languages $L \in \Sigma^{*}$ such that:

- $\emptyset,\{\epsilon\} \in S F(\Sigma)$ and $\{a\} \in S F(\Sigma)$ for all $a \in \Sigma$
- if $X, Y \in S F(\Sigma)$ then $X \cup Y, X Y, \bar{X} \in S F(\Sigma)$

Example 2

- $\Sigma^{*}=\bar{\emptyset}$ is star-free
- if $B \subset \Sigma$, then $\Sigma^{*} B \Sigma^{*}=\bigcup_{b \in B} \Sigma^{*} b \Sigma^{*}$ is star-free
- if $B \subset \Sigma$, then $B^{*}=\overline{\Sigma^{*} \bar{B} \Sigma^{*}}$ is star-free
- if $\Sigma=\{a, b\}$, then $(a b)^{*}=\overline{b \Sigma^{*} \cup \Sigma^{*} a \cup \Sigma^{*} a a \Sigma^{*} \cup \Sigma^{*} b b \Sigma^{*}}$ is star-free

Exercise 2 If $\Sigma=\{a, b, c\}$, write $(a b)^{*}$ as a star-free language.

The Splitting Lemma

Lemma 3 Let $A, B \subseteq \Sigma$ be subalphabets such that $A \cap B=\emptyset$. Then, for each star-free language $L \in \operatorname{SF}(\Sigma)$, we have:

$$
L \cap B^{*} A B^{*}=\bigcup_{1 \leq i \leq n} K_{i} a_{i} L_{i}
$$

where $a_{i} \in A$ and $K_{i}, L_{i} \in S F(B)$, for all $1 \leq i \leq n$.
W.l.o.g. we prove the case $A=\{a\}$ (why?) by induction on L :

- If $L=\{a\}$ then $L \cap B^{*} A B^{*}=\{\epsilon\} a\{\epsilon\}$.
- If $L=\left\{a^{\prime}\right\}, a^{\prime} \neq a$, then $L \cap B^{*} A B^{*}=\emptyset a \emptyset$.
- If $L=\Sigma^{*}$ then $L \cap B^{*} A B^{*}=B^{*} A B^{*}$.
- If $L=L_{1} \cup L_{2}$ then $L \cap B^{*} A B^{*}=\left(L_{1} \cap B^{*} A B^{*}\right) \cup\left(L_{2} \cap B^{*} A B^{*}\right)$.

The Splitting Lemma

$$
L \cap B^{*} A B^{*}=\bigcup_{1 \leq i \leq n} K_{i} a_{i} L_{i}
$$

- If $L=L_{1} \cdot L_{2}$ then

$$
L \cap B^{*} A B^{*}=\left(L_{1} \cap B^{*}\right) \cdot\left(L_{2} \cap B^{*} A B^{*}\right) \cup\left(L_{1} \cap B^{*} A B^{*}\right) \cdot\left(L_{2} \cap B\right)
$$

- Else, if $L=\Sigma^{*} \backslash L^{\prime}$, by the inductive hypothesis $L^{\prime}=\bigcup_{1 \leq i \leq n} K_{i}^{\prime} a L_{i}^{\prime}$. We assume w.l.o.g that $\left\{K_{i}^{\prime}\right\}_{i=1}^{n}$ form a patition of B^{*} :
- if $K_{i}^{\prime} \cap K_{j}^{\prime} \neq \emptyset$, rewrite

$$
K_{i}^{\prime} a L_{i}^{\prime} \cup K_{j}^{\prime} a L_{j}^{\prime}=\left(K_{i}^{\prime} \backslash K_{j}^{\prime}\right) a L_{i}^{\prime} \cup\left(K_{j}^{\prime} \backslash K_{i}^{\prime}\right) a L_{j}^{\prime} \cup\left(K_{i}^{\prime} \cap K_{j}^{\prime}\right) a\left(L_{i}^{\prime} \cup L_{j}^{\prime}\right)
$$

- if $\bigcup_{i=1}^{n} K_{i}^{\prime} \subsetneq B^{*}$, add $\left(B^{*} \backslash \bigcup_{i=1}^{n} K_{i}^{\prime}\right) a \emptyset$ to $\left\{K_{i}^{\prime}\right\}_{i=1}^{n}$

$$
\left(\Sigma^{*} \backslash L^{\prime}\right) \cap B^{*} a B^{*}=\bigcup_{i=1}^{n} K_{i}^{\prime} a\left(B^{*} \backslash L_{i}^{\prime}\right)
$$

$\underline{\mathrm{SF}=\mathrm{FOL}(=\mathrm{AP})}$

Subword Formulae

Let $w=a_{0} a_{1} \ldots a_{n-1}$ be a finite word, and $w(i, j)=a_{i} a_{i+1} \ldots a_{j-1}$ be a subword of $w, 0 \leq i<n$ and $0 \leq j \leq n, i<j$.

Proposition 3 For each $F O L$ sentence φ there exists a formula $\varphi[x, y]$ such that, for each $w \in \Sigma^{*}$ and each $0 \leq i<j \leq|w|$:

$$
\mathfrak{m}_{w(i, j)} \models \varphi \Longleftrightarrow \llbracket \varphi[x, y] \rrbracket_{[x \leftarrow i][y \leftarrow j]}^{\mathfrak{m}_{w}}=\text { true }
$$

By induction on the structure of φ :

$$
\begin{aligned}
(\neg \varphi)[x, y] & =\neg(\varphi[x, y]) \\
(\varphi \wedge \psi)[x, y] & =(\varphi[x, y]) \wedge(\psi[x, y]) \\
(\exists z \cdot \varphi)[x, y] & =\exists z \cdot x \leq z \wedge z<y \wedge \varphi[x, y]
\end{aligned}
$$

Star Free Languages are FOL-definable

For each $L \in S F(\Sigma)$, there exists an FOL sentence φ_{L} such that:

$$
L=\left\{w \in \Sigma^{*} \mid \mathfrak{m}_{w} \models \varphi_{L}\right\}
$$

By induction on the structure of L :

$$
\begin{array}{cc}
\emptyset=\left\{w \in \Sigma^{*} \mid \mathfrak{m}_{w} \models \perp\right\} & \{a\}=\left\{w \in \Sigma^{*} \mid \mathfrak{m}_{u} \models p_{a}(0) \wedge \operatorname{len}(1)\right\} \\
X \cup Y=\left\{w \in \Sigma^{*} \mid \mathfrak{m}_{u} \models \varphi_{X} \vee \varphi_{Y}\right\} & \bar{X}=\left\{w \in \Sigma^{*} \mid \mathfrak{m}_{u} \models \neg \varphi_{X}\right\} \\
X \cdot Y=\left\{w \in \Sigma^{*} \mid \mathfrak{m}_{u} \models \exists y \exists z .0 \leq y<z \wedge \varphi_{X}[0, y] \wedge \varphi_{Y}[y, z] \wedge \operatorname{len}(z)\right\}
\end{array}
$$

FOL-definable Languages are Star Free

Let φ be an FOL formula with $F V(\varphi)=V$ and let $\Sigma_{V}=\Sigma \times\{0,1\}^{V}$.

Encode each pair (w, ι), with $\iota: V \rightarrow[0,|w|-1]$ as a word $\overline{(w, \iota)} \in \Sigma_{V}^{*}$:

$$
\overline{\left(a_{0} \ldots a_{k-1}, \iota\right)}=\left(a_{0}, \tau_{0}\right) \ldots\left(a_{k-1}, \tau_{k-1}\right), \tau_{i}(x)=1 \Longleftrightarrow \iota(x)=i
$$

and let $\mathcal{N}_{V}=\left\{\overline{(w, \iota)} \mid w \in \Sigma^{*}, \iota: V \rightarrow[0,|w|-1]\right\}$.

Let $\Sigma_{V}^{x=i}=\{(a, \tau) \mid \tau(x)=i\}$, for $i=0,1$

$$
\mathcal{N}_{V}=\bigcap_{x \in V}\left(\Sigma_{V}^{x=0}\right)^{*}\left(\Sigma_{V}^{x=1}\right)\left(\Sigma_{V}^{x=0}\right)^{*} \in S F\left(\Sigma_{V}\right)
$$

FOL-definable Languages are Star Free

$$
\begin{aligned}
\llbracket p_{a}(x) \rrbracket_{V} & =\left\{\overline{(w, \iota)} \in \mathcal{N}_{V} \mid w=a_{0} \ldots a_{k-1}, a_{\iota(x)}=a\right\} \\
\llbracket x \leq y \rrbracket_{V} & =\left\{\overline{(w, \iota)} \in \mathcal{N}_{V} \mid \iota(x) \leq \iota(y)\right\} \\
\llbracket \phi \vee \psi \rrbracket_{V} & =\llbracket \phi \rrbracket_{V} \cup \llbracket \psi \rrbracket_{V} \\
\llbracket \neg \phi \rrbracket_{V} & =\mathcal{N}_{V} \backslash \llbracket \phi \rrbracket_{V} \\
\llbracket \exists x \cdot \phi \rrbracket_{V} & =\left\{\overline{(w, \iota)} \in \mathcal{N}_{V} \mid \exists i \in[0,|w|-1] . \overline{(w, \iota[x \leftarrow i])} \in \llbracket \phi \rrbracket_{V \cup\{x\}}\right.
\end{aligned}
$$

Proposition 4 If $\varphi \in F O L$ and $F V(\varphi) \subseteq V$, then $\llbracket \varphi \rrbracket_{V} \in S F\left(\Sigma_{V}\right)$.

$$
\begin{aligned}
\llbracket p_{a}(x) \rrbracket_{V} & =\mathcal{N}_{V} \cap\left(\Sigma_{V}^{*} \cdot\{(a, \tau) \mid \tau(x)=1\} \cdot \Sigma_{V}^{*}\right) \\
\llbracket x \leq y \rrbracket_{V} & =\mathcal{N}_{V} \cap\left(\Sigma_{V}^{*} \cdot \Sigma_{V}^{x=1} \cdot \Sigma_{V}^{*} \cdot \Sigma_{V}^{y=1} \cdot \Sigma_{V}^{*}\right)
\end{aligned}
$$

FOL-definable Languages are Star Free

Proposition 5 If $\varphi \in F O L$ and $F V(\varphi) \subseteq V$, then $\llbracket \varphi \rrbracket_{V} \in S F\left(\Sigma_{V}\right)$. If $\varphi=\exists x . \phi$, we assume w.l.o.g. that $x \notin V$ (α-conversion)

$$
\begin{aligned}
\llbracket \phi \rrbracket_{V \cup\{x\}} & =\llbracket \phi \rrbracket_{V \cup\{x\}} \cap\left(\Sigma_{V \cup\{x\}}^{x=0}\right)^{*}\left(\sum_{V \cup\{x\}}^{x=1}\right)\left(\Sigma_{V \cup\{x\}}^{x=0}\right)^{*} \\
& =\bigcup_{i=1}^{n} K_{i}^{\prime} a_{i}^{\prime} L_{i}^{\prime} \text { (Splitting Lemma) }
\end{aligned}
$$

where $K_{i}^{\prime}, L_{i}^{\prime} \in S F\left(\Sigma_{V \cup\{x\}}^{x=0}\right)$ and $a_{i}^{\prime} \in \Sigma_{V \cup\{x\}}^{x=1}$, for all $1 \leq i \leq n$

Let $\pi: \Sigma_{V \cup\{x\}}^{x=0} \rightarrow \Sigma_{V}$ be the bijective (why?) renaming $(a, \tau) \stackrel{\pi}{\mapsto}\left(a, \tau \downarrow_{V}\right)$ Let $K_{i}=\pi\left(K_{i}^{\prime}\right), L_{i}=\pi\left(L_{i}^{\prime}\right)$ and $a_{i}=\left(a, \tau \downarrow_{V}\right) \Longleftrightarrow a_{i}=(a, \tau)$

$$
\llbracket \exists x \cdot \phi \rrbracket_{V}=\bigcup_{i=1}^{n} K_{i} a_{i} L_{i}
$$

NB: SF languages are preserved by bijective renamings (why bijective ?)

Aperiodic Languages

Definition 3 A language $L \subseteq \Sigma^{*}$ is said to be aperiodic iff:

$$
\exists n_{0} \forall n \geq n_{0} \forall u, v, t \in \Sigma^{*} . u v^{n} t \in L \Longleftrightarrow u v^{n+1} t \in L
$$

n_{0} is called the index of L.

Example $30^{*} 1^{*}$ is aperiodic. Let $n_{0}=2$. We have three cases:

1. $u, v \in 0^{*}$ and $t \in 0^{*} 1^{*}:$

$$
\forall n \geq 2 . u v^{n} t \in L
$$

2. $u \in 0^{*}, v \in 0^{+} 1^{+}$and $t \in 1^{*}$:

$$
\forall n \geq 2 . u v^{n} t \notin L
$$

3. $u \in 0^{*} 1^{*}, v \in 1^{*}$ and $t \in 1^{*}$:

$$
\forall n \geq 2 \cdot u v^{n} t \in L
$$

$\underline{\text { Periodic Languages }}$

Conversely, a language $L \subseteq \Sigma^{*}$ is said to be periodic iff:
$\forall n_{0} \exists n \geq n_{0} \exists u, v, t \in \Sigma^{*} .\left(u v^{n} t \notin L \wedge u v^{n+1} t \in L\right) \vee\left(u v^{n} t \in L \wedge u v^{n+1} t \notin L\right)$

Example $4(00)^{*} 1$ is periodic.

Given n_{0} take the next even number $n \geq n_{0}, u=\epsilon, v=0$ and $t=1$. Then $u v^{n} t \in(00)^{*} 1$ and $u v^{n+1} t \notin(00)^{*} 1$.

Exercise 3 Is (00)*1 WS1S-definable?

Exercise 4 Is the language $(a b)^{*}$ periodic or aperiodic?

The Big Picture

