Automata on Finite Words



Definition

A nondeterministic finite automaton (NFA) over ¥ is a 4-tuple
A= (S 1,T, F), where:

e S is a finite set of states,
o /] C Sis a set of initial states,

o I'C S x> xS isa transition relation,

o ['C Sis aset of final states.

We denote T'(s,a) ={s' € S| (s,a,s") € T}. When T is clear from the

context we denote (s,a,s’) € T by s = 5.



Determinism and Completeness

Definition 1 An automaton A = (S,I, T, F) is deterministic (DFA) iff
|I| =1 and, for each s € S and for each o € X, |T'(s, )| < 1.

If A is deterministic we write T'(s, ) = s instead of T'(s,a) = {s'}.

Definition 2 An automaton A = (S,I,T,F) is complete iff |I| > 1 and,
for each s € S and for each a € X2, |T'(s, )| > 1.



Runs and Acceptance Conditions

Given a finite word w € X*, w = a1 ... oy, a Tun of A over w is a finite
’ %

sequence of states si,s2,...,5Sp,Spa1 such that s; € I and s; SN s; 11 for
all 1 <1 <n.

. w
A run over w between s; and s; is denoted as s; — s;.

The run is said to be accepting iff s, € F'. If A has an accepting run

over w, then we say that A accepts w.
The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S C X* is recognizable if there exists an automaton A such

that S = L(A).



Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ay such that
L(A) = L(Ag).

Let Ay = (2°,{I},Ty,{G C S| GNF # (}), where

(S1,a,82) €Ty — Sy ={s'|3dse 1. (s,,5) €T}

This definition is known as subset construction.

Exercise 1 Let ¥ ={a,b} and L, = {uav | u,v € ¥*, |v| =n — 1}, for
each integer n > 1. Build an NFA that recognizes L,, and apply subset

construction to 1t.



Completion

Lemma 1 For every NFA A there exists a complete NFA A. such that
L(A) = L(A.).

Let A, = (SU{c},I,T., F), where o € S is a new sink state. The

transition relation 7, is defined as:
Vse SVaeX . (s,a,0) €T, — Vs'eS.(s,a,8)&T

and Va € X . (0,a,0) € T,.

Remark: The subset construction yields a complete deterministic

automaton, with sink state (.



Closure Properties

Theorem 2 Let Ay = (S1, 11,11, F1) and Ay = (So, Is,T5, F) be two
NFA, such that S; NSy = (. There exists automata Ay, A, and An that
recognize the languages X* \ L(A1), L(A1) U L(A2), and L(A1) N L(A2),

respectivelly.

Let A" = (S",I', T, F') be the complete and deterministic (why?)
automaton such that £(A;) = £(A'), and A, = (8", I',T",S"\ F').

Let A, = <Sl U So, [1 Uy, Ty UTy, Fy U F2>.

Let An = <Sl X So, 11 X Iy, 1R, F1 X F2> where:

((s1,t1), a, (s2,t9)) € Th <= (s1,a,82) € T1 and (t1, a,ta) € Th



On the Exponential Blowup of Complementation

Theorem 3 For everyn € N, n > 1, there exists an automaton A, with
size(A) =n + 1 such that no deterministic automaton with less than 2"

states recognizes the complement of L(A).

Let ¥ ={a,b} and L, = {uav | u,v € ¥* |v| =n — 1}, for all n > 1.

There exists a NFA with exactly n + 1 states which recognizes L,,.

Suppose that B = (S,{so},T, F), is a (complete) DFA with |S| < 2" that
accepts X%\ L.



On the Exponential Blowup of Complementation

[{w € ¥* | lw| =n}| =2" and | S| < 2™ (by the pigeonhole principle)

ubvo

uav
= Juavy, ubvy . luavi| = |ubve| =n and s € S . sp — s and 59 —— s

Let s; be the (unique) state of B such that s — s;.

Since |uavi| = n, then uaviu € L, = uaviu € L(B), i.e. s is not

accepting.

On the other hand, ubvou € L, = ubvou € L(B), i.e. s is accepting,

contradiction.



Projections

Let the input alphabet > = 3; x 5. Any word w € ¥* can be uniquely

identified to a pair (w1, wq) € X7 x X5 such that |wi| = |we| = |w|.

The projection operations are
pri(L) ={u € X7 | (u,v) € L, for some v € 35} and
pro(L) = {v € X5 | (u,v) € L, for some u € 37}

Theorem 4 If the language L C (31 X X9)* is recognizable, then so are
the projections pr;(L), fori=1,2.



Remark

The operations of union, intersection and complement correspond to the

boolean V, A and —.

The projection corresponds to the first-order existential quantifier dx.



The Myhill-Nerode Theorem

Let A= (S,I,T,F) be an automaton over the alphabet >*.

Define the relation ~4 C >* x X* as:

Ur~av = Vs, €S .5 55 = 555

~ 4 1S an equivalence relation of finite index

Let L C X* be a language. Define the relation ~;C »* x X* as:

un~pv <= VweX' . uwe L < vw € L]

~ 7, 18 an equivalence relation



The Myhill-Nerode Theorem

Theorem 5 A language L C X% is recognizable iff ~1 is of finite index.

“=" Suppose L = L(A) for some automaton A.
~ 4 is of finite index.
for all u,v € X* we have u ~4 v = u ~ v

index of ~; < index of ~4 < 0



The Myhill-Nerode Theorem

“<” ~ is an equivalence relation of finite index, and let |u] denote the

equivalence class of u € >*.

A =(S,I,T,F), where:
o S={lu]|ueXy,
o 1=
o [u] %] = ua~p v,

o "= {|u] | ue L}



Isomorphism and Canonical Automata

Two automata A; = (S;, I;,T;, F;), i = 1,2 are said to be isomorphic ift
there exists a bijection h : S — Sy such that, for all s, s’ € S; and for all

a € 2 we have :
e sc | < h(s) € Iy,
e (s,a,8) €T < (h(s),a,h(s")) € Tb,

o sc I < h(s) € Fy.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.



Pumping Lemma

Lemma 2 (Pumping) Let A= (S,1,T,F) be a finite automaton with
size(A) =n, and w € L(A) be a word of length |w| > n. Then there exists
three words u,v,t € X* such that:

1. |v| >1,
2. w = uvt and,

3. for all k > 0, uv*t € L(A).



Example

L ={a™b" | n € N} is not recognizable:

Suppose that there exists an automaton A with size(A) = N, such that
L=L(A).

Consider the word a™Vb" € L = L(A).

There exists words u, v, w such that |v| > 1, vvw = a0V and w*w € L
for all £ > 1.

e v=2a", for some m € N.
e v =2a""bP for some m,p € N.

o v=10" for some m € N.



Decidability

Given nondeterministic finite automata A and B:
e Emptiness L(A) =07
e Inclusion L(A) C L(B) ?
e Equivalence L(A) = L(B) ?
e Infinity |L(A)| < 0 7

e Universality £(A) = ¥* 7



Emptiness

Theorem 6 Let A be an automaton with size(A) =n. If L(A) £ 0, then
there exists a word of length less than n that is accepted by A.

Let u be the shortest word in L(A).

If |u| < n we are done.

If |u| > n, there exists ui,v,us € X* such that |v| > 1 and ujvus = u.

Then uijus € L(A) and |ujus| < |ujvus|, contradiction.



Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.

Although complexity varies from problem to problem:
e Emptiness (L(A) = )) belongs to NLOGSPACE
e Inclusion (L(A) C L(B)) is PSPACE-complete
e Equivalence (L(A) = L(B)) is PSPACE-complete
e Infinity (|£(A)| < oo) belongs to NLOGSPACE
e Universality (£(A) = X*) is PSPACE-complete



Automata on Finite Words and WS1S



WSI1S

Let ¥ = {a,b,...} be a finite alphabet.

Any finite word w € ¥* induces the finite sets p, = {p | w(p) = a}.
e v <y : xisless than y,
e s(x) =1y : y is the successor of x,

e p.(x) : a occurs at position z in w

Remember that < and s(.) can be defined one from another.



Problem Statement

Given a sentence p in WS1S, let L(p) = {w | my, &= ¢}, where
my, = (dom(w), {Pa}ecy, <), such that:

e dom(w)=140,1,...,n—1},

e p, =1{x € dom(w) | w(x) = a}l,

A language L C >* is said to be WS1S-definable iff there exists a WS1S
sentence ¢ such that L = L(y).

1. Given A build ¢4 such that £(A) = L(p)
2. Given ¢ build A, such that L(A) = L(p)

The recognizable and WS1S-definable languages coincide



Coding of X

Let m € N be the smallest number such that || < 2™.

W.lo.g. assume that ¥ ={0,1}™, and let X1 ... X,, 2p11,...2m

A word w € X* induces an interpretation of Xy ... Xy, xpi1, ... Tm:
o i € [,(X;) iff the j-th element of w; is 1, and

o [,(x;) =1 iff w; has 1 on the j-th position and, for all k£ # ¢ wy has 0
on the j-th position.

In the rest, let my,, = (dom(w), <) and 1, be this interpretation.



Example

Example 1 Let 3 = {a,b,c,d}, encoded as a = (00), b = (01), ¢ = (10)
and d = (11). Then the word abbaacdd induces the valuation
X, = {5,6,7}, Xo = {1,2,6,7}. O



From Automata to Formulae

Let A= (S,I,T,F) with S = {s1,...,5}, and X = {0,1}".
Build ®4(X1, ..., Xy,) such that Vw € ¥* . w € L(A) <= [P4]," = true

Let a € {0,1}™. Let ®,(z, X1,...,X,,) be the conjunction of:
e X;(x) if the a; =1, and

e —X;(x) otherwise.

For all w € ¥* we have w =V . \/ 5 Doz, X)

Notice that &, A & is unsatisfiable, for a # b.



Coding of S

Let {Yp,...,Y,} be set variables.

Y; is the set of all positions labeled by A with state s; during some run

Os(Yi,...,Y,) 1 Vz. \/ Yilz) A N\ —32.Yi(2) AY(2)
1<:<p I1<i<y<p



Coding of |

Every run starts from an initial state:

Gr(Yy,...,Y,) « JavVy .z <yA \/ Yi(z)
s, el



Coding of T

. o« e a
Consider the transition s; — s;:

Op(X1,.., X, Y1,..,Yp) 1t Vo o # s(x)AY(2) A (2, X) = \/  Yj(s(x))
eT

(Sivavsj)



Coding of F

The last state on the run is a final state:

Cr(Yr,...,Y,) « JaVy .y <z A \/ Yi(z)
s, €F

@A:HYl...HYp.@S/\CI)IACDTACDF



From Formulae to Automata

Let ®(X1,...,Xp, Zpt1,...,Tm) be a WS1S formula.

Build an automaton Ag such that Vw € ¥* . w € L(A) < [®]"* = true

Lw

Let ®(X1, Xo,x3,14) be:
1. X1(£B3>
2. x3 < 24

3. X1 =X



From Formulae to Automata

Ag is built by induction on the structure of &:
o for ® = 1 A 2 we have L(Ag) = L(Ap,) N L(Ay,)
o for ® = 1 V ¢p2 we have L(Ag) = L(Ap,) U L(Ay,)

o for & = —¢ we have L(As) = L(Ay)
o for & =3JX; . ¢, we have L(Ag) = pri(L(Ay)).



Consequences

Theorem 8 A language L C X* is definable in WS1S iff it is recognizable.

Corollary 1 The SAT problem for WS1S s decidable.

Lemma 3 Any WS1S formula ¢(X1,..., X)) is equivalent to an WS1S
formula of the form 3Y7...3Y, . ¢, where ¢ does not contain other set
variables than Xq,..., X, Y1,...,Y).



Regular, Star Free and Aperiodic Languages



Regular Languages

Let X be an alphabet, and X,Y C »*

XY = {zy|reXandyeY}
X* = A{z1...2p | n>0, 21,...,2, € X}

The class of reqular languages R(X) is the smallest class of languages
L C X>* such that:

e e R(Y)
e {a} e R(X), forall a € X
o if X,Y € R(X) then X UY, XY, X* € R(X)



Regular, rational and recognizable languages

Theorem 9 (Kleene) A set of finite words is recognizable if and only if

it 18 reqular.

Proof in every textbook.

Rational = regular, in older books e.g.

Samuel Eilenberg. Automata, Languages and Machines. Academic Press, 1974



Star Free Languages

The class of star-free languages is the smallest class SF'(X) of languages
L € X>* such that:

e ).{e} € SF(X) and {a} € SF(X) for all a € &
e if XY € SF(X) then XUY, XY, X € SF(X)

Example 2
o X% = () is star-free

o if BC X, then ¥*BY* = |Jycp X°0X" is star-free

o if BCYX, then B¥ = X*BY* is star-free

o if ¥ ={a,b}, then (ab)* = bX* U X*a U X*aaX* U X*bbX* is star-free



Aperiodic Languages

Definition 3 A language L C X* is said to be aperiodic iff:
Ing¥n > noVu,v,t € X¥ . ww™ € L <— w"Tte L

no 1S called the index of L.

FExample 38 0*1" is aperiodic. Let ng = 2. We have three cases:
1. u,v € 0" andt € 0°1* :

Vn >ng . uwvt € L

2. ue0*,ve0*l andt € 17 :
Vn>mng . uv'"teg L

3. ue01",vel” andt e l1* :

Vn > ng . uwvt € L



Periodic Languages

Conversely, a language L C »* is said to be periodic iff:

VYnodn > ngJu,v,t € X* . (uv™t € LAuwv" ™t € L)V (uv™t € LAun™ 't & L)

Example 4 (00)*1 is periodic.

Given ng take the next even number n > ng, u=¢, v =0 andt =1. Then
wv™ € (00)*1 and uwv™ Tt ¢ (00)*1. O

Exercise 2 Is (00)*1 WS1S-definable ¢

Exercise 3 Is the language (ab)* periodic or aperiodic ?



The Big Picture

— \
SF FOL

Schutzenberger’s
Theorem

AP



Subword Formulae

Let w = apay ...ap—1 be a finite word, and w(i, j) = a;a;41...a;—1 be a
subword of w, 0 <i<nand 0<j5<n,i<].

Proposition 3 For each FOL statement ¢ there exists a formula p(x,y)
such that, for each w € ¥* and each 0 <1 < j < |w|:

w(i,j) FE e <= wkp(i,])

By induction on the structure of :

(me)(z,y) = —(e(,y))
(e Az, y) = (e(z,y) A (P(z,y))
(Fz.p)(x,y) = z.x<zAz2<yAp(x,y)



Star Free Languages are FOL-definable

We prove that for each L C ¥* L € SF(X) there exists an FOL sentence
@1, such that:
L={ueS |uk o)

By induction on the structure of L:
D={ueX* |ukE L1} {a} ={u e X* | u = p.(0) Alen(1)}
XUY={ueX*|uEwpx Voey} X={ueX|ukEpx}

XY =3dy32z . 0 <y < zApx(0,y) ANoy(y,z) Alen(z)
where:
e p(i,j)isaformulast. VO<i<j<|ul.ulFEe(l,j) <= u(i,j) =

o len(x)=Vy . s(y) <=



FOL-definable Languages are Aperiodic

Let o(x1,...,xy,) be an FOL formula. We denote

LY o o={ueX |ukoi,... i)}

11 yeen,s

We prove that, for all u,v,t € X%, i1,...,1, € N,

uv''t € Lfl ;= w1t e Lf; y
sec i 19°9%n
where, for all 1 < k£ < n:
° 7/ = 9y, if 75, < \u\—l—n "U‘
k ) =
o i =i+ |v|,if i > |u|+n - |v]
By induction on the structure of ¢:

e the cases r1 = x9 and z1 < 9 are immediate

o uv™ = pu(i) ¢ if i < |u| 4+ n-|v| then (w0 1t); = (uv™t); = a; if
i > |ul +n - [v] then (wv™ )4, = (W"t); = a



FOL-definable Languages are Aperiodic

For all w,v,t € X*, i1,...,1, € N,
uv”'t € L'?:Ol,---,'in — w"tlt e LZ,---,%
where, for all 1 < k£ < n:
o iy =iy, if i, <|ul+n-|v|
o i =i+ |v|, if ix > |u|+n - |v]
By induction on the structure of ¢:

e 1 /A s : is immediate

+1 v
e —p: uv't QL“’ P uv™ t%L% i
o du (x JTn) s wv™t e L7 0 = w"t e L] . for some
1 - P, - n) - 19,.. 11,02,.-ln
i1 € N. By the induction hypothesns w1t e LY i “hence

11,22,

w1t € Lax1 ZSO The other direction is symmetric.
19,..



