
Automata on Finite Words



Definition

A nondeterministic finite automaton (NFA) over Σ is a 4-tuple

A = 〈S, I, T, F 〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T ⊆ S × Σ× S is a transition relation,

• F ⊆ S is a set of final states.

We denote T (s, α) = {s′ ∈ S | (s, α, s′) ∈ T}. When T is clear from the

context we denote (s, α, s′) ∈ T by s
α
−→ s′.



Determinism and Completeness

Definition 1 An automaton A = 〈S, I, T, F 〉 is deterministic (DFA) iff

||I|| = 1 and, for each s ∈ S and for each α ∈ Σ, ||T (s, α)|| ≤ 1.

If A is deterministic we write T (s, α) = s′ instead of T (s, α) = {s′}.

Definition 2 An automaton A = 〈S, I, T, F 〉 is complete iff ||I|| ≥ 1 and,

for each s ∈ S and for each α ∈ Σ, ||T (s, α)|| ≥ 1.



Runs and Acceptance Conditions

Given a finite word w ∈ Σ∗, w = α1α2 . . . αn, a run of A over w is a finite

sequence of states s1, s2, . . . , sn, sn+1 such that s1 ∈ I and si
αi−→ si+1 for

all 1 ≤ i ≤ n.

A run over w between si and sj is denoted as si
w
−→ sj .

The run is said to be accepting iff sn+1 ∈ F . If A has an accepting run

over w, then we say that A accepts w.

The language of A, denoted L(A) is the set of all words accepted by A.

A set of words S ⊆ Σ∗ is recognizable if there exists an automaton A such

that S = L(A).



Determinism, Completeness, again

Proposition 1 If A is deterministic, then it has at most one run for each

input word.

Proposition 2 If A is complete, then it has at least one run for each

input word.



Determinization

Theorem 1 For every NFA A there exists a DFA Ad such that

L(A) = L(Ad).

Let Ad = 〈2S , {I}, Td, {G ⊆ S | G ∩ F 6= ∅}〉, where

(S1, α, S2) ∈ Td ⇐⇒ S2 = {s′ | ∃s ∈ S1 . (s, α, s
′) ∈ T}

This definition is known as subset construction.

Exercise 1 Let Σ = {a, b} and Ln = {uav | u, v ∈ Σ∗, |v| = n− 1}, for

each integer n ≥ 1. Build an NFA that recognizes Ln and apply subset

construction to it.



Completion

Lemma 1 For every NFA A there exists a complete NFA Ac such that

L(A) = L(Ac).

Let Ac = 〈S ∪ {σ}, I, Tc, F 〉, where σ 6∈ S is a new sink state. The

transition relation Tc is defined as:

∀s ∈ S∀α ∈ Σ . (s, α, σ) ∈ Tc ⇐⇒ ∀s′ ∈ S . (s, α, s′) 6∈ T

and ∀α ∈ Σ . (σ, α, σ) ∈ Tc.

Remark: The subset construction yields a complete deterministic

automaton, with sink state ∅.



Closure Properties

Theorem 2 Let A1 = 〈S1, I1, T1, F1〉 and A2 = 〈S2, I2, T2, F2〉 be two

NFA, such that S1 ∩ S2 = ∅. There exists automata Ā1, A∪ and A∩ that

recognize the languages Σ∗ \ L(A1), L(A1) ∪ L(A2), and L(A1) ∩ L(A2),

respectivelly.

Let A′ = 〈S′, I ′, T ′, F ′〉 be the complete and deterministic (why?)

automaton such that L(A1) = L(A′), and Ā1 = 〈S′, I ′, T ′, S′ \ F ′〉.

Let A∪ = 〈S1 ∪ S2, I1 ∪ I2, T1 ∪ T2, F1 ∪ F2〉.

Let A∩ = 〈S1 × S2, I1 × I2, T∩, F1 × F2〉 where:

(〈s1, t1〉, α, 〈s2, t2〉) ∈ T∩ ⇐⇒ (s1, α, s2) ∈ T1 and (t1, α, t2) ∈ T2



On the Exponential Blowup of Complementation

Theorem 3 For every n ∈ N, n ≥ 1, there exists an automaton A, with

size(A) = n+ 1 such that no deterministic automaton with less than 2n

states recognizes the complement of L(A).

Let Σ = {a, b} and Ln = {uav | u, v ∈ Σ∗, |v| = n− 1}, for all n ≥ 1.

There exists a NFA with exactly n+ 1 states which recognizes Ln.

Suppose that B = 〈S, {s0}, T, F 〉, is a (complete) DFA with ||S|| < 2n that

accepts Σ∗ \ Ln.



On the Exponential Blowup of Complementation

||{w ∈ Σ∗ | |w| = n}|| = 2n and ||S|| < 2n (by the pigeonhole principle)

⇒ ∃uav1, ubv2 . |uav1| = |ubv2| = n and s ∈ S . s0
uav1−−−→ s and s0

ubv2−−−→ s

Let s1 be the (unique) state of B such that s
u
−→ s1.

Since |uav1| = n, then uav1u ∈ Ln ⇒ uav1u 6∈ L(B), i.e. s is not

accepting.

On the other hand, ubv2u 6∈ Ln ⇒ ubv2u ∈ L(B), i.e. s is accepting,

contradiction.



Projections

Let the input alphabet Σ = Σ1 × Σ2. Any word w ∈ Σ∗ can be uniquely

identified to a pair 〈w1, w2〉 ∈ Σ∗
1 × Σ∗

2 such that |w1| = |w2| = |w|.

The projection operations are

pr1(L) = {u ∈ Σ∗
1 | 〈u, v〉 ∈ L, for some v ∈ Σ∗

2} and

pr2(L) = {v ∈ Σ∗
2 | 〈u, v〉 ∈ L, for some u ∈ Σ∗

1}.

Theorem 4 If the language L ⊆ (Σ1 × Σ2)
∗ is recognizable, then so are

the projections pri(L), for i = 1, 2.



Remark

The operations of union, intersection and complement correspond to the

boolean ∨, ∧ and ¬.

The projection corresponds to the first-order existential quantifier ∃x.



The Myhill-Nerode Theorem

Let A = 〈S, I, T, F 〉 be an automaton over the alphabet Σ∗.

Define the relation ∼A ⊆ Σ∗ × Σ∗ as:

u ∼A v ⇐⇒ [∀s, s′ ∈ S . s
u
−→ s′ ⇐⇒ s

v
−→ s′]

∼A is an equivalence relation of finite index

Let L ⊆ Σ∗ be a language. Define the relation ∼L⊆ Σ∗ × Σ∗ as:

u ∼L v ⇐⇒ [∀w ∈ Σ∗ . uw ∈ L ⇐⇒ vw ∈ L]

∼L is an equivalence relation



The Myhill-Nerode Theorem

Theorem 5 A language L ⊆ Σ∗ is recognizable iff ∼L is of finite index.

“⇒” Suppose L = L(A) for some automaton A.

∼A is of finite index.

for all u, v ∈ Σ∗ we have u ∼A v ⇒ u ∼L v

index of ∼L ≤ index of ∼A <∞



The Myhill-Nerode Theorem

“⇐” ∼L is an equivalence relation of finite index, and let [u] denote the

equivalence class of u ∈ Σ∗.

A = 〈S, I, T, F 〉, where:

• S = {[u] | u ∈ Σ∗},

• I = [ǫ],

• [u]
α
−→ [v] ⇐⇒ uα ∼L v,

• F = {[u] | u ∈ L}.



Isomorphism and Canonical Automata

Two automata Ai = 〈Si, Ii, Ti, Fi〉, i = 1, 2 are said to be isomorphic iff

there exists a bijection h : S1 → S2 such that, for all s, s′ ∈ S1 and for all

α ∈ Σ we have :

• s ∈ I1 ⇐⇒ h(s) ∈ I2,

• (s, α, s′) ∈ T1 ⇐⇒ (h(s), α, h(s′)) ∈ T2,

• s ∈ F1 ⇐⇒ h(s) ∈ F2.

For DFA all minimal automata are isomorphic.

For NFA there may be more non-isomorphic minimal automata.



Pumping Lemma

Lemma 2 (Pumping) Let A = 〈S, I, T, F 〉 be a finite automaton with

size(A) = n, and w ∈ L(A) be a word of length |w| ≥ n. Then there exists

three words u, v, t ∈ Σ∗ such that:

1. |v| ≥ 1,

2. w = uvt and,

3. for all k ≥ 0, uvkt ∈ L(A).



Example

L = {anbn | n ∈ N} is not recognizable:

Suppose that there exists an automaton A with size(A) = N , such that

L = L(A).

Consider the word aNbN ∈ L = L(A).

There exists words u, v, w such that |v| ≥ 1, uvw = aNbN and uvkw ∈ L

for all k ≥ 1.

• v = am, for some m ∈ N.

• v = ambp for some m, p ∈ N.

• v = bm, for some m ∈ N.



Decidability

Given nondeterministic finite automata A and B:

• Emptiness L(A) = ∅ ?

• Inclusion L(A) ⊆ L(B) ?

• Equivalence L(A) = L(B) ?

• Infinity ||L(A)|| <∞ ?

• Universality L(A) = Σ∗ ?



Emptiness

Theorem 6 Let A be an automaton with size(A) = n. If L(A) 6= ∅, then

there exists a word of length less than n that is accepted by A.

Let u be the shortest word in L(A).

If |u| < n we are done.

If |u| ≥ n, there exists u1, v, u2 ∈ Σ∗ such that |v| > 1 and u1vu2 = u.

Then u1u2 ∈ L(A) and |u1u2| < |u1vu2|, contradiction.



Everything is decidable

Theorem 7 The emptiness, equality, infinity and universality problems

are decidable for automata on finite words.

Although complexity varies from problem to problem:

• Emptiness (L(A) = ∅) belongs to NLOGSPACE

• Inclusion (L(A) ⊆ L(B)) is PSPACE-complete

• Equivalence (L(A) = L(B)) is PSPACE-complete

• Infinity (||L(A)|| <∞) belongs to NLOGSPACE

• Universality (L(A) = Σ∗) is PSPACE-complete



Automata on Finite Words and WS1S



WS1S

Let Σ = {a, b, . . .} be a finite alphabet.

Any finite word w ∈ Σ∗ induces the finite sets pa = {p | w(p) = a}.

• x ≤ y : x is less than y,

• s(x) = y : y is the successor of x,

• pa(x) : a occurs at position x in w

Remember that ≤ and s(.) can be defined one from another.



Problem Statement

Given a sentence ϕ in WS1S, let L(ϕ) = {w | mw |= ϕ}, where

mw = 〈dom(w), {p̄a}a∈Σ, ≤〉, such that:

• dom(w) = {0, 1, . . . , n− 1},

• p̄a = {x ∈ dom(w) | w(x) = a},

A language L ⊆ Σ∗ is said to be WS1S-definable iff there exists a WS1S

sentence ϕ such that L = L(ϕ).

1. Given A build ϕA such that L(A) = L(ϕ)

2. Given ϕ build Aϕ such that L(A) = L(ϕ)

The recognizable and WS1S-definable languages coincide



Coding of Σ

Let m ∈ N be the smallest number such that ||Σ|| ≤ 2m.

W.l.o.g. assume that Σ = {0, 1}m, and let X1 . . . Xp, xp+1, . . . xm

A word w ∈ Σ∗ induces an interpretation of X1 . . . Xp, xp+1, . . . xm:

• i ∈ Iw(Xj) iff the j-th element of wi is 1, and

• Iw(xj) = i iff wi has 1 on the j-th position and, for all k 6= i wk has 0

on the j-th position.

In the rest, let mw = 〈dom(w), ≤̄〉 and ιw be this interpretation.



Example

Example 1 Let Σ = {a, b, c, d}, encoded as a = (00), b = (01), c = (10)

and d = (11). Then the word abbaacdd induces the valuation

X1 = {5, 6, 7}, X2 = {1, 2, 6, 7}. ✷



From Automata to Formulae

Let A = 〈S, I, T, F 〉 with S = {s1, . . . , sp}, and Σ = {0, 1}m.

Build ΦA(X1, . . . ,Xm) such that ∀w ∈ Σ∗ . w ∈ L(A) ⇐⇒ [[ΦA]]
mw

ιw
= true

Let a ∈ {0, 1}m. Let Φa(x,X1, . . . ,Xm) be the conjunction of:

• Xi(x) if the ai = 1, and

• ¬Xi(x) otherwise.

For all w ∈ Σ∗ we have w |= ∀x .
∨

a∈ΣΦa(x, ~X)

Notice that Φa ∧ Φb is unsatisfiable, for a 6= b.



Coding of S

Let {Y0, . . . , Yp} be set variables.

Yi is the set of all positions labeled by A with state si during some run

ΦS(Y1, . . . , Yp) : ∀z .
∨

1≤i≤p

Yi(z) ∧
∧

1≤i<j≤p

¬∃z . Yi(z) ∧ Yj(z)



Coding of I

Every run starts from an initial state:

ΦI(Y1, . . . , Yp) : ∃x∀y . x ≤ y ∧
∨

si∈I

Yi(x)



Coding of T

Consider the transition si
a
−→ sj :

ΦT (X1, . . . ,Xm, Y1, . . . , Yp) : ∀x . x 6= s(x)∧Yi(x)∧Φa(x, ~X) →
∨

(si,a,sj)∈T

Yj(s(x))



Coding of F

The last state on the run is a final state:

ΦF (Y1, . . . , Yp) : ∃x∀y . y ≤ x ∧
∨

si∈F

Yi(x)

ΦA = ∃Y1 . . . ∃Yp . ΦS ∧ ΦI ∧ ΦT ∧ ΦF



From Formulae to Automata

Let Φ(X1, . . . ,Xp, xp+1, . . . , xm) be a WS1S formula.

Build an automaton AΦ such that ∀w ∈ Σ∗ . w ∈ L(A) ⇐⇒ [[Φ]]mw

ιw
= true

Let Φ(X1,X2, x3, x4) be:

1. X1(x3)

2. x3 ≤ x4

3. X1 = X2



From Formulae to Automata

AΦ is built by induction on the structure of Φ:

• for Φ = φ1 ∧ φ2 we have L(AΦ) = L(Aφ1
) ∩ L(Aφ2

)

• for Φ = φ1 ∨ φ2 we have L(AΦ) = L(Aφ1
) ∪ L(Aφ2

)

• for Φ = ¬φ we have L(AΦ) = L(Aφ)

• for Φ = ∃Xi . φ, we have L(AΦ) = pri(L(Aφ)).



Consequences

Theorem 8 A language L ⊆ Σ∗ is definable in WS1S iff it is recognizable.

Corollary 1 The SAT problem for WS1S is decidable.

Lemma 3 Any WS1S formula φ(X1, . . . ,Xm) is equivalent to an WS1S

formula of the form ∃Y1 . . . ∃Yp . ϕ, where ϕ does not contain other set

variables than X1, . . . ,Xm, Y1, . . . , Yp.



Regular, Star Free and Aperiodic Languages



Regular Languages

Let Σ be an alphabet, and X,Y ⊆ Σ∗

XY = {xy | x ∈ X and y ∈ Y }

X∗ = {x1 . . . xn | n ≥ 0, x1, . . . , xn ∈ X}

The class of regular languages R(Σ) is the smallest class of languages

L ⊆ Σ∗ such that:

• ∅ ∈ R(Σ)

• {α} ∈ R(Σ), for all α ∈ Σ

• if X,Y ∈ R(Σ) then X ∪ Y,XY,X∗ ∈ R(Σ)



Regular, rational and recognizable languages

Theorem 9 (Kleene) A set of finite words is recognizable if and only if

it is regular.

Proof in every textbook.

Rational = regular, in older books e.g.

Samuel Eilenberg. Automata, Languages and Machines. Academic Press, 1974



Star Free Languages

The class of star-free languages is the smallest class SF (Σ) of languages

L ∈ Σ∗ such that:

• ∅, {ǫ} ∈ SF (Σ) and {a} ∈ SF (Σ) for all a ∈ Σ

• if X,Y ∈ SF (Σ) then X ∪ Y,XY,X ∈ SF (Σ)

Example 2

• Σ∗ = ∅ is star-free

• if B ⊂ Σ, then Σ∗BΣ∗ =
⋃

b∈B Σ∗bΣ∗ is star-free

• if B ⊂ Σ, then B∗ = Σ∗BΣ∗ is star-free

• if Σ = {a, b}, then (ab)∗ = bΣ∗ ∪ Σ∗a ∪ Σ∗aaΣ∗ ∪ Σ∗bbΣ∗ is star-free



Aperiodic Languages

Definition 3 A language L ⊆ Σ∗ is said to be aperiodic iff:

∃n0∀n ≥ n0∀u, v, t ∈ Σ∗ . uvnt ∈ L ⇐⇒ uvn+1t ∈ L

n0 is called the index of L.

Example 3 0∗1∗ is aperiodic. Let n0 = 2. We have three cases:

1. u, v ∈ 0∗ and t ∈ 0∗1∗ :

∀n ≥ n0 . uv
nt ∈ L

2. u ∈ 0∗, v ∈ 0∗1∗ and t ∈ 1∗ :

∀n ≥ n0 . uv
nt 6∈ L

3. u ∈ 0∗1∗, v ∈ 1∗ and t ∈ 1∗ :

∀n ≥ n0 . uv
nt ∈ L



Periodic Languages

Conversely, a language L ⊆ Σ∗ is said to be periodic iff:

∀n0∃n ≥ n0∃u, v, t ∈ Σ∗ . (uvnt 6∈ L∧uvn+1t ∈ L)∨(uvnt ∈ L∧uvn+1t 6∈ L)

Example 4 (00)∗1 is periodic.

Given n0 take the next even number n ≥ n0, u = ǫ, v = 0 and t = 1. Then

uvnt ∈ (00)∗1 and uvn+1t 6∈ (00)∗1. ✷

Exercise 2 Is (00)∗1 WS1S-definable ?

Exercise 3 Is the language (ab)∗ periodic or aperiodic ?



The Big Picture

Theorem
Schutzenberger’s

FOLSF

AP



Subword Formulae

Let w = a0a1 . . . an−1 be a finite word, and w(i, j) = aiai+1 . . . aj−1 be a

subword of w, 0 ≤ i < n and 0 ≤ j ≤ n, i < j.

Proposition 3 For each FOL statement ϕ there exists a formula ϕ(x, y)

such that, for each w ∈ Σ∗ and each 0 ≤ i < j ≤ |w|:

w(i, j) |= ϕ ⇐⇒ w |= ϕ(i, j)

By induction on the structure of ϕ:

(¬ϕ)(x, y) = ¬(ϕ(x, y))

(ϕ ∧ ψ)(x, y) = (ϕ(x, y)) ∧ (ψ(x, y))

(∃z.ϕ)(x, y) = ∃z . x ≤ z ∧ z < y ∧ ϕ(x, y)



Star Free Languages are FOL-definable

We prove that for each L ⊆ Σ∗, L ∈ SF (Σ) there exists an FOL sentence

ϕL such that:

L = {u ∈ Σ∗ | u |= ϕL}

By induction on the structure of L:

∅ = {u ∈ Σ∗ | u |= ⊥} {a} = {u ∈ Σ∗ | u |= pa(0) ∧ len(1)}

X ∪ Y = {u ∈ Σ∗ | u |= ϕX ∨ ϕY } X = {u ∈ Σ∗ | u |= ¬ϕX}

XY = ∃y∃z . 0 ≤ y < z ∧ ϕX(0, y) ∧ ϕY (y, z) ∧ len(z)

where:

• ϕ(i, j) is a formula s.t. ∀0 ≤ i < j ≤ |u| . u |= ϕ(i, j) ⇐⇒ u(i, j) |= ϕ

• len(x) ≡ ∀y . s(y) ≤ x



FOL-definable Languages are Aperiodic

Let ϕ(x1, . . . , xn) be an FOL formula. We denote

L
ϕ
i1,...,in

= {u ∈ Σ∗ | u |= ϕ(i1, . . . , in)}

We prove that, for all u, v, t ∈ Σ∗, i1, . . . , in ∈ N,

uvnt ∈ L
ϕ
i1,...,in

⇐⇒ uvn+1t ∈ L
ϕ

i′
1
,...,i′n

where, for all 1 ≤ k ≤ n:

• i′k = ik, if ik ≤ |u|+ n · |v|

• i′k = ik + |v|, if ik > |u|+ n · |v|

By induction on the structure of ϕ:

• the cases x1 = x2 and x1 ≤ x2 are immediate

• uvnt |= pa(i) : if i ≤ |u|+ n · |v| then (uvn+1t)i = (uvnt)i = a; if

i > |u|+ n · |v| then (uvn+1t)i+|v| = (uvnt)i = a



FOL-definable Languages are Aperiodic

For all u, v, t ∈ Σ∗, i1, . . . , in ∈ N,

uvnt ∈ L
ϕ
i1,...,in

⇐⇒ uvn+1t ∈ L
ϕ

i′
1
,...,i′n

where, for all 1 ≤ k ≤ n:

• i′k = ik, if ik ≤ |u|+ n · |v|

• i′k = ik + |v|, if ik > |u|+ n · |v|

By induction on the structure of ϕ:

• ϕ1 ∧ ϕ2 : is immediate

• ¬ϕ : uvnt 6∈ L
ϕ
i1,...,in

⇐⇒ uvn+1t 6∈ L
ϕ

i′
1
,...,i′n

• ∃x1 . ϕ(x1, . . . , xn) : uvnt ∈ L
∃x1 . ϕ
i2,...,in

⇐⇒ uvnt ∈ L
ϕ
i1,i2,...,in

for some

i1 ∈ N. By the induction hypothesis, uvn+1t ∈ L
ϕ

i′
1
,i′
2
,...,i′n

, hence

uvn+1t ∈ L
∃x1 . ϕ

i′
2
,...,i′n

. The other direction is symmetric.


