
Automata on Infinite Trees

Büchi Automata on Infinite Trees

Definition

A Büchi tree automaton over Σ is A = 〈S, I, T, F 〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T : S × Σ → 2S×S is the transition relation,

• F ⊆ S is the set of final states.

Runs

A run of A over a tree t : {0, 1}∗ → Σ is a mapping π : {0, 1}∗ → S such

that, for each position p ∈ {0, 1}∗, where q = π(p), we have:

• if p = ǫ then q ∈ I, and

• if qi = π(pi), i = 0, 1 then 〈q0, q1〉 ∈ T (q, t(p)).

If π is a run of A and σ is a path in t, let π|σ denote the path in π

corresponding to σ.

A run π is said to be accepting, if and only if for every path σ in t we have:

inf(π|σ) ∩ F 6= ∅

Closure Properties

For every Büchi automaton A there exists a complete Büchi automaton A′

such that L(A) = L(A′).

Theorem 1 The class of Büchi-recognizable tree languages is closed

under union, intersection and projection.

Let Ai = 〈Si, Ii, Ti, Fi〉, i = 1, 2, where S1 ∩ S2 = ∅.

Let A∪ = 〈S1 ∪ S2, I1 ∪ I2, T1 ∪ T2, F1 ∪ F2〉.

Closure Properties

Let A∩ = 〈S, I, T, F 〉 where:

• S = S1 × S2 × {0, 1, 2}

• I = I1 × I2 × {1}

• for any s, s1, s2 ∈ S1, s
′, s′1, s

′
2 ∈ S2, a, b ∈ {0, 1, 2}:

〈(s1, s
′
1, b), (s2, s

′
2, b)〉 ∈ T ((s, s′, a), σ)

iff 〈s1, s2〉 ∈ T (s, σ), 〈s′1, s
′
2〉 ∈ T (s′, σ) and:

1. if a = 0 or (a = 1 and s 6∈ F1), then b = 1

2. if (a = 1 and s ∈ F1) or (a = 2 and s 6∈ F1), then b = 2

3. if a = 2 and s′ ∈ F2, then b = 0

• F = S × S × {0}

Emptiness of Büchi Tree Automata

Let A = 〈S, I, T, F 〉 be a Büchi tree automaton where F = {s1, . . . , sm},

and π : {0, 1}∗ → S be a successful run of A on the tree t ∈ T (Σ).

For any s ∈ S, and any u ∈ {0, 1}∗ such that π(u) = s, let

dπu = {w ∈ u · {0, 1}∗ | ∀v . u < v < w ⇒ π(v) 6∈ F}

By König’s lemma, dπu is finite for any u ∈ {0, 1}∗.

Let tπs be the restriction of t to dπu. Let

Ts = {tπs | π is a successful run of A on t}

Emptiness of Büchi Tree Automata

If ~s = 〈s1, . . . , sm〉 are the final states of A:

L(A) =
⋃

s0∈I

Ts0 ·~s 〈Ts1 , . . . , Tsm〉ω~s

Conversely, the expression above denotes a Büchi-recognizable tree

language.

Let A = 〈S, I, T, F 〉 be a Büchi tree automaton. For each s ∈ S let Ts be

the recognizable tree language defined above. Eliminate from S (and T)

all states s such that Ts = ∅, and let S′ be the resulting set of states.

We claim that L(A) 6= ∅ ⇐⇒ S′ ∩ I 6= ∅.

The Complement Problem

Let Σ = {a, b}, T0 = {t ∈ T ω(Σ) | some path in t has infinitely many a’s}

T0 is Büchi recognizable.

Let A = 〈{s0, s1, sa, sb}, {s0}, T, {s1, sa}〉, where T is defined by:

a(s0,a,b) → {〈s1, sa〉, 〈sa, s1〉}

b(s0,a,b) → {〈s1, sb〉, 〈sb, s1〉}

a(s1) → {〈s1, s1〉}

b(s1) → {〈s1, s1〉}

The Complement Problem

Let T1 = T ω(Σ) \ T0 = {t ∈ T ω(Σ) | all paths in t have finitely many a’s}.

We show that T1 cannot be recognized by a Büchi tree automaton.

Exercise 1 I = {s0, s1}, F = {s1} and

a(s0) → 〈s0, s0〉

〈s0, s1〉

〈s1, s0〉

〈s1, s1〉

b(s0) → 〈s0, s0〉

〈s0, s1〉

〈s1, s0〉

〈s1, s1〉

b(s1) → 〈s1, s1〉

The Complement Problem

Let Tn : {0, 1}∗ → Σ be the language of trees:

tn(p) =

a if p ∈ {ǫ, 1m10, 1m101m20, . . . , 1m101m20 . . . 1mn0 | m1, . . . mn ∈ N}

b otherwise

Obviously, Tn ⊂ T1, for all n ∈ N.

Suppose there exists a Büchi automaton A = 〈S, I, T, F 〉 with k states, s.t.

L(A) = T1. Let π be the accepting run of A over tk+1. Then there exist:

• m1 > 0 such that π(1m1) = s1 ∈ F

• m2 > 0 such that π(1m101m2) = s2 ∈ F

• . . .

There exists a path σ in tm and u < v < w < σ, such that

π(u) = π(w) = s ∈ F and tm(v) = a. Then π = r1 ·s r2 ·s r3, and r1 ·s r
ωs
2 is

a successful run on q1 · qω2 , which contains a path with infinitely many a.

Muller Automata on Infinite Trees

Definition

A Muller tree automaton Σ is A = 〈S, I, T,F〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T : S × Σ → 2S×S is the transition function,

• F ⊆ 2S , is the set of accepting sets.

A run π of A over t is said to be accepting, iff for every path σ in t:

inf(π|σ) ∈ F

Closure Properties

The class of Muller-recognizable tree languages is closed under union and

intersection.

For union, the proof is exactly as in the case of Büchi automata. For A∪,

the set of accepting sets is the union of the sets Fi, i = 1, 2.

For intersection, let A∩ = 〈S1 × S2, I1 × I2, T,F〉, where:

• 〈(s1, s
′
1), (s2, s

′
2)〉 ∈ T ((s, s′), σ) iff 〈s1, s2〉 ∈ T (s, σ) and

〈s′1, s
′
2〉 ∈ T (s′, σ), and

• F = {G ∈ S1 × S2 | pr1(G) ∈ F1 and pr2(G) ∈ F2}, where:

– pr1(G) = {s ∈ S1 | ∃s′ . (s, s′) ∈ G}, and

– pr2(G) = {s ∈ S2 | ∃s′ . (s′, s) ∈ G}.

Rabin Automata on Infinite Trees

Definition

A Rabin tree automaton Σ is A = 〈S, I, T,Ω〉, where:

• S is a finite set of states,

• I ⊆ S is a set of initial states,

• T : S × Σ → 2S×S is the transition function,

• Ω = {〈N1, P1〉, . . . , 〈Pn, Nn〉} is the set of accepting pairs.

A run π of A over t is said to be accepting, if and only if for every path σ

in t there exists a pair 〈Ni, Pi〉 ∈ Ω such that:

inf(π|σ) ∩Ni = ∅ and inf(π|σ) ∩ Pi 6= ∅

Büchi, Muller and Rabin

For every Büchi tree automaton A there exists a Muller tree automaton

B, such that L(A) = L(B), but not viceversa.

For every Muller tree automaton A there exists a Rabin tree automaton

B, such that L(A) = L(B), and viceversa.

From Büchi to Muller

For each (nondeterministic) Büchi automaton A there exists a

(nondeterministic) Muller automaton B such that L(A) = L(B)

Let A = 〈S, I, T, F 〉 be a Büchi automaton.

Define B = 〈S, I, T, {G ∈ 2S | G ∩ F 6= ∅}〉

Allowing Muller automata to be nondeterministic is essential here.

From Rabin to Muller

Given a Rabin automaton A = 〈S, I, T,Ω〉, such that

Ω = {〈N1, P1〉, . . . , 〈Nk, Pk〉}

let B = 〈S, I, T,F〉 be the Muller automaton, where

F = {F ⊆ S | F ∩Ni = ∅ and F ∩ Pi 6= ∅ for some 1 ≤ i ≤ k}

From Muller to Rabin

Given a Muller automaton A = 〈S, I, T,F〉, there exists a Rabin

automaton B such that L(A) = L(B)

Let F = {Q1, . . . , Qk}

Let B = 〈S′, I ′, T ′,Ω′〉 where:

• S′ = 2Q1 × . . .× 2Qk × S

• I ′ = {〈∅, . . . , ∅, s0〉 | s0 ∈ I}

From Muller to Rabin

• T ′(〈S1, . . . , Sk, s〉, a) = (〈S′
1, . . . , S

′
k, s

′〉, 〈S′′
1 , . . . , S

′′
k , s

′′〉) where:

– T (s, a) = (s′, s′′)

– for all 1 ≤ i ≤ k:

S′
i = S′′

i =

∅ , if Si ∪ {s} = Qi

(Si ∪ {s}) ∩Qi , otherwise

• Pi = {〈S1, . . . , Si, . . . , Sk, s〉 | Si = Qi}, 1 ≤ i ≤ k

• Ni = {〈S1, . . . , Si, . . . , Sk, s〉 | s 6∈ Qi}, 1 ≤ i ≤ k

The Rabin Complementation Theorem

Theorem 2 (Rabin ’69) The class of Rabin-recognizable tree languages

is closed under complement.

The class of Rabin-recognizable tree languages is closed under union and

intersection, because Muller-recognizable languages are.

Emptiness of Rabin Automata

Given an alphabet Σ, an infinite tree t ∈ T ω(Σ) is said to be regular if

there are only finitely many distinct subtrees tu of t, where u ∈ {0, 1}∗.

Example 1 The infinite binary tree f(g(f(. . .), f(. . .)), g(f(. . .), f(. . .)))

is regular. ✷

Theorem 3 (Rabin ’72)

1. Any non-empty Rabin-recognizable set of trees contains a regular tree.

2. The emptiness problem for Rabin tree automata is decidable.

Reduction to empty alphabet

Let A = 〈S, I, T,Ω〉 be a Rabin tree automaton over Σ, such that

L(A) 6= ∅, where Ω = {〈N1, P1〉, . . . , 〈Nn, Pn〉}.

Let A′ = 〈S × Σ, I × Σ, T ′,Ω′〉, where:

• 〈(s1, σ1), (s2, σ2)〉 ∈ T ′((s, σ)) iff 〈s1, s2〉 ∈ T (s, σ), and σ1, σ2 ∈ Σ.

• Ω′ = {〈N1 × Σ, P1 × Σ〉, . . . , 〈Nn × Σ, Pn × Σ〉}.

The successful runs of A′ are pairs (π, t), where t ∈ L(A), and π is a

successful run of A on t.

Regular successful runs

For any Rabin tree automaton A, there exists a Rabin tree automaton A′

with one initial state such that L(A) = L(A′).

Consider a Rabin tree automaton A = 〈S, s0, T,Ω〉 over the empty

alphabet, and let π be a successful run of A.

Claim 1 If A has a successful run, A has also a regular successful run.

A state s ∈ S is said to be live if s 6= s0 and 〈s1, s2〉 ∈ T (s) for some

s1, s2 ∈ S, where either s1 6= s or s2 6= s.

By induction on n = the number of live states in A.

Regular successful runs

Base case n = 0: π(ǫ) = s0 and π(p) = s, for all p ∈ dom(π), and s ∈ S is

non-live.

Inductive step n > 0:

Case 1 If some live state in A is missing on π, apply the induction

hypothesis.

Case 2 All live states of A appear on π, and there is a position u ∈ {0, 1}∗

such that π(u) = s is live, but some live state s′ does not appear in πu.

Let π1 = π \ πu and π2 = πu. Both π1 and π2 are runs of automata with

n− 1 live states, hence there exists successful regular runs π′
1 and π′

2 of

these automata. The desired run is π′
1 ·s π

′
2.

Regular successful runs

Case 3 All live states appear in any subtree of π. Let σ be a path in π

consisting of all the live states appearing again and again, and only of the

live states, with the exception of π(ǫ). Q: Why does σ exist?

There exists 〈N,P 〉 ∈ Ω, such that inf(σ) ∩N = ∅ and inf(σ) ∩ P 6= ∅.

Then N contains only non-live states.

Let s ∈ inf(σ) ∩ P and u, v be the 1st and 2nd positions such that

σ(u) = σ(v) = s.

Let π1 = π \ πu and π2 = πu \ πv. Both π1 and π2 are runs of automata

with n− 1 live states, hence there exists successful regular runs π′
1 and π′

2

of these automata. The desired run is π′
1 ·s π

′
2

ωs.

The Emptiness Problem

Let A be an input-free Rabin tree automaton with n live states.

We derive An−1, An−2, . . . , A0 from A, having n− 1, n− 2, . . . 0 live states.

If A has a successful run, then it it has a regular run, composed of runs of

An−1, An−2, . . . , A0.

So it is enough to check emptiness of An−1, An−2, . . . , A0.

Rabin Automata, SkS and SωS

Defining infinite paths

We say that a set of positions X is linear iff the following holds:

linear(X) : (∀x, y . X(x) ∧X(y) → x ≤ y ∨ y ≤ x)

X is a path iff:

path(X) : linear(X) ∧ ∀Y . linear(Y) ∧X ⊆ Y → X = Y

From Automata to Formulae

Let A = 〈S, I, T,Ω〉 be a Rabin tree automaton, where S = {s1, . . . , sp}.

Let ~Y = {Y1, . . . , Yp} be set variables.

If X denotes a path, state i appears infinitely often in X iff:

infi(X) : ∀x . X(x) → ∃y . x ≤ y ∧X(y) ∧ Yi(y)

The formula expressing the accepting condition is:

ΦΩ(~Y) : ∀X . path(X) →
∨

〈N,P 〉∈Ω

(

∧

si∈N

¬infi(X) ∧
∨

si∈P

infi(X)
)

Decidability of S2S

Theorem 4 Given an alphabet Σ, a tree language L ⊆ T ω(Σ) is definable

in S2S iff it is recognizable.

Corollary 1 The SAT problem for S2S is decidable.

Obtaining Decidability Results by Reduction

Suppose we have a logic L interpreted over the domain D, such that the

following problem is decidable:

for each formula ϕ of L there exists m ∈ D such that m |= ϕ

Then we can prove the same thing for another logic L′ interpreted over D′

iff there exists functions ∆ : D′ → D and Λ : L′ → L such that for all

m
′ ∈ D′ and ϕ′ ∈ L we have:

m
′ |= ϕ′ ⇐⇒ ∆(m′) |= Λ(ϕ′)

Decidability of SωS

Every tree t : N∗ → Σ can be encoded as t′ : {0, 1}∗ → Σ.

Let D = {ǫ} ∪ {1n1+101n2+10 . . . 1nk+10 | k ≥ 1, ni ∈ N, 1 ≤ i ≤ k}.

Embedding the domain of SωS into S2S:

D(x) : ∃z∀y . z ≤ y ∧ x = z ∨ ∀y . s0(y) ≤ x → ∃y′ . y = s1(y
′)

Decidability of SωS

If p = 1n1+101n2+10 . . . 1nk+10, let

fi(p) = p · 1i+10 = 1n1+101n2+10 . . . 1nk+101i+10

x �D y : D(x) ∧D(y) ∧ x � y

Define the relation x ≤∃
D y iff x ∈ D and y = x · 1n+10, for some n ∈ N:

x ≤∃
D y : ∃z . y = s0(z) ∧ ∀z′ . x ≤ z ∧ z′ < z → s1(z

′) ≤ y

Define f0, f1, f2, . . . by induction:

f0(x) = y : D(x) ∧D(y) ∧ y = s0(x)

fi+1(x) = y : D(x) ∧D(y) ∧ x ≤∃
D y ∧ ∀z . x ≤∃

D z ∧
∧

0≤k≤i z 6= fk(x) → y �D z

