Automata on Infinite Trees

Büchi Automata on Infinite Trees

Definition

A Büchi tree automaton over Σ is $A=\langle S, I, T, F\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T: S \times \Sigma \rightarrow 2^{S \times S}$ is the transition relation,
- $F \subseteq S$ is the set of final states.

Runs

A run of A over a tree $t:\{0,1\}^{*} \rightarrow \Sigma$ is a mapping $\pi:\{0,1\}^{*} \rightarrow S$ such that, for each position $p \in\{0,1\}^{*}$, where $q=\pi(p)$, we have:

- if $p=\epsilon$ then $q \in I$, and
- if $q_{i}=\pi(p i), i=0,1$ then $\left\langle q_{0}, q_{1}\right\rangle \in T(q, t(p))$.

If π is a run of A and σ is a path in t, let $\pi_{\mid \sigma}$ denote the path in π corresponding to σ.

A run π is said to be accepting, if and only if for every path σ in t we have:

$$
\inf \left(\pi_{\mid \sigma}\right) \cap F \neq \emptyset
$$

Closure Properties

For every Büchi automaton A there exists a complete Büchi automaton A^{\prime} such that $\mathcal{L}(A)=\mathcal{L}\left(A^{\prime}\right)$.

Theorem 1 The class of Büchi-recognizable tree languages is closed under union, intersection and projection.

Let $A_{i}=\left\langle S_{i}, I_{i}, T_{i}, F_{i}\right\rangle, i=1,2$, where $S_{1} \cap S_{2}=\emptyset$.

Let $A_{\cup}=\left\langle S_{1} \cup S_{2}, I_{1} \cup I_{2}, T_{1} \cup T_{2}, F_{1} \cup F_{2}\right\rangle$.

Closure Properties

Let $A_{\cap}=\langle S, I, T, F\rangle$ where:

- $S=S_{1} \times S_{2} \times\{0,1,2\}$
- $I=I_{1} \times I_{2} \times\{1\}$
- for any $s, s_{1}, s_{2} \in S_{1}, s^{\prime}, s_{1}^{\prime}, s_{2}^{\prime} \in S_{2}, a, b \in\{0,1,2\}$:

$$
\left\langle\left(s_{1}, s_{1}^{\prime}, b\right),\left(s_{2}, s_{2}^{\prime}, b\right)\right\rangle \in T\left(\left(s, s^{\prime}, a\right), \sigma\right)
$$

iff $\left\langle s_{1}, s_{2}\right\rangle \in T(s, \sigma),\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle \in T\left(s^{\prime}, \sigma\right)$ and:

1. if $a=0$ or $\left(a=1\right.$ and $\left.s \notin F_{1}\right)$, then $b=1$
2. if ($a=1$ and $s \in F_{1}$) or ($a=2$ and $s \notin F_{1}$), then $b=2$
3. if $a=2$ and $s^{\prime} \in F_{2}$, then $b=0$

- $F=S \times S \times\{0\}$

Emptiness of Büchi Tree Automata

Let $A=\langle S, I, T, F\rangle$ be a Büchi tree automaton where $F=\left\{s_{1}, \ldots, s_{m}\right\}$, and $\pi:\{0,1\}^{*} \rightarrow S$ be a successful run of A on the tree $t \in \mathcal{T}(\Sigma)$.

For any $s \in S$, and any $u \in\{0,1\}^{*}$ such that $\pi(u)=s$, let

$$
d_{u}^{\pi}=\left\{w \in u \cdot\{0,1\}^{*} \mid \pi(v) \notin F, \text { for all } u<v<w\right\}
$$

By König's lemma, d_{u}^{π} is finite for any $u \in\{0,1\}^{*}$.

Let t_{s}^{π} be the restriction of t to d_{u}^{π}. Let

$$
T_{s}=\left\{t_{s}^{\pi} \mid \pi \text { is a successful run of } A \text { on } t\right\}
$$

Emptiness of Büchi Tree Automata

If $\vec{s}=\left\langle s_{1}, \ldots, s_{m}\right\rangle$:

$$
\mathcal{L}(A)=\bigcup_{s_{0} \in I} T_{s_{0}} \cdot \vec{s}\left\langle T_{s_{1}}, \ldots, T_{s_{m}}\right\rangle^{\omega \vec{s}}
$$

Conversely, the expression above denotes a Büchi-recognizable tree language.

Let $A=\langle S, I, T, F\rangle$ be a Büchi tree automaton. For each $s \in S$ let T_{s} be the recognizable tree language defined above. Eliminate from S (and T) all states s such that $T_{s}=\emptyset$, and let S^{\prime} be the resulting set of states.

We claim that $\mathcal{L}(A) \neq \emptyset \Longleftrightarrow S^{\prime} \cap I \neq \emptyset$.

The Complement Problem

Let $\Sigma=\{a, b\}, \mathcal{T}_{0}=\left\{t \in \mathcal{T}^{\omega}(\Sigma) \mid\right.$ some path in t has infinitely many a 's $\}$
\mathcal{T}_{0} is Büchi recognizable.

Let $A=\left\langle\left\{s_{0}, s_{1}, s_{a}, s_{b}\right\},\left\{s_{0}\right\}, T,\left\{s_{1}, s_{a}\right\}\right\rangle$, where T is defined by:

$$
\begin{aligned}
a\left(s_{0, a, b}\right) & \rightarrow\left\{\left\langle s_{1}, s_{a}\right\rangle,\left\langle s_{a}, s_{1}\right\rangle\right\} \\
b\left(s_{0, a, b}\right) & \rightarrow\left\{\left\langle s_{1}, s_{b}\right\rangle,\left\langle s_{b}, s_{1}\right\rangle\right\} \\
a\left(s_{1}\right) & \rightarrow\left\{\left\langle s_{1}, s_{1}\right\rangle\right\} \\
b\left(s_{1}\right) & \rightarrow\left\{\left\langle s_{1}, s_{1}\right\rangle\right\}
\end{aligned}
$$

The Complement Problem

Let $\mathcal{T}_{1}=\mathcal{T}^{\omega}(\Sigma) \backslash \mathcal{T}_{0}=\left\{t \in \mathcal{T}^{\omega}(\Sigma) \mid\right.$ all paths in t have finitely many a 's $\}$. We show that \mathcal{T}_{1} cannot be recognized by a Büchi tree automaton.

Exercise $1 I=\left\{s_{0}, s_{1}\right\}, F=\left\{s_{1}\right\}$ and

$$
\begin{aligned}
a\left(s_{0}\right) \rightarrow & \left\langle s_{0}, s_{0}\right\rangle \\
& \left\langle s_{0}, s_{1}\right\rangle \\
& \left\langle s_{1}, s_{0}\right\rangle \\
& \left\langle s_{1}, s_{1}\right\rangle \\
b\left(s_{0}\right) \rightarrow & \left\langle s_{0}, s_{0}\right\rangle \\
& \left\langle s_{0}, s_{1}\right\rangle \\
& \left\langle s_{1}, s_{0}\right\rangle \\
& \\
& \left\langle s_{1}, s_{1}\right\rangle \\
b\left(s_{1}\right) \rightarrow & \left\langle s_{1}, s_{1}\right\rangle
\end{aligned}
$$

The Complement Problem

Let $T_{n}:\{0,1\}^{*} \rightarrow \Sigma$ be the language of trees:
$t_{n}(p)=\left\{\begin{array}{cc}\text { a } & \text { if } p \in\left\{\epsilon, 1^{m_{1}} 0,1^{m_{1}} 01^{m_{2}} 0, \ldots, 1^{m_{1}} 01^{m_{2}} 0 \ldots 1^{m_{n}} 0 \mid m_{1}, \ldots m_{n} \in \mathbb{N}\right\} \\ \mathrm{b} & \text { otherwise }\end{array}\right.$
Obviously, $T_{n} \subset \mathcal{T}_{1}$, for all $n \in \mathbb{N}$.
Suppose there exists a Büchi automaton $A=\langle S, I, T, F\rangle$ with k states, s.t. $\mathcal{L}(A)=\mathcal{T}_{1}$. Let π be the accepting run of A over t_{k+1}. Then there exist:

- $m_{1}>0$ such that $\pi\left(1^{m_{1}}\right)=s_{1} \in F$
- $m_{2}>0$ such that $\pi\left(1^{m_{1}} 01^{m_{2}}\right)=s_{2} \in F$
- ...

There exists a path σ in t_{m} and $u<v<w<\sigma$, such that $\pi(u)=\pi(w)=s \in F$ and $t_{m}(v)=a$. Then $\pi=r_{1} \cdot s r_{2} \cdot r_{3}$, and $r_{1} \cdot r_{2}^{\omega s}$ is a successful run on $q_{1} \cdot q_{2}^{\omega}$, which contains a path with infinitely many a.

Muller Automata on Infinite Trees

Definition

A Muller tree automaton Σ is $A=\langle S, I, T, \mathcal{F}\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T: S \times \Sigma \rightarrow 2^{S \times S}$ is the transition function,
- $\mathcal{F} \subseteq 2^{S}$, is the set of accepting sets.

A run π of A over t is said to be accepting, iff for every path σ in t :

$$
\inf \left(\pi_{\mid \sigma}\right) \in \mathcal{F}
$$

Closure Properties

The class of Muller-recognizable tree languages is closed under union and intersection.

For union, the proof is exactly as in the case of Büchi automata. For A_{\cup}, the set of accepting sets is the union of the sets $\mathcal{F}_{i}, i=1,2$.

For intersection, let $A_{\cap}=\left\langle S_{1} \times S_{2}, I_{1} \times I_{2}, T, \mathcal{F}\right\rangle$, where:

- $\left\langle\left(s_{1}, s_{1}^{\prime}\right),\left(s_{2}, s_{2}^{\prime}\right)\right\rangle \in T\left(\left(s, s^{\prime}\right), \sigma\right)$ iff $\left\langle s_{1}, s_{2}\right\rangle \in T(s, \sigma)$ and $\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle \in T\left(s^{\prime}, \sigma\right)$, and
- $\mathcal{F}=\left\{G \in S_{1} \times S_{2} \mid p r_{1}(G) \in \mathcal{F}_{1}\right.$ and $\left.p r_{2}(G) \in \mathcal{F}_{2}\right\}$, where:
$-\operatorname{pr}_{1}(G)=\left\{s \in S_{1} \mid \exists s^{\prime} .\left(s, s^{\prime}\right) \in G\right\}$, and
$-\operatorname{pr}_{2}(G)=\left\{s \in S_{2} \mid \exists s^{\prime} .\left(s^{\prime}, s\right) \in G\right\}$.

Rabin Automata on Infinite Trees

Definition

A Rabin tree automaton Σ is $A=\langle S, I, T, \Omega\rangle$, where:

- S is a finite set of states,
- $I \subseteq S$ is a set of initial states,
- $T: S \times \Sigma \rightarrow 2^{S \times S}$ is the transition function,
- $\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle P_{n}, N_{n}\right\rangle\right\}$ is the set of accepting pairs.

A run π of A over t is said to be accepting, if and only if for every path σ in t there exists a pair $\left\langle N_{i}, P_{i}\right\rangle \in \Omega$ such that:

$$
\inf \left(\pi_{\mid \sigma}\right) \cap N_{i}=\emptyset \text { and } \inf \left(\pi_{\mid \sigma}\right) \cap P_{i} \neq \emptyset
$$

Büchi, Muller and Rabin

For every Büchi tree automaton A there exists a Muller tree automaton B, such that $\mathcal{L}(A)=\mathcal{L}(B)$, but not viceversa.

For every Muller tree automaton A there exists a Rabin tree automaton B, such that $\mathcal{L}(A)=\mathcal{L}(B)$, and viceversa.

From Büchi to Muller

For each (nondeterministic) Büchi automaton A there exists a (nondeterministic) Muller automaton B such that $\mathcal{L}(A)=\mathcal{L}(B)$

Let $A=\left\langle S,\left\{s_{0}\right\}, T, F\right\rangle$ be a Büchi automaton.

Define $B=\left\langle S, s_{0}, T,\left\{G \in 2^{S} \mid G \cap F \neq \emptyset\right\}\right\rangle$

Allowing Muller automata to be nondeterministic is essential here.

From Rabin to Muller

Given a Rabin automaton $A=\left\langle S, s_{0}, T, \Omega\right\rangle$, such that

$$
\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{k}, P_{k}\right\rangle\right\}
$$

let $B=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$ be the Muller automaton, where

$$
\mathcal{F}=\left\{F \subseteq S \mid F \cap N_{i}=\emptyset \text { and } F \cap P_{i} \neq \emptyset \text { for some } 1 \leq i \leq k\right\}
$$

From Muller to Rabin

Given a Muller automaton $A=\left\langle S, s_{0}, T, \mathcal{F}\right\rangle$, there exists a Rabin automaton B such that $\mathcal{L}(A)=\mathcal{L}(B)$

Let $\mathcal{F}=\left\{Q_{1}, \ldots, Q_{k}\right\}$

Let $B=\left\langle S^{\prime}, s_{0}^{\prime}, T^{\prime}, \Omega^{\prime}\right\rangle$ where:

- $S^{\prime}=2^{Q_{1}} \times \ldots \times 2^{Q_{k}} \times S$
- $s_{0}^{\prime}=\left\langle\emptyset, \ldots, \emptyset, s_{0}\right\rangle$

From Muller to Rabin

- $T^{\prime}\left(\left\langle S_{1}, \ldots, S_{k}, s\right\rangle, a\right)=\left(\left\langle S_{1}^{\prime}, \ldots, S_{k}^{\prime}, s^{\prime}\right\rangle,\left\langle S_{1}^{\prime \prime}, \ldots, S_{k}^{\prime \prime}, s^{\prime \prime}\right\rangle\right)$ where:
- $\left(s^{\prime}, s^{\prime \prime}\right)=T(s, a)$
$-S_{i}^{\prime}=S_{i}^{\prime \prime}=\emptyset$ if $S_{i}=Q_{i}, 1 \leq i \leq k$
- $S_{i}^{\prime}=\left(S_{i} \cup\left\{s^{\prime}\right\}\right) \cap Q_{i}, 1 \leq i \leq k$
$-S_{i}^{\prime \prime}=\left(S_{i} \cup\left\{s^{\prime \prime}\right\}\right) \cap Q_{i}, 1 \leq i \leq k$
- $P_{i}=\left\{\left\langle S_{1}, \ldots, S_{i}, \ldots, S_{k}, s\right\rangle \mid S_{i}=Q_{i}\right\}, 1 \leq i \leq k$
- $N_{i}=\left\{\left\langle S_{1}, \ldots, S_{i}, \ldots, S_{k}, s\right\rangle \mid s \notin Q_{i}\right\}, 1 \leq i \leq k$

The Rabin Complementation Theorem

Theorem 2 (Rabin '69) The class of Rabin-recognizable tree languages is closed under complement.

The class of Rabin-recognizable tree languages is closed under union and intersection, because Muller-recognizable languages are.

Emptiness of Rabin Automata

Given an alphabet Σ, an infinite tree $t \in \mathcal{T}^{\omega}(\Sigma)$ is said to be regular if there are only finitely many distinct subtrees t_{u} of t, where $u \in\{0,1\}^{*}$.

Example 1 The infinite binary tree $f(g(f(\ldots), f(\ldots)), g(f(\ldots), f(\ldots)))$ is regular.

Theorem 3 (Rabin '72)

1. Any non-empty Rabin-recognizable set of trees contains a regular tree.
2. The emptiness problem for Rabin tree automata is decidable.

Reduction to empty alphabet

Let $A=\langle S, I, T, \Omega\rangle$ be a Rabin tree automaton over Σ, such that $\mathcal{L}(A) \neq \emptyset$, where $\Omega=\left\{\left\langle N_{1}, P_{1}\right\rangle, \ldots,\left\langle N_{n}, P_{n}\right\rangle\right\}$.

Let $A^{\prime}=\left\langle S \times \Sigma, I \times \Sigma, T^{\prime}, \Omega^{\prime}\right\rangle$, where:

- $\left\langle\left(s_{1}, \sigma_{1}\right),\left(s_{2}, \sigma_{2}\right)\right\rangle \in T^{\prime}((s, \sigma))$ iff $\left\langle s_{1}, s_{2}\right\rangle \in T(s, \sigma)$, and $\sigma_{1}, \sigma_{2} \in \Sigma$.
- $\Omega^{\prime}=\left\{\left\langle N_{1} \times \Sigma, P_{1} \times \Sigma\right\rangle, \ldots,\left\langle N_{n} \times \Sigma, P_{n} \times \Sigma\right\rangle\right\}$.

The successful runs of A^{\prime} are pairs (π, t), where $t \in \mathcal{L}(A)$, and π is a successful run of A on t.

Regular successful runs

For any Rabin tree automaton A, there exists a Rabin tree automaton A^{\prime} with one initial state such that $\mathcal{L}(A)=\mathcal{L}\left(A^{\prime}\right)$.

Consider a Rabin tree automaton $A=\left\langle S, s_{0}, T, \Omega\right\rangle$ over the empty alphabet, and let π be a successful run of A.

Claim 1 If A has a successful run, A has also a regular successful run.

A state $s \in S$ is said to be live if $s \neq s_{0}$ and $\left\langle s_{1}, s_{2}\right\rangle \in T(s)$ for some $s_{1}, s_{2} \in S$, where either $s_{1} \neq s$ or $s_{2} \neq s$.

By induction on $n=$ the number of live states in A.

Regular successful runs

If $n=0, \pi(\epsilon)=s_{0}$ and $\pi(p)=s$, for all $p \in \operatorname{dom}(\pi)$, and $s \in S$ non-live.

Case 1 If some live state in A is missing on π, apply the induction hypothesis.

Case 2 All live states of A appear on π, and there is a position $u \in\{0,1\}^{*}$ such that $\pi(u)=s$ is live, but some live state s^{\prime} does not appear in π_{u}.

Let $\pi_{1}=\pi \backslash \pi_{u}$ and $\pi_{2}=\pi_{u}$. Both π_{1} and π_{2} are runs of automata with $n-1$ live states, hence there exists successful regular runs π_{1}^{\prime} and π_{2}^{\prime} of these automata. The desired run is $\pi_{1}^{\prime} \cdot{ }_{s} \pi_{2}^{\prime}$.

Regular successful runs

Case 3 All live states appear in any subtree of π. Let σ be a path in π consisting of all the live states appearing again and again, and only of the live states, with the exception of $\pi(\epsilon)$. Q: Why does σ exist?

There exists $\langle N, P\rangle \in \Omega$, such that $\inf (\sigma) \cap N=\emptyset$ and $\inf (\sigma) \cap P \neq \emptyset$. Then N contains only non-live states.

Let $s \in \inf (\sigma) \cap P$ and u, v be the $1^{s t}$ and $2^{\text {nd }}$ positions such that $\sigma(u)=\sigma(v)=s$.

Let $\pi_{1}=\pi \backslash \pi_{u}$ and $\pi_{2}=\pi_{u} \backslash \pi_{v}$. Both π_{1} and π_{2} are runs of automata with $n-1$ live states, hence there exists successful regular runs π_{1}^{\prime} and π_{2}^{\prime} of these automata. The desired run is $\pi_{1}^{\prime} \cdot s \pi_{2}^{\prime \omega s}$.

The Emptiness Problem

Let A be an input-free Rabin tree automaton with n live states.

We derive $A_{n-1}, A_{n-2}, \ldots, A_{0}$ from A, having $n-1, n-2, \ldots 0$ live states.

If A has a successful run, then it it has a regular run, composed of runs of $A_{n-1}, A_{n-2}, \ldots, A_{0}$.

So it is enough to check emptiness of $A_{n-1}, A_{n-2}, \ldots, A_{0}$.

Rabin Automata, SkS and $\mathrm{S} \omega \mathrm{S}$

Defining infinite paths

We say that a set of positions X is linear iff the following holds:

$$
\operatorname{linear}(X):(\forall x, y . X(x) \wedge X(y) \rightarrow x \leq y \vee y \leq x)
$$

X is a path iff:

$$
\operatorname{path}(X): \operatorname{linear}(X) \wedge \forall Y . \operatorname{linear}(Y) \wedge X \subseteq Y \rightarrow X=Y
$$

From Automata to Formulae

Let $A=\langle S, I, T, \Omega\rangle$ be a Rabin tree automaton, where $S=\left\{s_{1}, \ldots, s_{p}\right\}$.

Let $\vec{Y}=\left\{Y_{1}, \ldots, Y_{p}\right\}$ be set variables.

If X denotes a path, state i appears infinitely often in X iff:

$$
\inf _{i}(X): \forall x . X(x) \rightarrow \exists y . x \leq y \wedge X(y) \wedge Y_{i}(y)
$$

The formula expressing the accepting condition is:

$$
\Phi_{\Omega}(\vec{Y}): \forall X \cdot \operatorname{path}(X) \rightarrow \bigvee_{\langle N, P\rangle \in \Omega}\left(\bigwedge_{s_{i} \in N} \neg i n f_{i}(X) \wedge \bigvee_{s_{i} \in P} \inf f_{i}(X)\right)
$$

Decidability of S2S

Theorem 4 Given an alphabet Σ, a tree language $L \subseteq \mathcal{T}^{\omega}(\Sigma)$ is definable in S2S iff it is recognizable.

Corollary 1 The SAT problem for $S 2 S$ is decidable.

Obtaining Decidability Results by Reduction

Suppose we have a logic \mathcal{L} interpreted over the domain \mathcal{D}, such that the following problem is decidable:

for each formula φ of \mathcal{L} there exists $\mathfrak{m} \in \mathcal{D}$ such that $\mathfrak{m} \models \varphi$

Then we can prove the same thing for another logic \mathcal{L}^{\prime} interpreted over \mathcal{D}^{\prime} iff there exists functions $\Delta: \mathcal{D}^{\prime} \rightarrow \mathcal{D}$ and $\Lambda: \mathcal{L}^{\prime} \rightarrow \mathcal{L}$ such that for all $\mathfrak{m}^{\prime} \in D^{\prime}$ and $\varphi^{\prime} \in \mathcal{L}$ we have:

$$
\mathfrak{m}^{\prime} \models \varphi^{\prime} \Longleftrightarrow \Delta\left(\mathfrak{m}^{\prime}\right) \models \Lambda\left(\varphi^{\prime}\right)
$$

Decidability of $\mathrm{S} \omega \mathrm{S}$

Every tree $t: \mathbb{N}^{*} \rightarrow \Sigma$ can be encoded as $t^{\prime}:\{0,1\}^{*} \rightarrow \Sigma$.

Let $D=\{\epsilon\} \cup\left\{1^{n_{1}+1} 01^{n_{2}+1} 0 \ldots 1^{n_{k}+1} 0 \mid k \geq 1, n_{i} \in \mathbb{N}, 1 \leq i \leq k\right\}$.

Embedding the domain of S ω S into S2S:

$$
\begin{aligned}
D(x): & \exists z \forall y .(z \leq y) \wedge x=z \vee \\
& s_{0}(z) \leq x \wedge \forall y . z<y \wedge s_{0}(y) \leq x \rightarrow \exists y^{\prime} . y=s_{1}\left(y^{\prime}\right)
\end{aligned}
$$

$\underline{\text { Decidability of } S \omega S}$

If $p=1^{n_{1}} 01^{n_{2}} 0 \ldots 1^{n_{k}} 0$, let $f_{i}(p)=p \cdot 1^{i} 0=1^{n_{1}} 01^{n_{2}} 0 \ldots 1^{n_{k}} 01^{i} 0$

$$
x \preceq_{D} y: D(x) \wedge D(y) \wedge x \preceq y
$$

Define the relation $x \leq_{D}^{\exists} y$ iff $x \in D$ and $y=x \cdot 1^{n} 0$, for some $n \in \mathbb{N}$:

$$
x \leq_{D}^{\exists} y: \exists z \cdot y=s_{0}(z) \wedge \forall z^{\prime} . x \leq z \wedge z^{\prime}<z \rightarrow s_{1}\left(z^{\prime}\right) \leq y
$$

Define $f_{0}, f_{1}, f_{2}, \ldots$ by induction:

$$
\begin{aligned}
f_{0}(x)=y: & D(x) \wedge D(y) \wedge y=s_{0}(x) \\
f_{i+1}(x)=y: & D(x) \wedge D(y) \wedge x \leq_{D}^{\exists} y \wedge \forall z \cdot x \leq_{D}^{\exists} z \wedge \\
& \bigwedge_{0 \leq k \leq i} z \neq f_{k}(x) \rightarrow y \preceq_{D} z
\end{aligned}
$$

