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Chapter 1

Introduction

The verification of algorithms, programs and, in general, computer systems,
is a major research area, stemming in the seminal works of Church and Tur-
ing, which set the basis of modern computing science. The early study of
basic models of computation such as the λ-calculus [Chu32] and the Turing
Machines [Tur37] revealed that most basic problems are unsolvable, such as
the existence of (1) a normal form for a given λ-term, (2) an execution lead-
ing to a given control location (the reachability problem), or (3) an infinite
execution (the halting problem). These undecidability results are direct con-
sequences of the unsolvability of the Entscheidungsproblem [HA28], which
asks, given a logical formula, for a mechanical way of proving its validity.

The story of program verification thus starts with a logical paradox and
continues with a psychological one, which finally turned undecidability into
rather efficient practical algorithms. One possible explanation is that mod-
ern society is increasingly dependent on software, whose failure can result in
dramatic human and economical loss. Consequently, the process of software
development demands for rigorous verification methods that guarantee the
absence of design and implementation errors. Moreover, many practical in-
stances of verification problems are feasible, despite the barrier imposed by
theoretical undecidability, or prohibitive complexity lower bounds.

During the last decades, the pioneering works of Floyd [Flo67] and Hoare
[Hoa69] have enabled major steps in this direction, leading to various ver-
ification techniques such as: abstract interpretation [CC79], predicate ab-
straction [GH96], assisted proof techniques [FM07, Abr96], regular model
checking [BJNT00] and shape analysis [SRW02], among others. The great
majority of these methods have integrated industrial-scale platforms for soft-
ware analysis and development, such as the Spec# and CodeContracts
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projects at Microsoft [BFL+11], the Spark framework for Ada [Bar03], the
Frama-C [CKK+12], Polyspace and Astrée [BCC+03, CCF+07] static
analyzers for C, and the Infer shape analysis tool [CD11] for C, Java and
JavaScript, at Facebook.

Generally speaking, one can distinguish between (i) certification meth-
ods, that provide proofs of correctness (absence of errors) with respect to a
certain semantic model of the program, and (ii) bug-finding methods, that
explore systematically the state space of the program, in search for errors.
First, certification is used at early stages during program development, and
is expected to perform in a reasonably small amount of time, like a compiler.
To this end, a certification approach either (a) gives up on precision and
reports false alarms (as in abstract interpretation [CC79]), or (b) requires
the user to provide annotations, such as pre-, post-conditions, invariants
and ranking functions to help the verifier (as in Floyd-Hoare deductive ver-
ification [Flo67, Hoa69]). Depending on the type of property, a certificate
is either an inductive invariant, defining an over-approximation of the sets
of reachable configurations (in case of reachability properties), or a ranking
function, that witnesses termination (for more general temporal properties
that involve reasoning about infinite computations).

Second, bug-finding is used at later stages of development and is granted
more time, in exchange of precision. Here no false alarms are reported,
but, on the other hand, the verification procedure does not terminate in
all cases1. As examples of bug-finding methods, we mention predicate ab-
straction model checking [GH96] with counter-example guided abstraction
refinement (CEGAR) [CGJ+00] and acceleration [Boi99, FL02a, BIK10].

Program verification has an intrinsic connection with logic and auto-
mated reasoning. First of all, logic is used to specify the expected behavior
of a program, in the form of pre- and post-conditions (contracts). Second,
logic is used internally as a symbolic representation of the potentially infinite
sets of configurations that must be considered by the verifier. The verifica-
tion problem is usually decomposed into a large set of logical conditions that
are checked for validity. As a result, the decidability status and complexity
of certain program verification problems can usually be found by reduction
to the validity problem for a suitable logical fragment.

The connection between models of computation and logic can be traced
back to the encoding of λ-calculus and Turing Machines in first-order integer
arithmetic [Chu32, Tur37]. More recently, this relation has provided several
deep decidability results in logic, via a connection with the theory of formal

1If the procedure terminates, a correctness certificate can also be provided.



8 CHAPTER 1. INTRODUCTION

languages and automata. The seminal works of Büchi [B6̈2] and Rabin
[Rab68] show that the languages recognized by finite state (tree) automata
are exactly the sets of models of Monadic Second Order logic (MSO) formulae
interpreted over possibly infinite words (trees). The reduction builds, (1) for
each MSO formula φ an automaton Aφ, such that a word (tree) is a model
of φ if and only if it is recognized by Aφ, and (2) for each automaton A, an
MSO formula ΦA, such that a word (tree) is recognized by A if and only if
it is a model of ΦA. Since language emptiness is decidable for finite-state
automata over finite alphabets, this relation entails the decidability of the
satisfiability, and thus, of the validity2 problem for MSO.

The logic-automata connection extends also to fragments of first-order
arithmetic, such as the theory of natural numbers ⟨N,+, Vp⟩, with the clas-
sical interpretation of addition, where Vp(x) is the largest power of p that
divides x, for a prime number p [BHMV94]. The set of p-adic expansions
of the models of a formula φ(x1, . . . , xn) in this theory is the language of
a finite automaton Aφ over the alphabet {0, . . . , p − 1}n. Dually, for any
automaton A recognizing words over this alphabet, there exists a formula
ΦA(x1, . . . , xn) whose set of models corresponds to the language of the au-
tomaton. This argument establishes the decidability of the ⟨N,+, Vp⟩ theory.

The relation with automata theory establishes a sharp boundary between
decidability and undecidability in many logical theories. To this date, only
few decidable logics do not have known automata-based proofs of decidabil-
ity3. It is tempting to ask whether every decidable logic has an automata-
based decidability proof, but this remains a conjecture, so far.

Reducing a program verification task to several verification conditions
expressed in a decidable logic is the challenge faced by every verification
technique. Such reductions are usually difficult because the program config-
urations handled by the verifier are way more complex than the structures
(words,trees) recognized by automata. Indeed, one can distinguish several
degrees of complexity.

First, automata always work with finite alphabets, which is not the case
of programs. For instance, the set of configurations of a program handling
an integer array is a set of words over the infinite alphabet of integer array
values, and can hardly be represented using a finite alphabet. This restric-
tion motivates the study of automata and logics using very large or infinite
alphabets [BDM+11, DA14].

2A formula φ is valid if and only if ¬φ is not satisfiable.
3One such example is the theory ⟨N,+, px⟩ with addition and the powering function

x↦ px, proved to be decidable by Semenov [Sem79], using quantifier elimination.
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Second, classical Rabin-Scott automata model iterative intra-procedural
program executions. In order to capture inter-procedural executions, with
unbounded stack usage, one must consider pushdown automata instead.
However, even with a stack, the pushdown automata model is not expressive
enough, for the following reason: during a procedure call, values from very
large or infinite domains (such as machine or mathematical integers) are
pushed onto the stack. The finite stack alphabet of a pushdown automaton
is thus not enough to capture the set of stack frames of a recursive program.

Finally, the structures recognized by finite automata are typically limited
to trees, whereas programs can build more complex graph structures using
pointers and dynamic memory allocation. An interesting observation is that
the heap structures created by programs working on recursively linked data
types (e.g. singly- and doubly-linked lists, trees with parent pointers and
linked leaves, etc.) can, in general, be viewed as families of graphs with
bounded treewidth. Recent work of Courcelle [Cou90] shows that satisfia-
bility (and validity) of MSO is decidable on classes of graphs with bounded
treewidth, by reduction to the satisfiability of MSO on trees [Rab68], thus
motivating attempts of using MSO on graphs for the verification of programs
with dynamic memory.

In this thesis, we present several theoretical and practical results on pro-
gram verification, the main purpose being that of providing cost-efficient
solutions to problems that almost always belong to undecidable classes. We
appeal to logic and automata theory as they provide essentially the mecha-
nisms to problem solving that are needed for program verification. In this
respect, we investigate:

• logics for reasoning about infinite sets of program configurations, in-
volving infinite data domains (array logics) and complex recursive data
structures (separation logic), and

• automata extended with integer variables (counter machines), possibly
with unbounded stacks (recursive integer programs).

We devoted special attention to the connection between logic and au-
tomata theory, by using counter machines and tree automata as effective
decision procedures for array logics and separation logic, respectively. In
this respect, we identified new decidable logical fragments and classes of au-
tomata and studied the complexity of their decision problems, such as e.g.
validity, reachability and termination, respectively. Most of these theoreti-
cal results have been implemented within prototype tools used to carry out
experimental evaluations of their practical efficiency.



Chapter 2

Summary of the Results

This chapter gives a summary of the main results, which mirrors the struc-
ture of this document. Most of the material in this thesis relies on jour-
nal publications, that are extended versions of previous conference papers.
Thorough journal reviewing led to the discovery and correction of several
errors that have, unfortunately, slipped through the more lightweight con-
ference reviewing process. Each chapter also presents a number of open
problems related to the corresponding developments.

Section 2.1 presents flat counter machines, a class of automata extended
with integer variables, whose reachability and termination problems are
shown to be decidable in nondeterministic polynomial time. These results
are the core of a tool for the verification of integer programs, based on ac-
celeration (Flata [KIB09]). Chapter 4 covers this topic in detail. A related
result on the solvability of a class of non-linear Diophantine systems is given
in Chapter 3.

Section 2.2 discusses recursive counter machines, an extension of the
model of counter machines, with unbounded local variables, parameters and
return values. We establish complexity bounds for the reachability problems
of recursive counter machines, in some restricted cases. These ideas inspired
an implementation (within the Flata tool [KIB09]). Chapter 5 covers these
topics in detail.

Section 2.3 describes several applications of counter machines to the
verification of programs with pointer structures and integer arrays. We
define decidable classes of programs with dynamically allocated recursive
pointer structures and decidable logics for reasoning about arrays of integers,
by reduction to the reachability and termination problems for flat counter
machines. These techniques were implemented by a verifier for programs

10



2.1. FLAT COUNTER MACHINES 11

with lists (L2ca [BIP]) and a solver for a logic of integer arrays (integrated
within the Flata tool [KIB09]). This topic is covered in detail by Chapter
6. A related result on the decidability of a fragment of the first-order integer
arithmetic with addition and divisibility is given in Chapter 3.

Section 2.4 presents decidability and complexity results on Separation
Logic (SL) [IO01, Rey02], an expressive logical framework for reasoning
about programs with mutable heaps and recursive linked data structures.
First, we show that SL with inductive definitions becomes decidable, under
several natural restrictions on the syntax of the inductive rules. This is the
most general decidability result on SL with inductive definitions, interpreted
over unrestricted heaps, known so far. Second, we identified a fragment of
this logic, for which the validity of entailments can be reduced to language
inclusion between two tree automata, in polynomial time. This method
was implemented by a solver for SL with user-defined inductive definitions
(Slide [IRV]). These results are described in Chapter 7.

2.1 Flat Counter Machines

A counter machine (CM) is a finite state automaton, whose input alphabet
consists usually of one letter1, equipped with a finite set of variables (coun-
ters) that take integer values. For example, let us consider the following
machine M computing the Fibonacci sequence Fn up to a given index k > 0:

M ∶ q0

x′=0

a′=0

b′=1

ÐÐÐ→

x<k
x′=x+1

a′=b
b′=a+b

ÿ
q1

x=k
a′=a+b
ÐÐÐÐ→ qf

For each transition rule, a′, b′ and x′ denote the updated (next) values of
a, b and x, respectively. A configuration of M is a pair (q, ν), where q ∈
{q0, q1, qf} is a control location and ν ∶ {a, b, x} → Z is an integer valuation
of the counters. The sequence of configurations below is an execution of M :

a
b
x

⎛
⎜
⎝
q0,

?
?
?

⎞
⎟
⎠
Ô⇒

⎛
⎜
⎝
q1,

0
1
0

⎞
⎟
⎠
Ô⇒

⎛
⎜
⎝
q1,

1
1
1

⎞
⎟
⎠
Ô⇒

⎛
⎜
⎝
q1,

1
2
2

⎞
⎟
⎠
⋯Ô⇒

⎛
⎜
⎝
qf ,

Fk
?
k

⎞
⎟
⎠

The values of a, b and x are not specified initially and can be randomly
chosen. Whenever the control is at location q1 and x = n, we have that

1This restriction can be lifted when considering several different input events.
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a = Fn and b = Fn+1. The machine iterates the loop
↷
q1 as long as x < k and

exits towards qf with x = k. It is easy to see that M has one execution of
length k+1, and in the final configuration (qf , ν), we have that ν(a) = Fν(x).

Many verification conditions for programs reduce to one of the following
decision problems:�

�

�

�
Reachability: given a counter machine, does it have an execution

ending in a certain (set of) configuration(s) ?

Termination: given a counter machine, are all its executions finite ?

Despite their apparent simplicity, counter machines have the same power
as Turing machines, even when restricted to have two counters, which can
only be incremented, decremented and tested for equality with zero [Min67].
Due to this strong result of Minsky, the above problems are undecidable, in
general. Finding classes of counter machines for which these problems are
decidable is important, in order to identify verification sub-tasks that can
be solved automatically, by push-button methods. Below we give several
examples of decidable classes of CM.

Vector addition systems with states (VASS) [May81, Kos82, Ler12] are
counter machines in which the only updates are of the form x′ = x + vi,
where x = ⟨x1, . . . , xd⟩ is the tuple of variables, ranging over positive integers
Nd, and v1, . . . ,vk ∈ Zd is a finite set of integer vectors. The reachability
problem for VASS has been shown to be Expspace-hard by Lipton [Lip76b]
and currently no matching upper bound has been found. On the other
hand, the problems of coverability and boundedness for VASS are shown to
be Expspace-complete [Rac78]. Because the transition relation of VASS
can be defined as a finite disjunction of difference bounds constraints, these
counter machines are, in principle, not flat. However, when restricting the
number of counters to two, Hopcroft and Pansiot [HP79] have shown that
the set of reachable configurations of a VASS is semilinear, thus definable in
Presburger arithmetic. Along this line, Leroux and Sutre [LS04] showed that
it is possible to build a flat counter machine, with the same transitions as the
original 2-counter VASS and same reachable set of configurations. A close
analysis of their construction revealed that reachability of 2-counter VASS
(mostly known as 2-dimensional VASS) is Pspace-complete [BFG+14].

Reversal-bounded counter machines [Iba78] are those CM in which, dur-
ing each execution, a counter may switch between non-increasing and non-
decreasing modes for a number of times bounded by a fixed constant. The
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reachability problem for reversal-bounded CM is decidable in nondetermin-
istic polynomial time [GI81]. On the other hand, it is undecidable whether
a CM is reversal-bounded or not [FS08], which limits the applicability of
this model for practical program verification purposes.

Flat counter machines [Boi99] are restricted to control structures in
which each location belongs to at most one elementary cycle. In other
words, no execution can indefinitely interleave two different cycles as in
λµ2λ3µ4λ5 . . .. Consequently, an algorithm for reachability and/or termina-
tion must only compute the transitive closures of the relations on the elemen-
tary cycles of the CM. This method is known as acceleration [Boi99, FL02b].

However, flatness alone does not ensure decidability of the reachability or
termination problems2. To achieve decidability, one must further constrain
the class of arithmetic relations that can label the transition rules within
cycles. A first restriction was to consider cycles with guards defined by the
additive theory of integers ⟨Z,+,0,≤⟩, also known as Presburger arithmetic
[Pre29], and deterministic updates x′ = Ax + b, where the set of matrix
powers A,A2, . . . is finite. This finite monoid condition, ensures decidability
of the reachability problem, by reduction to the satisfiability of a Pres-
burger formula [Boi99, FL02b]. Although the reachability and termination
problems are decidable for this class, the exact complexity bounds are still
unknown for these problems.

2.1.0.1 Reachability Problems

In this joint work with Marius Bozga (VERIMAG) and Filip Konecny (PhD
student at VERIMAG and Brno University of Technology, Czech Repub-
lic) we consider flat counter machines with cycles labeled by octagonal
constraints, which are finite conjunctions of atomic constraints the form
±x± y ≤ c, where x and y are (possibly primed) variables and c is an integer
constant. This class is incomparable with several previously studied CM
models, because (i) it is not reversal-bounded, for instance a cycle with the
relation −1 ≤ x−x′ ≤ 1 allows arbitrarily long executions x = 0, x = 1, x = 0, . . .
in which the counter switches between increasing and decreasing modes, and
(ii) it allows nondeterminism, thus it cannot be represented by a single affine

2For instance, a famous open problem due to Skolem (see [OW12] for a description)
can be expressed as the termination of a single cycle program with an affine update.
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update. Our first main result for this class is stated below:

Theorem ([BIK14b, BIK13]). The class of reachability problems for
flat counter machines with cycles labeled by octagonal constraints is
Np-complete.

This result was achieved in several steps. First, we considered the simpler
class of difference bounds constraints, that are finite conjunctions of atomic
constraints x − y ≤ c, where x and y are possibly primed variables and c is
an integer constant. Comon and Jurski [CJ98] showed that the transitive
closure R+ = ⋃∞n=1R

n of a relation3 definable by a difference bounds con-
straint can be expressed by a formula in Presburger arithmetic. This reduces
the reachability problem for flat CM with difference bounds constraints on
cycles to the satisfiability of a formula in Presburger arithmetic [Pre29].

We first gave a simplified proof of their result [BIL09], based on the fol-
lowing observation. A relation R, defined by a difference bounds constraint,
is represented by a weighted constraint graph GR, whose nodes are vari-
ables x∪x′ and the weighted edges x

cÐ→ y correspond to atomic constraints
x−y ≤ c. Then each logical consequence x−y′ ≤ c of Rn corresponds to a path
of weight c, between extremal nodes x(0) and y(n), in the graph obtained by
n adjacent copies of GR, with the nodes x and x′ renamed to x(i) and x(i+1),
respectively, for i ∈ [0, n − 1]. The set of such paths is regular, and one can
effectively build a weighted automaton4 AR that recognizes all such paths.
The problem of defining the transitive closure R+ reduces to finding a Pres-
burger formula φ(n,w) that defines the minimal weight w, among all paths
of length n, between two designated states of the weighted automaton AR.
This formula corresponds to the Parikh image of the weighted automaton,
and can be computed in linear time, in the size of AR.

The initial acceleration algorithm, based on the construction of a weighted
automaton, is, however, quite inefficient, because the size of this automaton
is exponential in the number of variables, in the worst case. We bypassed this
problem, and developed a very efficient acceleration algorithm, by noticing
that the integer matrices which define the powers R,R2, . . . of a difference
bounds relation5 form a periodic sequence M1,M2, . . . ∈ Z2d×2d, where d is
the number of variables (counters) that occur in the relation R. Intuitively,
a sequence is periodic if all matrices situated at equal distance (period) in

3Let R1 = R and Rn+1 = Rn ○R, for all n ≥ 1, where ○ denotes composition of relations.
4A finite automaton with integer weights associated to transitions.
5The incidence matrices of the constraint graphs GR,GR2 , . . . for the relations R,R2, . . .



2.1. FLAT COUNTER MACHINES 15

the sequence, beyond a certain threshold (prefix), differ by the same quan-
tity (rate). Formally, there exist integers b ≥ 0 and c > 0 and matrices
Λi, . . . ,Λc−1 such that:

Mb+(k+1)c+i =Mb+kc+i +Λi,∀k ≥ 0 ∀i ∈ [0, c − 1] . (2.1)

It is then possible to characterize an infinite subsequence of powers {Rb+kc}
k≥0

simply by guessing the prefix b, the period c and computing the rate Λ0 =
Mb+c −Mb. From this, one computes the entire sequence {Rn}n≥b by filling
in the missing gaps Rb+kc+i = Rb+kc ○Ri, i ∈ [0, c− 1]. Also, the initial prefix
{Rn}b−1

n=1 is finite and can be computed using exponentiation by squaring.

In practice, the prefix and period of a difference bounds relation turn out
to be rather small, resulting in a very fast acceleration algorithm [BIK10],
that surpasses the weighted automata-based algorithm [BIL06, BIL09] by
many orders of magnitude. For instance, this new algorithm can accelerate
relations with several hundreds of variables in less than 10 seconds, while
the same relations require several days with the old algorithm!

Moreover, the idea of periodic sequences can be generalized to octagonal
relations, with relatively little effort. The main point is that octagonal
relations can be represented by difference bounds matrices of size 4d × 4d,
by encoding each variable x as the pair x+, x−. Intuitively, x+ tracks the
value of x, while x− tracks the value −x. Then any octagonal constraint
x + y ≤ c can be equivalently written as x+ − y− ≤ c or y+ − x− ≤ c, with the
implicit constraint x+ + x− = 0. In order to account for the latter condition,
octagonal matrices must be tightened with respect to the domain of integers,
by normalizing the constraints such as 2x ≤ 1 to the canonical form 2x ≤
0. Also, tightening preserves periodicity, thus octagonal relations can be
accelerated in the same way as difference bounds relations [BIK10].

Finally, we prove that the reachability problem for flat counter machines
with octagonal cycles is in Np, by showing that both the prefix b and the
period c of such sequences are of the order of 2O(∣R∣), where ∣R∣ is the size of
the binary encoding of R. Then the matrices Mb,Mb+c and the first rate Λ0

of the sequence can be computed in polynomial time, by squaring, and the
validity check (2.1) reduces to the satisfiability of quantifier-free Presburger
formula, which is a known Np-complete problem [VSS05]. This provides
a nondeterministic polynomial-time algorithm for the reachability problem
[BIK14b, BIK13].
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2.1.0.2 Termination Problems

The effective computation of transitive closures for octagonal relations is
also key to establishing the decidability of the termination problem for flat
counter machines with octagonal cycles. Let M be counter machine with
variables x, and R ⊆ Zx × Zx be the transition relation that labels a given
cycle in M , where Zx is the set of all integer valuations of the variables
in x. The largest set of configurations from which there exists an infinite
iteration of the cycle in M is called the weakest non-terminating set, and
denoted as wnt(R). This set is in fact the greatest fixpoint of the pre-
image function preR(X) = {u ∈ Zx ∣ ∃v ∈ Zx . (u,v) ∈ R}. Provided that
the sequence preRn(Zx) stabilizes in a finite number of steps, we have:

wnt(R) = ⋂
n≥1

preRn(Zx) . (2.2)

Since the sequence of powers {Rn}n≥1 of an octagonal relation R can be

characterized, using acceleration, by a formula R̂(n,x,x′) in Presburger
arithmetic, the weakest non-terminating set is also definable in the same
theory, by the formula:

wnt(R) ≡ ∀n ≥ 1 ∃x′ . R̂(n,x,x′) .

Then the termination problem for a flat counter machine with one cycle
reduces to the validity of a Presburger formula with quantifier prefix ∃∗∀∃,
a sufficient argument for decidability. The following theorem states the
result, providing moreover tight complexity bounds:

Theorem ([BIK12, BIK14a]). The class of termination problems for
flat counter machines with octagonal cycles is in P.

The polynomial upper bound is obtained by proving that, if the sequence
{preRn}n≥1 stabilizes, then it stabilizes in at most 2k⋅∣R∣ steps, for a com-
putable constant k > 0. The stabilization condition can thus be decided in
polynomial time, by computing the powers {Rn}n≤k⋅∣R∣ by squaring.

2.1.0.3 Verification by Acceleration

The acceleration of octagonal constraints is at the core of a tool (Flata
[KIB09]) for the verification of (not necessarily flat) counter machines. The
semi-algorithm implemented in Flata attempts to compute a summary
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(input/output) relation of a counter machine by eliminating all but the
initial and the final control location6. Computing summaries is, in fact,
essential for a compositional verification method. Each component of a
counter machine needs, in fact, to be analyzed only once, its computed
summary being used subsequently to represent the effect of any pair of
transitions leading to and from that particular component.

The summary computation performs the following transformation, until
a fixpoint is reached and no more states can be eliminated. Each subgraph
of a counter machine of the form:

q0
α
Ð→

λ

ÿ
q1

↻
µ

β

Ð→ q2

is replaced by an edge q0
α ○ [λ†○µ†○⋯○λ†○µ†] ○ βÐÐÐÐÐÐÐÐÐÐÐÐ→ q2, where λ† ○ µ† ○ ⋯ ○ λ† ○ µ†

is a finite unfolding of the nested cycle on q1, R† = R∗ is the reflexive and
transitive closure, if R is octagonal, and R† = R, otherwise. Intuitively, we
attempt to accelerate a disjunctive relation λ∪µ by first trying to accelerate λ
and µ separately as λ† and µ†, respectively, and then composing increasingly
larger interleavings of λ† and µ†, thus obtaining increasingly better under-
approximations of the reflexive and transitive closure of the cycle (λ ∪ µ)∗.

In many practical cases, this sequence of under-approximations converges
and the acceleration yields a precise answer. Otherwise, the tool gives up
after a given threshold, yielding an under-approximation (a stronger sum-
mary relation) that can still be useful to providing a positive answer to the
reachability question (yet, we might fail to report a negative answer).�

�
�
�

The Flata tool [KIB09] uses a compositional semi-algorithm to
check reachability and termination properties of unrestricted counter
machines.

2.1.0.4 Predicate Abstraction with Interpolants

Another application of acceleration for octagonal constraints is predicate
abstraction model checking with interpolant-based abstraction refinement
[McM06]. Essentially, a predicate abstraction model checker associates a

6This procedure is similar to the state elimination algorithm that builds a regular
expression defining the language of a finite-state automaton.
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set of predicates (quantifier-free arithmetic formulae describing relations be-
tween variables) with each control location of a CM and builds an abstract
model by exploring the boolean assignments of the predicates that are sound
over-approximations of the set of reachable configurations. When a path
q0

α1Ð→ q1
α2Ð→ . . .

αnÐ→ qerr from an initial to a designated error location is
discovered in the abstract model, it is checked whether this corresponds to a
real counterexample, by automatically deciding the satisfiability of the path
constraint α1(x0,x1)∧α2(x1,x2)∧ . . .∧αn(xn−1,xn). If the path constraint
is unsatisfiable, the solver used to check the satisfiability returns an inter-
polant, which is a sequence of predicates I0(x), . . . , In(x) such that I0 = ⊺,
In = � and Ii(x) ∧αi(x,x′) → Ii+1(x′), for all i ∈ [0, n− 1]. These predicates
are added to the existing domain in order to exclude the particular spurious
counterexample path from future searches.

A typical problem of predicate abstraction is divergence in the form of
longer and longer spurious counterexamples that follow the same pattern:

q0
α1
Ð→

λ1
ÿ
q1

α2
Ð→ . . .

αn−1
ÐÐ→

λn
ÿ
qn

αnÐ→ qn+1

In order to converge, the solver must be capable of finding interpolants that
are also inductive with respect to the cycles λ1, . . . , λn, i.e. Ii(x)∧λi(x,x′) →
Ii(x′), for all i ∈ [1, n]. But this is not easy for an interpolating solver whose
knowledge is always limited to one particular counterexample path, with no
insight from the control structure (cycles) of the CM.

This is where acceleration of octagonal relation comes to help. By com-
puting the reflexive and transitive closures of the cycles λ∗1 , . . . , λ

∗
n of a given

path scheme, we obtain a meta-trace α1 ○ λ∗1 ○ . . . ○ αn−1 ○ λ∗n ○ αn. If the
path constraint for the meta-trace is satisfiable we have found a real coun-
terexample. Otherwise, we get the interpolants ⊺, I ′1, I ′′1 , . . . , I ′n, I ′′n ,�. It
is not hard to show that ⊺,post(I ′1, λ∗1), . . . ,post(I ′n, λ∗n),� is a sequence of
inductive interpolants for the above path scheme.

This idea was implemented in the Eldarica [HR] model checker, devel-
oped jointly at Ecole Polytechnique Fédérale de Lausanne (Switzerland) and
Uppsala University (Sweden). Acceleration provides a clear improvement in
the convergence rate of the tool, on many practical examples [HIK+12].

2.1.0.5 Comparing Different Verification Techniques

The comparison between acceleration (Fast [BFP], Flata [KIB09]), predi-
cate abstraction (Eldarica [HR]) and abstract interpretation (Aspic [Gon])
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tools led to the idea of building a common benchmark library on which dif-
ferent approaches can be evaluated. The main effort here was the definition
of a common language, called Numerical Transition Systems (Nts), that
subsumes the input languages of existing tools, and allows the specification
of both reachability and termination properties. We provide a clean defini-
tion of the language (abstract syntax and formal semantics), together with
several open-source front- and back-ends [IKB].

Currently the Nts benchmark library [IKB] has over 200 benchmarks
obtained by automatic translation from C programs (e.g. device drivers,
network protocols), VHDL specifications of hardware, verification conditions
for array logics (Chapter 6), etc. The results of a preliminary evaluation
carried out on several tools (Fast [BFP], Flata [KIB09], Aspic [Gon] and
Eldarica [HR]) are reported in [HKG+12, HIK+12].

2.2 Recursive Counter Machines

Procedures and recursion are fundamental programming principles allowing
to break a problem into smaller pieces, implemented by simple chunks of
code. Consider, for instance, the following recursive counter machine that
computes the Fibonacci sequence (a).

r′ = 1

q0
Fib(x)

q3

qf

q1

q2

τ1 ∶ x > 1

τ2 ∶ t′1 = Fib(x − 1)

τ3 ∶ t′2 = Fib(x − 2)

τ4 ∶ r′ = t1 + t2

τ5 ∶ 0 ≤ x ≤ 1

(a)

p1 ∶ Q0 → τ1 ⋅Q1

p2 ∶ Q0 → τ5

p3 ∶ Q1 → ⟨⟨τ2 ⋅Q0 ⋅ τ2⟩⟩ ⋅Q2

p4 ∶ Q2 → ⟨⟨τ3 ⋅Q0 ⋅ τ3⟩⟩ ⋅Q3

p5 ∶ Q3 → τ4

(b)

In this model, a program P is a set of counter machines M1, . . . ,Mn,
each with a list of input (parameters) and output (return) variables. In
addition, we consider that a machine can have call-return transitions to
other machines. A program is recursive if the call-graph7 is cyclic.

7The graph whose nodes are M1, . . . ,Mn and there is an edge Mi Ð→ Mj iff Mi has a
call-return transition to Mj .
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The execution of a recursive program is a sequence of configurations con-
sisting of a control location and a stack of integer valuations. For instance,

the call-return transition q1

t′1=Fib(x−1)
ÐÐÐÐÐÐ→ q2 above is executed by saving the

values of the local variables x, t1, t2 on the stack and transferring the control
to q0, with the updated value x′ = x − 1. Upon return from the call, the
values of x, t1, t2 are restored from the stack, and the value of the return
variable r is copied into t1.

The set of interprocedurally valid execution paths (IVP) of the program
must meet the condition that the number of calls to a machine M equals the
number of returns from M , for each call-return transition rule involving M ,
i.e. the execution starts and ends with an empty stack. If one does not con-
sider the guards on the transitions, the IVPs of a recursive program form a
context-free language. This observation inspired two orthogonal approaches
for inter-procedural verification [SP81], which model the program either as
a context-free grammar, or a pushdown automaton. The pushdown model
faces the problem that the set of stack entries consists of unbounded integer
valuations, which cannot be captured by a finite stack alphabet.

In turn, we model the program using context free grammars (Figure
(b) above), where control locations are represented by nonterminals, and
transitions by terminal symbols. In particular, each call-return transition τ
is represented by a pair of terminals ⟨⟨τ and τ⟩⟩. The production rules of the
grammar model the control flow of the program. For instance, the transition

τ2 ∶ q1

t′1=Fib(x−1)
ÐÐÐÐÐÐ→ q2 of the program (a) is modeled by the production Q1 →

⟨⟨τ2 ⋅ Q0 ⋅ τ2⟩⟩ ⋅ Q2 of the grammar (b). We represent the guards and the
updates of the integer variables of the program by mapping each terminal
to an integer relation, as shown below.

τ1 ↦ x > 1 τ4 ↦ r′ = t1 + t2 τ5 ↦ 0 ≤ x ≤ 1 ∧ r′ = 1
⟨⟨τ2 ↦ x′ = x − 1 φτ2 ≡ x′ = x ∧ t′2 = t2 τ2⟩⟩ ↦ t′1 = r
⟨⟨τ3 ↦ x′ = x − 2 φτ3 ≡ x′ = x ∧ t′1 = t1 τ3⟩⟩ ↦ t′2 = r

In addition, each call-return transition τ has a local frame condition φτ
which copies the values of those local variables, not updated by the return,
across the call.

The semantics of a program is given by the relation between the input
(parameters) and output (return) variables, which is the union, over all
interprocedurally valid program executions, of the relations corresponding to
each execution. Formally, if GP is the grammar corresponding to a program
P and Q is the nonterminal corresponding to the initial location, we define
the semantic relation [[P]] = ⋃w∈LQ(GP) [[w]], where LQ(GP) is the language
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of the grammar GP with axiom Q, and the semantic relation of a word
w is the composition of the relations labeling the terminal symbols on w,
intersected with the frame conditions on the matching call/return positions.
For instance the semantics of the word w = τ1⟨⟨τ2τ5τ2⟩⟩⟨⟨τ3τ5τ3⟩⟩τ4 is:

[[w]] = ρτ1 ○ ((ρ⟨⟨τ2 ○ ρτ5 ○ ρτ2⟩⟩) ∩ φτ2) ○ ((ρ⟨⟨τ3 ○ ρτ5 ○ ρτ3⟩⟩) ∩ φτ3) ○ ρτ4

where ρτ denotes the relation associated with the symbol τ , as above.

Due to the undecidability of the reachability problems for non-recursive
counter machines, the summary of a recursive program is not definable in a
decidable theory, such as Presburger arithmetic. Moreover, the computation
of summaries is challenging, in the presence of recursive procedures with
integer parameters, return values, and local variables. While many analysis
tools exist for non-recursive programs, only a few ones address the problem
of recursion [RHS95, LAJ]. These tools use abstract interpretation [CC79] to
give over-approximations of summaries. In this joint work with Pierre Ganty
(IMDEA, Madrid), we propose a novel technique to generate arbitrarily
precise underapproximations of summary relations.

2.2.0.6 Index-bounded Underapproximation of Summaries

Our technique is based on the following idea. The control flow of procedural
programs is captured precisely by the language of a context-free grammar.
A k-index underapproximation of this language (where k ≥ 1) is obtained
by filtering out those derivations of the grammar that exceed a budget,
called index, on the number (at most k) of occurrences of nonterminals
occurring at each derivation step. As expected, the higher the index, the
more complete the coverage of the underapproximation. From there we
define the k-index summary relations of a program by considering the k-
index underapproximation of its control flow. Our method then reduces the
computation of k-index summary relations for a recursive program to the
computation of summary relations for a non-recursive program, which is, in
general, easier to compute because of the absence of recursion.

Given a (possibly recursive) program P and an index k, we define a
source-to-source program transformation, based on the idea that the se-
mantics of P can be also defined on the set of depth-first derivations8 of
GP . Then the set of depth-first derivations of index at most k can be repre-

sented by a finite automaton A
df(k)
P , whose states are ordered sequences of

8A derivation is said to be depth-first if it corresponds to a depth-first traversal of the
associated parse tree.
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nonterminals annotated with increasing priorities, of length at most k, and
whose transitions are labeled with production rules. For example, the finite

automaton A
df(2)
P for the above Fibonacci program, is shown below.

p2

Q
⟨0⟩
0
Q
⟨0⟩
2

Q
⟨0⟩
2
Q
⟨1⟩
1

Q
⟨0⟩
0

Q
⟨0⟩
1

Q
⟨0⟩
2

Q
⟨0⟩
0
Q
⟨0⟩
3

Q
⟨0⟩
3
Q
⟨1⟩
1

ε

p3 p4p2

p1

p1 p1

p5

Q
⟨0⟩
3

p2

p5

This automaton recognizes infinitely many derivations, that are itera-

tions of the sequence Q0
p1p3p2p4p5ÔÔÔÔÔ⇒ τ1⟨⟨τ2τ5τ2⟩⟩⟨⟨τ3Q0τ3⟩⟩τ4, corresponding

to a set of program executions, with unbounded stack depth. By annotat-

ing the transition rules of the automaton A
df(k)
P with suitable arithmetic

constraints, that capture the semantics of the program, we obtain an under-
approximation [[P]](k) ⊆ [[P]] that captures all execution paths generated
by derivations of index at most k. If the sequence of under-approximations
[[P]](1) ⊆ [[P]](2) ⊆ . . . converges in finitely many steps, we obtain the precise
summary of the program.

We have implemented, in the Flata [KIB09] tool, a program transforma-
tion that returns, given P and k > 0, a non-recursive program with summary
[[P]](k), in a cost-effective way, by reusing, at each step k, the previous iter-

ate of the sequence [[P]](k−1). Several experiments show that this approach
can compute precisely the summary of challenging recursive programs, such
as Knuth’s generalization of McCarthy’s 91 function [Cow00].�

�
�

The Flata tool [KIB09] uses k-index under-approximation to com-

pute precise summaries of recursive integer programs.

2.2.0.7 Acceleration of Bounded Execution Paths

Having defined the k-index under-approximation sequence of the summary
semantics of a recursive program, a natural question to ask is when does
this sequence converge ? We answered this question by considering bounded
context-free languages [GS64]. These are languages generated by context-
free grammars, which are, moreover, included in a regular pattern of the
form w∗

1 . . .w
∗
n, for some non-empty words w1, . . . ,wn. A typical example is

the context-free language {αnβn ∣ n ≥ 0}, which is included in α∗β∗.
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In some sense, bounded context-free languages extend the model of flat
counter machines from the intra- to the inter-procedural setting. Given a
recursive program P and a bounded pattern b = w∗

1 . . .w
∗
n over its transition

rules, one can always compute a program Pb whose executions are those
executions of P of the form b. This is useful for bug-finding, as increasingly
large patterns cover more and more executions of a given program.

As Luker shows [Luk78], bounded context-free languages can be gener-
ated considering only derivations of index at most linear in the number of
nonterminals9. Thus [[Pb]] = [[Pb]](k) for an index k = O(∣P∣), where ∣P∣
denotes the number of control locations (i.e. size of) P.

The remaining question is related to the computability of the summary
[[Pb]](k), for a given k > 0. Based on the previous result on the accelera-

tion of octagonal relations (Section 2.1), we show that [[Pb]](k) is always
computable, using acceleration, provided that all statements of P are de-
fined by octagonal constraints. Moreover, we provide an upper bound on
the complexity of the reachability problem for bounded recursive programs
with octagonal guards and updates.

Theorem ([GI15a]). The class of reachability problems for recursive
programs with octagonal constraints and bounded set of interprocedu-
rally valid execution paths is in Nexptime, with an Np-hard lower
bound. Moreover, this class becomes Np-complete if the maximal
derivation index is a constant, not part of the input.

The main idea of the proof is to compute a bounded expression Γb over

the transition rules of the finite automaton A
df(k)
P and reduce the inter-

procedural reachability problem [[Pb]](k) = ∅ to the intra-procedural reach-
ability problem, for a bounded subset of the executions of the automaton

A
df(k)
P , labeled with arithmetic constraints that capture the summary rela-

tion [[Pb]](k). Moreover, Γb is computable in time ∣P∣O(k). Since k = O(∣P∣)
[Luk78], we obtain the Nexptime upper bound. Despite our best efforts,
we did not close the complexity gap yet. However, if the index is fixed,
the computation of Γb runs in polynomial time, which establishes the Np-
completeness of the reachability problem, in this particular case.

9Luker’s proof can be adapted to show that it is sufficient to consider k = 2n, where n
is the number of nonterminals.
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2.3 Program Verification with Counter Machines

The deployment of modern programming languages, such as C,C++ or Java,
in industrial-scale software development is hindered by an important ob-
stacle: guaranteeing the reliability of high-level programs requires for more
powerful computer supported analysis and verification techniques than those
currently available. Indeed, most programming languages used nowadays in
industry exhibit a wealth of features which greatly complicate the task of
checking correctness, for instance:

• dynamic memory structure: in order to achieve efficient memory man-
agement, real-life imperative programming languages use low-level mech-
anisms such as dynamic allocation, in-place pointer updates, or garbage
collection. Moreover, the size of the memory can become arbitrarily
large and its topology can vary during the execution of the program.

• infinite data domains: memory cells may contain data ranging over
very large or infinite domains, such as integers, arrays of integers, etc.

We applied existing methods for solving decision problems on counter
machines to verification problems of programs with (i) arrays of integers,
and (ii) dynamically linked recursive data structures, such as lists and trees.
The basic idea is to reduce checking a safety/termination property of a pro-
gram with pointers or arrays to a reachability/termination problem for a
counter machine, by associating quantitative information with parts of the
program’s heap, such as the length of a list segment, or the size of a subtree.
Sometimes, such as in the case of programs with singly-linked lists, the re-
duction is without loss of information, thus a yes/no answer obtained on the
counter machine automatically holds on the original program. In other cases,
such as programs with tree-shaped data structures, the reduction yields a
counter machine that is a safe over-approximation of the program, which is
useful, in principle, for purposes of certification (proof of correctness).

Based on the type (number of selector fields) of the memory cells allo-
cated by the program, we distinguish between programs with (i) lists (one
selector, possibly with sharing and circularities), and (ii) trees (two or more
selectors, but no sharing or cycles). This difference has a crucial impact
on the symbolic abstract domain chosen to encode possibly infinite sets of
program configurations, and thus, on the verification method we propose.

2.3.0.8 Programs with Lists

If each cell in the heap may have at most one selector pointing to a different
cell, the heap of a program can be viewed as a set of reversed trees, whose
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edges are directed towards the root, possibly with a simple cycle at the root.
Although the number of heap graphs is infinite, the number of cut points, i.e.
nodes directly pointed to by a program variable, or by two other nodes, is
bounded by the number of pointer variables of the program. A finite-range
abstraction consists in mapping each list segment, between two cut points,
into an abstract node, as follows:

2 1 2 1 3

3

(b)(a)

v

u

v

x

yy

x

u

n1 n2 n3 n7 n8 n9 n10 n11 n12

n4 n5 n6

Here u, v, x and y are program variables and the cut points are n1, n3, n4, n7,
n9 and n10. The corresponding shape graph, where each list segment between
two cut points is represented by an abstract node, is given in Figure (b).
It is not hard to prove that the number of shape graphs is bounded by nn,
where n is the number of program variables.

This abstraction is obviously not precise. In order to define a precise
abstraction, we need to reason about the size of each list segment. This
leads to the idea of using a counter machine, whose control states are shape
graphs, and whose variables track the sizes of the list segments represented
by the abstract heap nodes.

The translation of programs with singly-linked lists into counter ma-
chines is best explained by means of an example. Consider the sequence of
pointer manipulations from Figure (a) below. In Figure (b) we show the
sequence of transition rules of the corresponding counter machine:

1: k← i.next
2: i.next← j
3: j← i
4: i← k

(a)

4 ∶

y xz

j i k

xy

j i,k

j i

y x

j i

y x y z x

j i k

i, j k

y xx

i, j

x′ = 1

x = 1

x′ = x − 1

z′ = 1

x > 1

z′ = 1

y′ = y + zx′ = x + y

1 ∶

2 ∶

3 ∶

(b)

The input configuration consists of two disjoint list segments of length
x and y, pointed to by the program variables i,k and j, respectively. The
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first update k← i.next may have two outcomes, depending on the length of
the list segment pointed to by i. If this length is one (x = 1), the next field
of the cell is null, thus k becomes a null pointer (line 2, left). In the other
case (x > 1) the abstract node pointed to by i is split into a node of size 1,
pointed to by i, and a node of size x − 1, pointed to by k (line 2, right).

If the program does not test the data values within the heap cells, i.e.
it is data-independent, the counter machine abstraction is without loss of
precision. Formally, we prove that the semantics of the counter machine
obtained from a program with lists is a bisimulation of the semantics of the
program [BBH+06, BBH+11]. Since bisimulation preserves safety, termina-
tion, and, more generally, temporal logic properties, any property proved
or disproved on the counter machine carries on to the original program.
This translation was implemented in the L2Ca tool, developed by Swann
Perarnau (VERIMAG).�

�
�

The L2Ca tool [BIP] produces counter machines that precisely sim-

ulate the behavior of programs with singly-linked lists.

The tight relation between programs with lists and counter machines can
be exploited further, to reveal several (un-)decidability results concerning
the reachability and termination problems for the class of data-independent
programs with lists. Since, in general, a program with lists can simulate a
2-counter machine [Min67], the reachability and termination problems are
undecidable, unless several restrictions are applied.

The first restriction is, naturally, flatness of the control structure of the
program, i.e. absence of nested cycles, or conditional statements inside a
cycle. However, the above translation scheme does not guarantee that a CM
obtained from a flat program is flat. The problem is with the translation
of statements such as k ← i.next, which test whether the length of the list
segment pointed to by i is greater or equal to one. If such statements are
used inside a program cycle, the resulting CM might not be flat.

We tackled this problem by restricting further the class of programs we
consider, and excluding the selector update statements such as i.next ← j.
That is, a program can only traverse the input heap, but not change its
structure. Surprisingly, even with this restriction, the reachability and ter-
mination problems for flat programs with lists are undecidable. The source
of undecidability lies, this time, in the complexity of the input data struc-
ture. We noticed that the least common multiple relation x = [y, z] can be
encoded by programs running on input structures with at least two (sepa-
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rate) cycles. As a consequence, one can encode Hilbert’s Tenth Problem10

(HTP) [Mat70], as a safety property of a flat program with lists, without
selector updates. The same method can be also used to reduce HTP to the
termination problem for flat programs with lists.

We draw a sharp decidability boundary, by showing that, if the input
heap is restricted to having at most one cycle, the reachability and termina-
tion become decidable [BI07]. To this end, we defined a different encoding
than the one described in [BBH+06, BBH+11], and deal with the derefer-
encing statements k ← i.next in a way which preserves the flatness of the
resulting counter machine.

Theorem ([BI07]). The safety and termination problems are unde-
cidable for flat programs without selector updates, running on heaps
consisting of singly-linked lists with two or more cycles, and become
decidable if we restrict the input heap to having at most one cycle.

The latter decidability result is obtained by reduction to a class of counter
machines with guards that are conjunctions of linear and divisibility con-
straints, of the form f(x) ∣ g(x,y), and updates of the form x′ = y + c,
where f, g are linear terms, c is an integer constant, and, moreover, at most
one linear term may occur on the left-hand side of a divisibility constraint
f(x) ∣ g(x,y). The transitive closures of the relations labeling the cycles of
the flat CM are definable in a decidable fragment of integer arithmetic with
addition and divisibility, which we defined a in previous work [BI05]. For
self-containment reasons, this result is given in Chapter 3.

2.3.0.9 Programs with Trees

If the data types of several heap cells allocated by a program have two or
more outgoing pointer fields, collapsing each list segment into an abstract
node does not yield a finite-range abstraction. However, if each heap con-
figuration consists of a set of (disjoint) trees, tree automata [CDG+05] are
a natural finite representation of a potentially infinite set of heaps. For in-
stance, tree automata are used as internal representation within program
analysis tools such as Artmc [RV] and Forester [HHR+] (developed at
Brno University of Technology, Czech Republic). In general, the use of tree
automata in program verification incurs two major problems:

10An algorithm that determines the existence of solutions for Diophantine systems.
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• imperative programs perform destructive updates of selector fields,
changing a tree-shaped data structure by temporarily introducing shar-
ing of branches and/or cycles. This is the case of tree rotations, which
are implemented as a finite sequence of selector updates introducing a
cycle in the tree, and subsequently re-establishing the tree shape.

• tree automata represent regular sets of trees, which is not sufficient
when one needs to reason in terms of balanced trees as in the case of
Avl and Red-black tree algorithms.

Y

x,X

x,X

Y
A

B A

B

leftRotate

In order to overcome the first problem,
we observe that most algorithms work-
ing on balanced trees use the following
operations: (i) pointer assignments
x ← null, x ← y, x ← y.{left∣right∣up},
x.data← d, (ii) conditional statements
x = null,x = y,x.data = d, (iii) leaf in-
sertion and subtree removal, and (iv) tree rotations (see above figure).

The second inconvenience is dealt with by introducing a novel class of
tree automata, called Tree Automata with Size Constraints (TASC) [HIV06,
HIV10]. TASC are tree automata whose actions are triggered by difference
bounds constraints involving the sizes of the subtrees at the current node.
The size of a tree is a numerical function defined inductively on the tree
structure such as, for instance, the height, the maximum number of black
nodes on all paths, etc. TASC recognize non-regular sets of tree languages,
such as the Avl trees, the red-black trees, and, in general, sets of trees in-
volving arithmetic reasoning about the lengths (depths) of various (possibly
all) paths in the trees.

For instance, let us consider the ranked alphabet Σ = {red , black ,null},
with arities #(red) = #(black) = 2 and #(null) = 0, and size function
∣red(t1, t2)∣ = max(∣t1∣, ∣t2∣), ∣black(t1, t2)∣ = max(∣t1∣, ∣t2∣) + 1 and ∣null ∣ = 1,
which counts the maximal number of black nodes from the root to a leaf.
The bottom-up TASC recognizing the set of balanced red-black trees has
two states qb and qr, where qb is final, and the transition rules are:

null Ð→ qb black(qr/b, qr/b)
∣1∣=∣2∣ÐÐ→ qb red(qb, qb)

∣1∣=∣2∣ÐÐ→ qr

Intuitively, qb is reached upon reading a black (null) node, and qr indicates
that the current node is red and its successors are black. Moreover, the size
constraint ∣1∣ = ∣2∣ on the transition rules requires that the number of black
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nodes is the same on all paths from the current node to a leaf.

Theorem ([HIV06, HIV10]). The class of TASC is closed under the
operations of union, intersection, and complement, and, moreover,
the emptiness problem is decidable.

We thus obtain a class of automata which are an interesting theoretical
contribution by itself. Moreover, the semantics of the programs performing
tree updates (node coloring, rotations, leaf nodes appending/removal) can
be effectively represented as changes on the structure of the automata.

The verification approach for tree manipulating programs requires the
user to provide pre-, post-conditions and loop invariants. The verification
problem reduces to checking the validity of Hoare triples {P}C{Q}, where
P and Q are sets of configurations represented by TASC, and C is a loop-
free program fragment. This is equivalent to checking language inclusion
between two TASC, which is decidable, in the light of the above theorem.

Going beyond verification of safety properties, we propose a method for
checking universal termination of programs manipulating tree data struc-
tures [HIRV07]. Namely, we are interested in proving that such a program
terminates for any input tree out of a given set described as an infinite reg-
ular tree language over a finite alphabet. We represent a given program
as a control flow graph whose nodes are annotated with tree automata,
that over-approximate the sets of reachable configurations, computed using
Artmc [RV]. From the annotated control flow graph, we build a counter
machine that simulates the program. The variables of the CM keep track of
different measures within the working tree: the distances from the root to
nodes pointed to by certain variables, the sizes of the subtrees below such
nodes, and the numbers of nodes with a certain data value (we consider a
finite data domain). Termination of the CM is analyzed by existing tools
[BMS05, CPR06].

If the CM is shown to terminate, termination of the program is proved
too. Otherwise, the CM termination analyzer outputs a lasso-shaped coun-
terexample. This counterexample is translated back into a sequence of pro-
gram instructions and analyzed for spuriousness on the program. If the
counterexample is found to be real, the procedure reports non-termination.
Otherwise, the program control flow graph is refined by splitting some of its
nodes (actually, the sets of program configurations associated with certain
control locations), and the abstract-check-refine loop is reiterated.
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In a further generalization of this method [IR09, IR13], we consider pro-
grams working on an infinite data domain D equipped with an arbitrary
number of well-founded partial orders ⪯1, . . . ,⪯n, such that, for any data
transformation ⇒⊆ D ×D, induced by a program statement, the emptiness
problem ⇒ ∩ ⪯i= ∅ is decidable, for all i ∈ [1, n]. For instance, if D is the
set of terms (trees) over a finite ranked alphabet, then ⪯i is a classical well-
founded ordering on terms, e.g. Recursive Path Ordering, Knuth-Bendix
Ordering, etc. Given the data domain ⟨D,⪯1, . . . ,⪯n⟩, the program is auto-
matically abstracted into a Büchi automaton, recognizing infinite words over
the alphabet of tuples {≤,=,&}n. Intuitively, for a symbol, σ ∈ {≤,=,&}n, if
σi is ≤ (=) then ⪯i (⪯i ∩ ⪰i) holds, whereas & means “don’t know”.

A counterexample is an infinite path of the form σλω (called lasso) whose
cycle λ cannot be proved to terminate, based on the abstract labeling with
relations. Spuriousness of the lasso is checked by a domain-specific proce-
dure. If the lasso is found to be spurious, we eliminate it by intersecting
the Büchi automaton representing the program, with the weak determinis-
tic Büchi automaton11 representing the lasso, and check the new model for
existence of infinite counterexamples.

We experimented this method by proving termination of non-trivial al-
gorithms that manipulate tree-like, and even more complex data structures,
such as the Deutsch-Schorr-Waite tree traversal, the Red-black re-
balancing after insertion/deletion, or insertion/deletion in a tree with linked
leaves. Most of these algorithms could not be automatically verified before,
their correctness being the object of heavy textbook handwritten proofs.

2.3.0.10 Programs with Integer Arrays

Arrays are fundamental data structures used by all modern imperative pro-
gramming languages. The verification of programs that manipulate arrays
requires expressive logics, able to capture properties such as bounded array
equality, sortedness and, in general, arithmetic properties of array entries
situated at arbitrarily large distances. Moreover, in order to be effective,
one needs a decidable logic, that is supported by an automated decision
procedure, running within reasonable complexity bounds.

Properties typically expressed about arrays in a program are existentially
quantified boolean combinations of formulae ∀i1 . . .∀ik . g(i1, . . . , ik) →
v(i1, . . . , ik, a1, . . . , an), where i1, . . . , ik are index and a1, . . . , an are array
variables, occurring in array read terms of the form a[i]. For instance

11Each SCC of a weak Büchi automaton contains either final or non-final states, but
not both. A deterministic weak Büchi automaton can be complemented in linear time.
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bounded array equality can be written as ∀i . ` ≤ i ≤ u → a[i] = b[i], and
sortedness as ∀i∀j . i < j → a[i] ≤ b[j], or, equivalently, as ∀i . a[i] ≤ a[i+1].

We start from the basic observation that the models of such universally
quantified array properties are second-order valuations associating each ar-
ray symbol a a finite word from V∗a , where Va is the value sort of a. For
integer arrays (Va ≡ Z), these words, over the infinite alphabet of integers,
can be encoded by the executions of counter machines that have a counter
xa for each array symbol a:

∀i . ` ≤ i ≤ u→ a[i] = b[i] ∀i . 0 ≤ i ≤ u→ a[i] ≤ a[i + 1]

q0
i′=0ÐÐ→

0≤i<`−1

i′=i+1

ÿ
q1

i=`−1

i′=i+1

ÐÐÐÐ→

`≤i≤u
xa=xb
i′=i+1

ÿ
q2

i>u
i′=i+1

ÐÐÐÐ→

i′=i+1

ÿ

q3 q0
i′=0ÐÐ→

0≤i≤u
x′a≥xa
i′=i+1

ÿ
q1

i>u
i′=i+1

ÐÐÐÐ→

i′=i+1

ÿ

q2

We defined two logics, called Singly Indexed Logic (SIL) [HIV08a] and
Logic of Integer Arrays (LIA) [HIV08b], for reasoning about integer arrays.
The decidability of these logics is established by proving a connection be-
tween the logic and flat counter machines with octagonal constraints: for
each array logic formula ϕ, there exists a flat counter machine Mϕ whose
runs are in one-to-one correspondence with the set of models (array valua-
tions) of ϕ. Thus, ϕ is satisfiable if and only if Mϕ is not empty, and the
latter problem is decidable, as previously discussed (see Chapter 4).

The first logic, SIL [HIV08a], is the fragment of existentially quantified
boolean combinations of Presburger constraints on bound variables and ar-
ray properties ∀i . g(i, l) → v(i,a, l), where a is a set of array variables, l is
a set of existentially quantified bound variables, and i is an index variables,
the only variable occurring under the scope of a universal quantifier, and:

• the guard g is a boolean combination of bound (±i±` ∼ n) and modulo
(i ≡m p) constraints on index variables, and

• the value constraint v is an octagonal constraint consisting of a finite
conjunction of terms of the form a[i(+1)] ∼ `, ±a[i]± i ∼ n and ±a[i]±
b[i(+1)] ∼ n,

where ∼∈ {≤,≥}, a and b are array variables, ` is a bound variable, a length
term ∣a∣, or an integer constant, n,m, p ∈ N are positive integer constants,
with m > 0. Each array property can be converted into a deterministic12

flat counter machine, that encodes its set of models. Since deterministic flat
CM can be complemented, by reversing final and non-final states, it turns

12Determinism is ensured by the handling of the index counter within the guards.
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out that the construction of a counter machine for an entire SIL formula can
be done compositionally, by induction of the structure of this formula.

Theorem ([HIV08a]). The satisfiability problem is decidable for the
logic SIL.

Second, we work around the single index restriction from the definition
of SIL, and consider more general array properties of the form ∀i . g(i, l) →
v(i,a, l), where i is a set of universally quantified index variables that, more-
over, can occur within difference bounds constraints of the form i−j ≤ c and
conjunctions thereof, for some i, j ∈ i and c ∈ Z. We also generalize the
syntax of value constraints to include comparisons ±a[i+n]±b[j+m] ∼ p, of
array values within a constant window. The result is the logic LIA [HIV08b].

The decidability of LIA goes by reduction to flat counter machines. The
use of more than two universally quantified variables induces non-local con-
straints, involving array positions at arbitrarily large distance. The idea of
the reduction is that these non-local constraints are obtained as transitive
closures of a larger set of local constraints, that occur within a constant
size window. In fact, we eliminate the array properties involving more than
one index variable, by introducing additional array variables, and using the
transitivity of difference constraints, as shown in the examples below:

0

`1 u1

a

b

t

5 5 5

u2`2

0 0 0
0

0
0 0

0 00

(a) ∀i∀j . `1 ≤ i ≤ u1 ∧ `2 ≤ j ≤ u2 ∧ i − j ≤
3 ∧ i ≡2 0 ∧ j ≡2 1→ a[i] − b[j] ≤ 5

0

`1

a
5 5

u1

t

b

`2 u2

0 0

0

0 0 0 0

(b) ∀i∀j . `1 ≤ i ≤ u1 ∧ `2 ≤ j ≤
u2 ∧ i ≡2 0∧ j ≡2 1 → a[i] − b[j] ≤ 5

For instance, the constraint a[`1 + 1] − b[`2] ≤ 5, implied by the array
property (a), is induced via the additional array variable t and the con-
straints a[`1 + 1] − t[`1 − 2] ≤ 5, t[`2] − b[`2] ≤ 0 and ∀i . t[i] ≤ t[i + 1]. In
a similar way, the constraint a[`1 + 1] − b[`2 + 2] ≤ 5, implied by the array
property (b), is captured via the additional array t, with the constraints
a[`1 + 1] − t[`1 + 1] ≤ 5, t[`2 + 2] − b[`2 + 2] ≤ 0 and ∀i . t[i] = t[i + 1].

The reduction from LIA to counter machines requires also that the negated
array properties, with more than one universally quantified index variable,
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be eliminated beforehand. This observation leads to the following:

Theorem ([HIV08a]). The satisfiability problem is decidable for the
logic LIA.

Based on this work, we implemented an entailment solver for SIL, on
top of the Flata [KIB09] tool for the verification of counter machines.
This solver has been used to perform verification of programs manipulating
integer arrays, and automatically validate several procedures such as array
sorting, insertion, and rotation [BHI+09].

2.4 Separation Logic

Separation Logic (SL) [Rey02] is a logical framework for describing dynam-
ically allocated mutable data structures generated by programs that use
pointers and low-level memory allocation primitives. The logics in this
framework are used by a number of academic (Space Invader [BCC+07],
Sleek [NC08]), and industrial (Infer [CD11]) tools for program verifica-
tion. The main reason for choosing to work within the SL framework is
the ability to provide compositional proofs, based on the principle of local
reasoning: analyzing different parts of the program (e.g. functions, threads),
that work on disjoint parts of the global heap, and combining the analysis
results a-posteriori.

The main ingredients of SL are (i) the separating conjunction ϕ∗ψ, which
asserts that ϕ and ψ hold for separate portions of the memory (heap), and
(ii) the frame rule, that exploits separation to provide modular reasoning
about programs. Consider, for instance the following memory configuration,
in which two different cells are pointed to by the program variables x and y.
The x cell has an outgoing selector field to the y cell, and viceversa:

x↶
À

y x↦ y ∗ y ↦ x

The heap can be split into two disjoint parts, each containing exactly one
cell, and described by an atomic proposition x ↦ y and y ↦ x, respectively.
Then the entire heap is described by the formula x↦ y∗y ↦ x, read x points
to y and separately y points to x..

When reasoning about programs that manipulate data structures, it is
crucial to have the ability of describing infinite sets of heaps, that are in-
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stances of recursively defined data structures, such as singly- or doubly-
linked lists, trees and such. This is achieved in SL by introducing inductive
definitions. For instance, the inductive definition below defines a set of
doubly-linked lists:

DLL(head,prev, tail) ≡ tail↦ (prev,null) ∧ head = tail ∨ (r1)
∃x . head↦ (prev, x) ∗DLL(x,head, tail) (r2)

The first case (r1) of the definition is the base rule, i.e. the heap consists of
exactly one cell and head and tail are equal, while the second case (r2) is the
inductive rule which corresponds to the one-step unfolding of the definition.
The separating conjunction here states that the cell pointed to by head is
disjoint from the rest of the heap, which is, moreover, a DLL(x,head, tail).
A complete n-step unfolding of the definition produces the heap structure:

prev ← head
²

r2

⇆ x1

°
r2

⇆ x2

°
r2

⇆ ⋯⇆ xn−2

²
r2

⇆ tail
±
r1

The following example shows the definition of a tree structure, whose leaves
are linked in a list, in preorder.

TLL(root, ll, lr) ≡ root↦ (nil,nil, lr) ∧ root = ll ∨
∃l, r, z . root↦ (l, r,nil) ∗TLL(l, ll, z) ∗TLL(r, z, lr)

root

rε

r1

nilnil

l1

nilnil

lε

r0

nilnil

l0

nilnil

z0 zε z1

We show a possible unfolding of the struc-
ture described by the TLL definition. To
understand how this structure is created, we
annotate each existentially quantified vari-
able with the position in the tree (ε for the
root, 0 and 1 for the left and right children
of the root) where this variable is introduced
during the unfolding of the definition. The
links between the leaves are introduced by the base rule, using the existen-
tially quantified z variables introduced by the inductive rule. We annotate
each edge between leaves with the variable responsible for its occurrence.

In general, one considers a system of inductive definitions of the form:

{Pi(xi,1, . . . , xi,ni) ≡
mi

⋁
j=1

rij(xi,1, . . . , xi,ni)}
n

i=1
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where P1, . . . ,Pk are predicates, xi,1, . . . , xi,ni are parameters, and the formulae
rij are the rules of Pi. Concretely, a rule rij is of the form:

∃z . Σ ∗ Pi1(y1) ∗ . . . ∗ Pim(ym) ∧ Π

where Σ is a finite set of points-to formulae of the form x↦ (y1, . . . , yn), that
describe single heap cells, joined by separating conjunctions, and Pi1(y1), . . .,
Pim(ym) is a (possibly empty) list of predicates, and Π is a finite conjunction
of equalities and disequalities between variables.

For a predicate P, the set of models [[P]] is the least set of heap structures
that satisfies the inductive definition of P. Technically speaking, this is
the least fixpoint of a monotonic and continuous function that mirrors the
definitions in the system. Given two predicates P and Q, the entailment
problem P ⊧SL Q asks whether [[P]] ⊆ [[Q]]. Incidentally, we also consider
the satisfiability problem: given P, is it the case that [[P]] = ∅ ?

The entailment problem for SL with inductive definitions can be showed
undecidable, by reduction from the universality problem for context-free lan-
guages, a well-known undecidable problem. To bypass this problem, certain
restrictions on the syntax of the SL system are required, namely:

• Progress: each rule allocates exactly one node, called the root of the
rule. This condition makes our technical life easier, and can be lifted
in many cases — rules with more than one allocation can be split by
introducing new predicates.

• Connectivity : for each inductive rule of the form Σ ∗ P1(x1) ∗ . . . ∗
Pn(xn) ∧ Π, there exists at least one edge between the root of the
rule and the root of each rule of Pi, for all i ∈ [1, n]. This restriction
prevents the encoding of context-free languages in SL, which requires
disconnected rules.

• Establishment : all existentially quantified variables in a recursive rule
are eventually allocated. This restriction is not required for the satis-
fiability problem, but it is essential for entailment, as explained next.

The fragment of SL obtained by applying the above, rather natural, re-
strictions, is denoted SLbtw in the following. The proof of decidability for
entailments in SLbtw relies on three main ingredients:

1. for each predicate [[P]] in the system, all heaps from the least solution
[[P]] are represented by graphs, whose treewidth is bounded by a linear
function in the size of the system.

2. we define, for each predicate P, a formula ΨP in monadic second-order
logic (MSO) of graphs whose models are exactly the graphs encoding
the heaps from the least solution [[P]].



36 CHAPTER 2. SUMMARY OF THE RESULTS

3. the entailment P ⊧SL Q is reduced to the satisfiability of an MSO
formula ΨP ∧ ¬ΨQ. Since all models of P (thus of ΨP) have bounded
treewidth, this problem is decidable, by Courcelle’s Theorem [Cou90].

Intuitively, the treewidth of the graph measures how close the graph is of
being a tree. Formally, the treewidth is the minimum width among all tree
decompositions of the graph, where the width of the decomposition is the
maximal size among its sets minus one. A tree decomposition is a coverage of
the graph using a tree labeled with sets of vertices, such that the endpoints
of each edge are present in the same set, and each vertex corresponds to a
connected path in the tree.

For heaps that are models of predicates in a SLbtw system of inductive
definitions, a natural tree decomposition uses the structure of the corre-
sponding unfolding trees. By the progress condition, each node in the un-
folding tree contains a points-to proposition that allocates a heap cell. The
selector edges between two cells allocated by adjacent nodes in the unfold-
ing tree are said to be local. For instance the edges root ↦ lε, root ↦ rε,
lε ↦ ll and rε ↦ rr are all local, for the model of the TLL(root, ll, lr) predicate
depicted above. On the other hand, the edges ll↦ r0, r0 ↦ l1 and l1 ↦ lr are
non-local in this heap. Moreover, we place in each node of the tree the set
of heap cells which are allocated by the formula labeling that node in the
(isomorphic) unfolding tree and those which are the destination of a local
edge. A cell which is the destination of a non-local edge is placed in the
same node as the origin of that edge, and in all nodes on the path between
the two endpoints of the edge. For instance, the tree decomposition of the
previous model of TLL(root, ll, lr) is shown below:

{root, lε, rε, l1}

{rε, l1, r1}

{r1}{l1, r1}

{lε, l0, r0, l1}

{r0, l1}{l0, r0}

Observe that the memory cell l1 (under-
lined) is placed in all nodes on the path be-
tween the node who allocates and the one
who references it. The width of this decom-
position (and thus the tree width of the heap
structure) is bounded by a linear function in
the number of existentially quantified variables that create non-local edges
in the heap, hence also in the size of the system. In our example, each node
of the tree decomposition is traversed by at most one non-local edge, estab-
lished by the existentially quantified variable z, in the inductive rule of the
definition of TLL.

The translation of a predicate P into an MSO formula on graphs ΨP uses
standard definitions of trees in MSO. The non-local edges are defined by
first building tree walking automata (TWA) [Boj08] that track the destina-
tion of a non-local edge through the unfolding tree, using the propagation
information provided by the parameters of each rule. Then a TWA is en-
coded in MSO using a standard automata-logic connection. Consequently,
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we obtain the following result:

Theorem ([IRS13]). The classes of entailment and satisfiability
problems for the logic SLbtw are in Elementary.

The direct translation of SLbtw into MSO is not practical, because of its
high complexity, and the lack of efficient solvers for MSO on graphs. For
these reasons, we defined a subset of SLbtw, called SLloc [IRV14b], in which
only heap structures with local edges (w.r.t. the unfolding tree) can be
defined. For a SLloc predicate P, we can build, in polynomial time, a tree
automaton AP that encodes all models of P. The entailment problem is then
reduced to a language inclusion problem between tree automata.

The main difficulty incurred by the direct translation of SLloc into tree
automata is the polymorphic representation problem: the same set of struc-
tures can be defined in several different ways, and tree automata simply
mirroring the definition will not report the entailment. For example, doubly-
linked lists defined by the predicate DLL, can alternatively be defined as:

DLlrev(head,next, tail) ≡ head↦ (nil,next) ∧ head = tail ∨
∃x . tail↦ (x,next) ∗DLLrev(head, tail, x)

Then the entailment DLL(head,nil, tail) ⊧SL DLLrev(head,nil, tail) holds, but
a näıve structural translation of SLloc to TA might not detect this fact. To
bridge this gap, we define a closure operation on TA, called canonical rota-
tion, which adds all possible representations of a given inductive definition,
encoded as a tree automaton. As the canonical rotation takes polynomial
time, and, moreover, language inclusion between nondeterministic bottom-
up tree automata is Exptime-complete [CDG+05], we obtain the following:

Theorem ([IRV14b]). The class of entailment problems for the logic
SLloc is Exptime-complete.

The practical outcome of this work is the Slide tool [IRV], developed
by Adam Rogalewicz (Brno University of Technology, Czech Republic). We
contributed with several benchmarks and won a silver medal in the SL-
COMP’14 [SC14] competition of SL solvers, organized as part of the more
traditional Satisfiability Modulo Theories Competition SMT-COMP’14.



Chapter 3

Integer Arithmetic

In this chapter we introduce the first-order theory of integer arithmetic
⟨Z,+, ⋅⟩ and discuss several of its decidable fragments. In particular, we
present new results concerning the decidability within the fragment of the
theory with addition and divisibility predicate [BI05], and a decidable class
of non-linear Diophantine systems [BIL06, BIL09]. Besides purely theoreti-
cal interest, these results are needed to establish decidability and complexity
results concerning program verification problems (Chapters 4 and 6).

We denote by Z the set of integers, by N the set of positive integers,
zero included, and by N+ the set N ∖ {0}. Formally, ⟨Z,+, ⋅⟩ denotes the
set of valid first-order sentences, where the quantified variables range over
integers, and +, ⋅ are interpreted as the standard addition and multiplication
functions. We define 0 and 1 using the predicates zero(x) ≡ ∀y . x ⋅y = x and
one(x) ≡ ∀y . x⋅y = y. The set of positive integers is defined using Lagrange’s
Four Square Theorem: pos(x) ≡ ∃y, z, t,w . x = y ⋅ y + z ⋅ z + t ⋅ t +w ⋅w. This
allows us to further define the order relation x ≤ y ≡ ∃z . pos(z) ∧ x + z = y.
The divisibility predicate is defined as x ∣ y ≡ ∃z . pos(z) ∧ x ⋅ z = y. The
greatest common divisor (gcd) and least common multiple (lcm) are defined
by the formulae below:

gcd(x, y) = z ≡ ∀t . t ∣ x∧t ∣ y↔ t ∣ z lcm(x, y) = z ≡ ∀t . x ∣ t∧y ∣ t↔ z ∣ t

The divisibility predicate allows to define primality as prime(x) ≡ ∀y . y ∣
x → (y = 1 ∨ y = x) and encode famous open problems, such as Goldbach’s
Conjecture: ∀x . x ≥ 1→ ∃y, z . prime(y) ∧ prime(z) ∧ x + x = y + z .

It comes with little surprise that the validity problem for integer arith-
metic: given a sentence ϕ, does it belong to the theory ⟨Z,+, ⋅⟩? is undecid-
able. Formally, this occurs as a consequence of Gödel’s Incompleteness The-
orem [G3̈1], and was proved by Church [Chu36]. This result is strengthened
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further by the undecidability of the theory ⟨N, ∣,+⟩ of divisibility and addi-
tion [Rob49] and of the existential fragment of integer arithmetic ⟨N,+, ⋅⟩∃.
The latter is a consequence of the undecidability of Hilbert’s Tenth Prob-
lem, asking for the existence of solutions for a given non-linear Diophantine
system, proved undecidable by Matiyasevich [Mat70].

On the positive side, one can recover the decidability by ignoring one
of the two operations of ⟨Z,+, ⋅⟩. Without loss of generality, we restrict
the interpretation domain to N, in the rest of this chapter. The additive
⟨N,+⟩ and multiplicative ⟨N, ⋅⟩ fragments of integer arithmetic where shown
to be decidable by Presburger [Pre29] and Mostowski [Mos52]. More expres-
sive decidable theories are ⟨N,+, Vp⟩ [BHMV94] and ⟨N,+, x↦ px⟩ [Sem79],
where Vp(x) is the greatest power of p that divides x and x ↦ px is the
exponentiation function, for a fixed prime number p. Also, by restricting
the quantifier prefix to existentials only, Bel’tyukov [Bel76] and Lipshitz
[Lip76a] proved (independently) that the fragment ⟨N, ∣,+⟩∃ is decidable.

In this thesis we present two new decidable extensions of Presburger
arithmetic, i.e. the additive theory of natural numbers ⟨N,+⟩. The first
result is the decidability (of the validity problem) for the class of formulae
of the form Q0zQ1x1 . . .Qnxn . ϕ(x, z), where Q0,Q1, . . . ,Qn ∈ {∃,∀}, ϕ is
quantifier-free, and all divisibility propositions are of the form f(z) ∣ g(x, z),
with f and g linear (additive) terms. Observe that only one variable, namely
z, is allowed on the left-hand side of the divisibility sign. This fragment is
called L1

div in the following. We show that any formula in this fragment
can be reduced to a Presburger formula, by successively eliminating the
quantifiers Qn, . . . ,Q1, thus proving decidability of the L1

div fragment.

We further generalize the L1
div fragment, by allowing several existen-

tially quantified variables to occur to the left of the divisibility sign that
is, formulae of the form ∃z1 . . .∃znQ1x1 . . .Qmxmϕ(x,z), where ϕ does not
contain quantifiers and the only divisibility propositions are of the form
f(z) ∣ g(x,z), for linear terms f and g. In this fragment, denoted ∃L∗div,
decidability is established only for the formulae in which each divisibility
proposition occurs under an even number of negations. This is sharpened
by showing that negated divisibility propositions lead to undecidability.

The second result is the decidability of the existence of solutions for
a class of non-linear Diophantine systems. A Diophantine equation is an
atomic proposition P (x) = 0, where P (x) = ∑ni=1 ai ⋅Mi(x) + a0 is a poly-
nomial with integer coefficients a0, . . . , an and M1, . . . ,Mn are monomials of

the form M`(x) = Πk`
j=1x

i`,j
j , with i`,1, . . . , i`,k` ∈ N. A Diophantine equation

is said to be linear with parameter xp if, for every monomial M`, we have
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∑j≠p i`j ≤ 1. Note that any Diophantine linear equation with parameter z
can be equivalently written as ∑ni=1 Pi(z) ⋅ xi +P0(z) = 0, where Pi are poly-
nomials of arbitrary degree in z. In the following, we denote by D1 the set of
positive boolean combinations of linear Diophantine equations with a certain
parameter z. The decidability of the existence of solutions of Diophantine
linear systems with parameter z is the key to showing the decidability of the
D1 fragment of integer arithmetic.

3.1 Decidability of the L1
div Fragment of ⟨N,+, ⋅⟩

To simplify our technical life, we will work first under the assumption that
each divisibility atomic proposition is of the form z ∣ f(x, z), where f is a
linear term. The generalization to atomic propositions of the form az + b ∣
f(x, z), with a, b ∈ Z is explained at the end of this section. The input
formula, given in DNF, is of the form:

Q0zQ1x1 . . .Qnxn
N

⋁
i=1

(
Mi

⋀
j=1

z ∣ fij(x, z) ∧
Pi

⋀
j=1

¬z ∣ gij(x, z) ∧ ϕi(x, z)) (3.1)

where Q0, . . . ,Qn ∈ {∃,∀}, fij and gij are linear terms, and ϕi are Presburger
formulae with free variables x = {x1, . . . , xn} and z.

The first step is to eliminate all variables from x that occur within linear
atomic propositions in some Presburger constraint ϕi. By possibly eliminat-
ing the quantifiers in ϕi, we assume w.l.o.g. that ϕi(x, z) ≡ ⋁k⋀` ∃tk` . tk` ≥
0 ∧ hk`(x, z) + tk` = 0 ∧ ⋀` ck` ∣ h′k`(x, z), with hk`, h

′
k` linear terms, and

ck` ∈ N. That is, we write each linear inequality hk`(x, z) ≤ 0 as an equality
that uses an existentially quantified slack variable tk`. Suppose now that xm,
for some m = 1, . . . , n, appears in a linear term hk`(x) = ak`xm + bk`(x, z),
with non-zero coefficient. We multiply through with ak` by replacing all
formulas of the form h(x, z)+t = 0 with ak`h(x, z)+ak`t = 0, c ∣ h′(x, z) with
ak`c ∣ ak`h′(x, z), and z ∣ f(x, z) with ak`z ∣ ak`f(x, z). Then we substitute
ak`xm with the term −bk`(x, z) − tk`, which does not contain xm. Finally,
we eliminate the existentially quantified slack variables tk` by successive
applications of the Chinese Remainder Theorem (CRT):

∃x .
K

⋀
i=1

mi ∣ (x − ri) ⇔ ⋀
1≤i,j≤K

gcd(mi,mj) ∣ (ri − rj) .

The remaining formula is of the form below:

Q0zQ1x1 . . .Qnxn
N

⋁
i=1

(
Mi

⋀
j=1

zij ∣ fij(x, z) ∧
Pi

⋀
j=1

¬zij ∣ gij(x, z) ∧ ψi(z)) (3.2)
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where zij ∈ {aijz, cij}, aij ∈ N+, cij ∈ N, and ψi(z) are Presburger formulae,
in which z occurs free.

The decision procedure eliminates the quantifiers Qnxn, . . . ,Q1x1, in this
order, and reduces the outcome of this transformation to an equivalent Pres-
burger formula. For the quantifier elimination, we consider three cases,
based on the type of the last quantifier Qn ∈ {∃,∀} and the sign (positive,
negative) of the divisibility propositions.

The Existential Positive Case

If Qn ≡ ∃ and there are no negated divisibility propositions, (3.2) becomes:

N

⋁
i=1

∃xn
Mi

⋀
j=1

zij ∣ (aijxn + gij(x1, . . . , xn−1, z)) ∧ ψi(z) (3.3)

where aij ≠ 0 and gij are linear terms not involving xn. We eliminate xn
from the above formula, using the following generalization of the CRT:

∃x
K

⋀
i=1

mi ∣ (aix−ri) ⇔ ⋀
1≤i,j≤K

gcd(aimj , ajmi) ∣ (airj−ajri)∧
K

⋀
i=1

gcd(ai,mi) ∣ ri

Using the equivalence gcd(az, c) ∣ f ⇔⋁c−1
r=0 az ≡ r mod c ∧ gcd(r, c) ∣ f , we

show that the resulting formula has two types of divisibility predicates:
- az ∣ t(x1, . . . , xn−1, z), and
- a ∣ t(x1, . . . , xn−1, z) (Presburger constraints),
where a ∈ N+ and t is a linear term not involving xn. We have obtained a
formula of the form (3.3) with n − 1 variables occurring on the right-hand
side of the divisibility sign.

The Universal Positive Case

If Qn ≡ ∀ and there are no negated divisibility propositions, we write first
the formula (3.2) in CNF:

P

⋀
i=1

∀xn
Qi

⋁
j=1

zij ∣ (aijxn + gij(x1, . . . , xn−1, z)) ∨ ψi(z) (3.4)

In each conjunct above, the union of Qi arithmetic progressions {x ∶ aijx ≡
−gij mod zij}Qij=1 covers the entire set of natural numbers. The following

theorem, stated as a conjecture by Erdös1 and proved by Crittenden and

1Erdös also put a 25$ prize on it.
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Vanden Eynden [CE69], gives the means to eliminate the universal quantifier
in this case:

Theorem 1 ([CE69]). Let a1, . . . , an ∈ Z, b1, . . . , bn ∈ N+. Suppose there
exists an integer x0 satisfying none of the congruences: {x ≡ ai mod bi}ni=1.
Then there is such an x0 among 1, . . . ,2n.

We shall use this theorem in its positive form: n arithmetic progressions
{ai + biN}ni=1 cover N if and only if they cover the set 1, . . . ,2n. The result
of the quantifier elimination in (3.4) is thus:

P

⋀
i=1

2Qi

⋀
t=1

Qi

⋁
j=1

zij ∣ aijt + gij ∨ ψi(z) .

The Universal Mixed Case

If Qn ≡ ∀ and there are negated divisibility propositions, we consider the
formula (3.2) in CNF, with the negated propositions occurring on the left-
hand side of the implication below:

P

⋀
i=1

∀xn
⎛
⎝
⎛
⎝

Ri

⋀
j=1

zij ∣ gij(x, z)
⎞
⎠
→

Qi

⋁
j=1

zij ∣ fij(x, z)
⎞
⎠
∨ ψi(z) (3.5)

Each formula ∀xn . (⋀Rij=1 zij ∣ aijxn + bij(x1, . . . xn−1, z)) → ⋁Qij=1 zij ∣ cijxn +
dij(x1, . . . , xn−1, z) states that the arithmetic progression {x ∶ ⋀Rij=1 zij ∣ aijx+
bij(x1, . . . xn−1, z)} is covered by the union of the arithmetic progressions
{x ∶ zij ∣ cijx+dij(x1, . . . , xn−1, z)}, respectively. An application of Theorem
1 eliminates xn and transforms each conjunct of the formula (3.5) into:

¬∃y
Ri

⋀
j=1

zij ∣ aijy+bij∨∃y
Ri

⋀
j=1

zij ∣ ajy+bij∧
2Qi

⋀
t=1

Qi

⋁
j=1

zij ∣ cij(y+
zkijt

gcd(z, `ij)
)+dij .

The first disjunct is for the trivial case, in which the set {x ∶ ⋀Rj=1 zij ∣
gij(x, z)} is empty, while the second disjunct assumes the existence of an
element y of this set and encodes the condition of Theorem 1: the first
2Qi elements of this set, starting with y, must be covered by the union of
Qi progressions. The existentially quantified variables y can be eliminated
from the above formula using the CRT, as in the previous existential pos-
itive case. Observe that we have introduced subterms of the form z

gcd(z,k) ,
with constants k ∈ N+, within the linear terms fij . This is reflected in the
definition of the solved form, in the next paragraph.
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The Solved Form

For any formula of type (3.2), the result of eliminating the quantifiers
Qnxn . . .Q1x1 is a formula in the following solved form:

N

⋁
i=1

Mi

⋀
j=1

aijz ∣ fij(z) ∧
Pi

⋀
j=1

¬bijz ∣ gij(z) ∧ ψi(z) (3.6)

where aij , bij ∈ N+ are constants, fij , gij are linear combinations of terms of
the form z

gcd(z,k) , with constants k ∈ N+, and ψi are Presburger formulae2.

Let az ∣ ∑ni=1
zci

gcd(z,ki) + c0 be an atomic proposition in (3.6). We replace this
proposition the an equivalent formula:

⋁
(d1,...,dn) ∈ div(k1)×...×div(kn)

n

⋀
i=1

gcd(z, ki) = di ∧ aDz ∣ zΣn
i=1ciDi + c0D

where D = Πn
i=1di, Di = D

di
and div(k) denotes the set of divisors of the

constant k ∈ N+. Moreover, aDz ∣ zΣn
i=1ciDi + c0D implies z ∣ c0D, hence the

above formula is equivalent to:

⋁
(d,d1,...,dn) ∈ div(c0D)×div(k1)×...×div(kn)

n

⋀
i=1

(d, ki) = di ∧ aDd ∣ dΣn
i=1ciDi + c0D

which involves only constants, and can be evaluated to true of false.

General Divisibility Predicates

In the case where the divisibility propositions are of the form f(z) ∣ g(x, z),
with f and g linear terms, the quantifier elimination procedure may produce

subterms such as gcd(fi(z), fj(z)) and lcm({ fj(z)
gcd(fj(z),kj)}

R

j=1
), for some lin-

ear terms fi, fj and constants kj ∈ N+. Essentially, we eliminate all terms
of the form gcd(fi(z), fj(z)) in a divisibility predicate gcd(fi, fj) ∣ hij us-
ing polynomial division in the ring of univariate polynomials with integer
coefficients Z[z]. Summing up, we obtain the following theorem:

Theorem 2 ([BI05]). Validity is decidable for the fragment L1
divof integer

arithmetic, consisting of formulae Q0zQ1x1 . . .Qnxn . ϕ(x, z), where all di-
visibility propositions are of the form f(z) ∣ g(x, z), with f, g linear terms.

2We write z as z
gcd(z,1) .
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Example 1. Consider the open formula ∀x∀y . z ∣ 12x + 4y → z ∣ 3x + 12y.
To eliminate y we apply the universal mixed case and obtain:

∀x (¬∃y z ∣ 12x + 4y ∨ ∃y z ∣ 12x + 4y ∧ z ∣ 3x + 12y ∧ z ∣ 3x + 12(y + z

gcd(z,4)
))

By an application of the CRT, ∃y . z ∣ 12x + 4y is equivalent to gcd(z,4) ∣
12x which is trivially true, since gcd(z,4) ∣ 4 and 4 ∣ 12x. Moreover, if
z ∣ 3x+ 12y, then z ∣ 3x+ 12y + 12 z

gcd(z,4) is equivalent to z ∣ 12 z
gcd(z,4) , which

is also trivially true. Hence, the formula can be simplified down to: ∀x∃y . z ∣
12x + 4y ∧ z ∣ 3x + 12y . By an application of the CRT we obtain: ∀x . z ∣
33x ∧ gcd(z,4) ∣ 12x ∧ gcd(z,12) ∣ 3x which, after trivial simplifications, is
equivalent to z ∣ 33 ∧ gcd(z,12) ∣ 3, leading to z ∈ {1,3,11,33}. ∎

The decidability of the L1
divfragment of integer arithmetic has been used

to establish a decidability result concerning the verification of safety prop-
erties on programs with singly-linked list data structures (Chapter 6).

3.2 Decidability within the ∃L∗div Fragment of ⟨N,+, ⋅⟩

We generalize the L1
divtheory by considering divisibility propositions f(z) ∣

g(x,z), where z are existentially quantified, x∩z = ∅ and f and g are linear
terms. By first eliminating the variables that occur within linear constraints
as in the previous, we obtain the following type of formulae:

∃z1 . . .∃znQ1x1 . . .Qmxm
N

⋁
i=1

⎛
⎝

Mi

⋀
j=1

fij(z) ∣ gij(x,z) ∧
Pi

⋀
j=1

¬f ′ij(z) ∣ g′ij(x,z) ∧ ϕi(z)
⎞
⎠

We show the decidability of the positive fragment, where Pi = for all i =
1, . . . ,N , and undecidability of the ∃L∗div fragment, in general.

By applying the quantifier elimination procedure used for L1
div, in the

existential positive case, we introduce divisibility propositions of the form
gcd(f1(z), . . . , fk(z)) ∣ h(z), which are equivalently written, using CRT, as:

∃y1 . . .∃yk−1 . f1(z) ∣ y1 − h(z) ∧
k−1

⋀
i=2

fi(z) ∣ yi − yi−1 ∧ fk(z) ∣ yk−1 .

Observe that the universal positive case only substitutes variables for con-
stants and the universal mixed case does not apply, because we are in the
positive fragment of ∃L∗div. We have thus reduced the positive fragment of
∃L∗div to the existential fragment of the ⟨N,+, ∣⟩ theory, which has been shown
to be decidable [Bel76, Lip76a].
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Theorem 3 ([BI05]). Validity is decidable for the positive fragment ∃L∗div of
integer arithmetic, consisting of formulae ∃z0 . . .∃zmQ1x1 . . .Qnxn . ϕ(x,z),
in which all divisibility propositions (i) are of the form f(z) ∣ g(x,z), with
f, g linear terms, and (ii) they occur under even numbers of negations.

This result is sharpened by observing that, allowing negated divisibility
propositions in ∃L∗div leads to undecidability, by the following reduction from
Hilbert Tenth’s Problem [Mat70]. First, we encode multiplication using
addition and the squaring function as: (x + y)2 − (x − y)2 = 4xy. Then we
define the squaring function using the least common multiple: x2 = y⇔ x+
y = lcm(x,x+1). Finally, we use the definition of the least common multiple
[Rob49]: lcm(x, y) = z ⇔ ∀t . x ∣ t ∧ y ∣ t ↔ z ∣ t. The latter definition
belongs to the ∃L∗div fragment that uses negated divisibility propositions.

3.3 Decidability of the D1 Fragment of ⟨N,+, ⋅⟩

Let us fix a linear Diophantine system with parameter z, of the form:

{
n

∑
j=1

Pij(z) ⋅ xj +Qi(z) = 0}
r

i=1
(3.7)

where Pij ,Qi ∈ Z[z] are univariate polynomials with integer coefficients and
variable z, for all i = 1, . . . , r. The problem we ask is the existence of a
valuation ν ∶ {z, x1, . . . , xn} → N that satisfies all equations of the system.

Let us consider first the case when the system is homogeneous, i.e.
Qi(z) = 0, for all i = 1, . . . , r. The general case is dealt with by adding
a new variable xn+1, replacing each occurrence of Qi(z) by Qi(z) ⋅xn+1, and
looking only after solutions in which xn+1 = 1.

Let P (z) be the polynomial greatest common divisor of all Pij(z), ob-
tained by applying Euclid’s algorithm in the polynomial ring Z[z]. Since
P (z) = ∑ki=0 pi ⋅ zi is a univariate polynomial, its set of roots is finite and ef-
fectively computable. If P (m0) = 0 for some m0 ∈ N, then m0, x1, . . . , xn is a
solution of the (homogeneous) system (3.7), for any choice of x1, . . . , xn ∈ N.
Moreover, if there exists such m0, it necessarily divides p0, and, since P (z)
is a divisor of every Pij(z), then necessarily p0 divides the constant term
(monomial of zero degree) of each Pij(z). Hence the binary size of m0 is
polynomially bounded by the size of the description of the system (3.7), and
this case can be dealt by a nondeterministic polynomial-time algorithm.

We assume in the following that P (m) ≠ 0, for all m ∈ N, in other words
that, for no value of m, Pij(m) will all become zero at the same time. If
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the system has a solution, then it also has a solution which is minimal with
respect to the pointwise partial ordering on Nn+1. Let A = [Pij(z)] be the
r×n matrix of the system (3.7), and x = (x1, . . . , xn)⊺, in the following. For
some m ∈ N, we denote by A(m) the matrix [Pij(m)] ∈ Zr×n. Let C > 0 and
K ≥ 0 be the maximal absolute value of all coefficients, and the maximum
degree of the polynomials in A, respectively. The following is an immediate
consequence of a theorem due to Pottier [Pot90]:

Theorem 4. For a fixed m0 ≥ max(C,n, r), let x1, . . . , xn be any minimal
solution of the homogeneous system A(m0)x = 0. Then, for all 1 ≤ i ≤ n, we

have xi ≤m(K+3)r+1
0 .

Let us first assume that there exists a constant 0 ≤ m < max(C,n, r) such
that A(m)x = 0 has a solution. In this case, there exists a nondeterministic
algorithm that guesses m and solves the linear Diophantine system A(m)x =
0. The algorithm moreover operates in time bounded by a polynomial in
the size of he binary representation of the system (3.7), since (i) the value
m is polynomially bounded, and (ii) solving a linear Diophantine system is
possible in polynomial time, with a nondeterministic algorithm.

Otherwise, for any m ≥ max(C,n, r) the solution x1, . . . , xn can be rep-
resented in base m using at most M = (K + 3)r + 1 digits (Theorem 4). Let
(xi)m = ∑Mj=1 χij ⋅mj be the polynomial representing xi in base m, with the
implicit constraint 0 ≤ χij <m, for all i = 1, . . . , n. The homogeneous system
A(m)x = 0 is encoded in base m, as follows.

First, we write the system as a set of equations of the form P (m,x1, . . . , xn) =
Q(m,x1, . . . , xn), with all coefficients of P and Q being positive. Since m
is assumed to be greater than C, the maximal value of all coefficients c of
the system, we have (c)m = c. The operations of addition, multiplication by
a constant 0 < c < m, and multiplication by m, respectively, can be defined
using linear constraints only. Let (d)m = ∑Mi=0 δi ⋅mi, (e)m = ∑Mi=0 εi ⋅mi and
(f)m = ∑Mi=0 φi ⋅mi, with 0 ≤ δi, εi, φi <m. We have:

(d)m + (e)m = (f)m ⇔ ⋁b∈{0}×{0,1}M−2×{0}⋀M−1
i=0 δi + εi + bi = φi +m ⋅ bi+1

c ⋅ (d)m = (e)m ⇔ ⋁r∈{0}×{0,1}M−2×{0}⋀M−1
i=0 c ⋅ δi + ri = εi +m ⋅ bi+1

m ⋅ (d)m = (e)m ⇔ δM = ε0 = 0 ∧⋀M−1
i=0 δi = εi+1

Observe that each addition and multiplication by a constant introduce M
arithmetic carry bits b = ⟨b0, . . . , bM−1⟩. The translation of the Diophantine
system A(m)x = 0 using the above equivalences introduces a number of
bits that is bound by polynomial function in the size of the system. A
nondeterministic algorithm can guess first a bitvector, of polynomial length,
that determines the values of all these bits, and rewrite the system A(m)x =
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0 as a system of linear constraints, of size bounded by a polynomial in
the size in the original system. Checking whether the linear system has a
solution is possible in polynomial time, with a nondeterministic algorithm.
Consequently, we obtain the following theorem:

Theorem 5 ([BIL06, BIL09]). The class of validity problems for the frag-
ment D1 of existentially quantified boolean combinations of non-linear Dio-
phantine equations with parameter z is Np-complete.

The decidability of the D1 fragment of integer arithmetic has been used
to establish the decidability of the class of reachability problems concerning
flat counter machines with cycles labeled by parametric difference bounds
and octagonal constraints (Theorems 7 and 9 in Chapter 4).

3.4 Discussion and Open Problems

The set of open problems concerning the arithmetic of integers ⟨Z,+, ⋅⟩ is
rather large (see [B0́2] for a good survey). For instance, the decidability
status is unknown for the satisfiability problems for ⟨N,+, P ⟩ or its existential
fragment, where P (x) means that x is prime.

Besides decidability, one may ask for the computational complexity classes
of the decidable fragments. For instance, for any i > 0, the Σi+1-fragment
Presburger arithmetic with i + 1 quantifier alternations, beginning with an
existential quantifier is complete for ΣEXP

i [Haa14]. Regarding extensions
of Presburger arithmetic, the existential fragment of ⟨N,+, ∣⟩, proved to be
decidable by Lipshitz [Lip76a] and Bel’tyukov [Bel76], has been shown to be
in Nexptime [LOW15], with no matching lower bound (an obvious bound
is the Np-hardness of the quantifier-free Presburger arithmetic).

We ask similar problems for the L1
div and ∃L∗div fragments of ⟨N,+, ∣⟩,

namely finding tight complexity bounds for these fragments. Currently, we
can derive elementary upper bounds by reduction to Presburger arithmetic,
in the case of L1

div and to ⟨N,+, ∣⟩∃, in the case of ∃L∗div, respectively.



Chapter 4

Flat Counter Machines

Counter machines (CM) are a generalization of classical Rabin-Scott finite
nondeterministic automata, extended with a set of variables ranging over
Z, and transitions described by integer arithmetic formulae. Formally, a
counter machine is a tuple M = ⟨x,Q, ι, F,∆⟩, where:

- x = {x1, . . . , xN} is a non-empty set of integer variables (counters),
- Q is a set of control states,
- ι ∈ Q is an initial state and F ⊆ Q is a set of final states,

- ∆ is a set of rules of the form q
ϕ(x,x′)ÐÐÐ→ q′, where q and q′ are the source

and destination states, x′ = {x′ ∣ x ∈ x} denote the values taken by the
variables as result of the transition, and ϕ is an integer arithmetic formula
with free variables in the set x ∪ x′.

A configuration of M is a pair (q, ν), where q is a control state and ν ∶ x→ Z
is a valuation of the counters. A run of M is a (possibly infinite) sequence
(q0, ν0), (q1, ν1), . . . of configurations, such that q0 = ι and for each i ≥ 0 there

exists a rule qi
ϕi(x,x

′)
ÐÐÐÐ→ qi+1 ∈ ∆ such that, replacing each x ∈ x with νi(x)

and each x′ ∈ x′ with νi+1(x) yields a valid (true) formula.

The reachability problem asks, given a counter machine M , does it have
a run leading to a final control state ? On the other hand, the termination
problem asks if every execution of M is finite. Both problems are undecid-
able, even if M is restricted to two counters x1 and x2 with only increment
x′i = xi + 1, decrement x′i = xi − 1 and zero test xi = 0 operations [Min67].
In this chapter we define a class of counter machines, called flat, for which
both the reachability and termination problems are decidable. Moreover, we
give tight complexity bounds for these problems, for the considered classes
of counter machines.

48



49

An elementary cycle is a path q1
ϕ1Ð→ q2

ϕ2Ð→ . . .
ϕn−1ÐÐ→ qn, where q1 = qn

and q1, . . . , qn−1 are pairwise distinct control states. A counter machine is
said to be flat if (i) every control state belongs to at most one elemen-
tary cycle, and (ii) every rule not in a cycle is labeled by a quantifier-free
Presburger formula. Under the flatness assumption, it is sufficient to define
the transitive closures of the arithmetic relations labeling the cycles of the
counter machine, in a decidable fragment of integer arithmetic.

Example 2. Consider the flat CM M = ⟨{i, j, b},{`0, `1, `2, `3}, `0,{`3},∆⟩
in Figure 4.1. The machine increments i and j by executing the self-cycle
on state `1 a number of times equal to the value of b, that was guessed on
the transition `0 Ð→ `1, then it will move to `2 and will increment i, while
decrementing j, until j = 0. Finally, it moves to its final state if i = 2b. ∎

`0

0<b′

i′=0

j′=0

ÐÐÐ→

0≤i<b
i′=i+1

j′=j+1

ÿ

`1

i=b
i′=i
j′=j
ÐÐÐ→

j>0

i′=i+1

j′=j−1

ÿ

`2
i=2b

ÐÐÐ→ `3

Figure 4.1: A flat counter machine

We will look at two classes of relations, defined by difference bounds
[BIL06, BIL09] and octagonal [BGI09] constraints, whose transitive closures
are Presburger-definable. Moreover, the reachability and termination prob-
lems for flat counter machines whose cycles are labeled with these kinds of
relations are Np-complete (reachability) and in Ptime (termination).

First, let us coin several definitions. Let Zx be the set of valuations
ν ∶ x→ Z. A relation R ⊆ Zx×Zx is defined by an integer arithmetic formula
ϕ(x,x′) if R = {(ν, ν′) ∣ (ν, ν′) ⊧ ϕ}, where the forcing relation (ν, ν′) ⊧ ϕ
means that replacing each x by ν(x) and each x′ by ν′(x) yields a valid
formula. We denote by ∅ the empty (false) relation and by Ix the identity
relation defined by ⋀x∈x x′ = x. The composition of two relations R1,R2 ⊆
Zx ×Zx defined by ϕ1(x,x′) and ϕ2(x,x′), respectively, is the relation R1 ○
R2 ⊆ Zx × Zx, defined by ∃y . ϕ1(x,y) ∧ ϕ2(y,x′). Observe that R ○ ∅ =
∅ ○R = ∅, for every relation R.

For any relation R ⊆ Zx×Zx, we define R0 = Ix and Rn+1 = Rn○R = R○Rn,
for all n ∈ N. Rn is called the n-th power of R in the sequel. The infinite
sequence of relations {Rn}∞n=0 is called the power sequence of R. With these
notations, R+ = ⋃∞n=1R

n denotes the transitive closure of R, and R∗ = R+∪Ix



50 CHAPTER 4. FLAT COUNTER MACHINES

denotes the reflexive and transitive closure of R. A relation R is said to be
∗-consistent if and only if Rn ≠ ∅, for all n ∈ N+. Observe that, if R is not
∗-consistent, there exists an integer b > 0 such that Rn = ∅, for all n ≥ b.

Definition 1. A class of relations is a monoid ⟨R(x), ○, Ix⟩, where R(x) ⊆
2Z

x×Zx
is a set of relations with variables x, that is closed under conjunction

and composition and contains the relations Ix and ∅. We write R for the
union of all classes R(x).

In this paper we will define classes by fragments of integer arithmetic.
For a relation R ∈ R(x), we denote by ∣R∣ the size of the canonical formula
defining R, with coefficients represented in binary. As we show later on,
all relations of interest in this chapter have canonical representations that
can be computed in polynomial time, given any, not necessarily canonical,
formula defining R.

4.1 Difference Bounds Relations

The core result concerning the definability of transitive closures in Pres-
burger arithmetic is best understood by considering the class of difference
bounds relations, defined by finite conjunctions of atomic propositions of the
form x − y ≤ c, where c ∈ Z is a constant. These constraints are also called
zones in the literature on timed automata.

Definition 2. A difference bounds constraint φ(x) is a finite conjunction
of atomic propositions of the form xi − xj ≤ αij , 1 ≤ i, j ≤ N , where αij ∈ Z.
A relation R ⊆ Zx × Zx is a difference bounds relation if and only if it is
defined by a difference bounds constraint φR(x,x′). The class of difference
bounds relations R ⊆ Zx ×Zx is denoted DB(x).

If φ(x) is a difference bounds constraint, a difference bounds matrix
(DBM) representing φ is the matrix Mφ, where (Mφ)ij = αij if xi − xj ≤ αij
occurs in φ, and (Mφ)ij = ∞, otherwise. Dually, every DBM M corresponds
to the difference bounds constraint ΦM ≡ ⋀Ni,j=1 xi−xj ≤Mij . The constraint
graph Gφ of a difference bounds constraint φ is the weighted graph GMφ

,
whose incidence matrix is Mφ (Fig. 4.2 (a)).

A DBM M is said to be consistent if and only if the constraint ΦM has a
satisfying valuation. This is the case if and only if the constraint graph of M
(ΦM ) contains no negative weight cycle. A consistent DBM M is said to be
closed ifMii = 0, for all 1 ≤ i ≤ N , and all triangle inequalitiesMik ≤Mij+Mjk

hold, for all 1 ≤ i, j, k ≤ N . For a consistent DBM M , the unique closed DBM
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logically equivalent to M is denoted M∗ (Fig. 4.2 (b)). The closed DBM is
a canonical (unique) representation of a difference bounds constraint. This
canonical representation of a DBM can be computed in cubic time, using
the classical Floyd-Warshall shortest path algorithm.

x2 x′2

x1 x′1
1

−1

2

−2

⎛
⎜⎜⎜⎜⎜⎜
⎝

x1 x2 x′1 x′2
x1 0 ∞ 1 −1
x2 ∞ 0 −2 2

x′1 ∞ ∞ 0 ∞
x′2 ∞ ∞ ∞ 0

⎞
⎟⎟⎟⎟⎟⎟
⎠

(a) GR (b) M∗
R

Figure 4.2: Let φ(x1, x2, x
′
1, x

′
2) ≡ x1 − x′1 ≤ 1 ∧ x1 − x′2 ≤ −1 ∧ x2 − x′1 ≤

−2∧x2 −x′2 ≤ 2 be a constraint defining a DB relation. (a) shows the graph
Gφ and (b) the closed DBM representation of φ.

In the following, it is useful to define the constraint graph representing
a composition of DB relations, in which the existentially quantified vari-
ables are kept explicitly. For a difference bounds relation R, defined by a
constraint ϕR, we shall write GR for the weighted graph GM∗

ϕR
.

Definition 3. Let R ∈ DB(x) be a relation and n ∈ N+ be an integer. The
unfolding graph of R is GnR = ⟨⋃nk=0 x(k),Ð→,w⟩, where x(k) = {x(k)

i ∣ 1 ≤ i ≤ N}
and, for all k = 0, . . . , n:

• x(k)
i

cÐ→ x(k)
j if and only if xi

cÐ→ xj is an edge of GR,

• x(k)
i

cÐ→ x(k+1)
j if and only if xi

cÐ→ x′j is an edge of GR,

• x(k+1)
i

cÐ→ x(k)
j if and only if x′i

cÐ→ xj is an edge of GR,

• x(k+1)
i

cÐ→ x(k+1)
j if and only if x′i

cÐ→ x′j is an edge of GR.

The following figure illustrates the definition of the constraint graph (a) and
the unfolding graph (b) for the relation R ≡ x2−x′1 ≤ −1∧x3−x′2 ≤ 0∧x1−x′3 ≤
0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0:

The key observation relating the power Rn of R and the unfolding graph
GnR is the following: each difference constraint defining Rn is given by a mini-
mal path between extremal vertices in GnR. Formally, for all i, j ∈ {1, . . . ,N},
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x4 x′4

x3 x′3

x2 x′2

x1 x′1
−1

0

0

0

0
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x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6)
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0
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0

0

0
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0

0

−1

0

0

0

0

−1

0

0

0

0

(a) The constraint graph of R (GR) (b) An unfolding of GR (G6
R)

the power Rn is defined by the conjunction of the following constraints:

xi − xj ≤ minwn(x(0)
i , x(0)

j )
xi − x′j ≤ minwn(x(0)

i , x(n)
j )

x′i − xj ≤ minwn(x(n)
i , x(0)

j )
x′i − x′j ≤ minwn(x(n)

i , x(n)
j )

(4.1)

where minwn(x(p)
i , x(q)

j ) = min`∈N {minwn(x(p)
i , x(q)

j , `)}, and minwn(x(p)
i , x(q)

j , `)
is the weight of a minimal path of length ` between x(p)

i and x(q)
j in GnR, for

p, q ∈ {0, n}. As usual, we consider that min(∅) = ∞. When the length is

not important, we denote a path between x(p)
i and x(q)

j as x(p)
i

∗Ð→ x(q)
j . The

figure below (c) shows two such paths in an unfolding graph.

x4

x3

x2

x1

x(0) x(1) x(2) x(3) x(4) x(5) x(6)

−1
0

0

−1
0

0

000000

(c) Forward and backward paths in G6
R

We distinguish four types of paths in GnR. A path x(k)
i

∗Ð→ x(`)
j is said to be

odd forward if k = 0 and ` = n, even forward if k = ` = 0, odd backward if
k = n and ` = 0, and even backward if k = ` = n. Observe that the symbols
needed to represent an odd path have an odd number of edges, while the
ones representing even paths have an even number of edges.

The first proof of Presburger-definability of transitive closures for differ-
ence bounds relations has been given by Comon and Jurski [CJ98], using an
over-approximation, called folded graph, of the set of paths in the unfolding
of a constraint graph. Their proof is based on the fact that only certain
paths in this graph are relevant for the definition of the closed form, namely
those paths that do not change direction while traversing vertices from the
same SCC of the graph.
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We give an alternative proof of this result [BIL09], based on the fact
that these paths can be recognized by a finite weighted automaton, thus
the weights of these paths can be captured by a quantifier-free Presburger
formula that defines the Parikh image of this automaton1. Consequently,
the weights of the minimal paths can be defined by a Presburger formula
with one quantifier alternation.

4.1.1 Zigzag Automata

Consider an unfolding GnR of the constraint graph GR, for some n > 0. We
recall the constraints (4.1) which define the closed form of R, using the
minimal paths in GnR with endpoints in the set x(0) ∪ x(n). Each such path
can be seen as a word over the finite alphabet of subgraphs of GR, and
the set of paths between two distinguished vertices is the language of a
finite (weighted) automaton, called zigzag automaton [BIL09]. Intuitively,
a zigzag automaton reads, at step i in the computation, all edges between
x(i) and x(i+1) simultaneously. The weight of a transition fired by the zigzag
automaton at step i is the sum of the weights of these edges. Each run of
length n in a zigzag automaton recognizes a word consisting of a single path
between two extremal vertices in GnR, i.e. from the set x(0) ∪ x(n).

Formally, a weighted automaton2 [Sch61] is a tuple A = ⟨Σ, ω,Q, I,F,∆⟩,
where Σ is a finite alphabet, ω ∶ Σ → Z is a function associating integer
weights to alphabet symbols, Q, I, F are the set of states, initial and final
states, respectively, and ∆ ⊆ Q ×Σ ×Q is a transition relation. The weight
of a non-empty word w = σ1 . . . σn ∈ Σ+ is defined as ω(w) = ∑ni=1 ω(σi), and
ω(ε) = 0 is the weight of the empty word ε.

A run of A is a sequence q0
σ0Ð→ q1

σ1Ð→ . . .
σn−1ÐÐ→ qn, denoted q0

σ0...σn−1ÐÐÐÐ→ qn.
A word w ∈ Σ∗ is accepted by A if there exists a run q0

wÐ→ qn such that
q0 ∈ I and qn ∈ F . We denote by L(A) the set of words accepted by A, i.e.
the language of A. Moreover, we define the function minwA ∶ N → Z, where
minwA(n) = min{ω(w) ∣ w ∈ L(A), ∣w∣ = n}.

The alphabet of the zigzag automaton is the set ΣR of weighted graphs
G = ⟨x ∪ x′,→,w⟩, where:

1. x
cÐ→ y if and only if x − y ≤ c occurs in Φσ(R), for all x, y ∈ x ∪ x′,

2. the in-degree and out-degree of each node are at most 1, and
3. the difference between the number of edges from x to x′ and the num-

ber of edges number of edges from x′ to x is either −1, 0 or 1.

1See [VSS05] for a linear-time construction of this formula.
2We adopt a simplified version of the standard definition [Sch61], sufficient for our

purposes.
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(a) A subset of the zigzag alphabet ΣR

q2

q0q1 q3

q4

⊥
r
⊥

l

r
⊥

⊥

l

⊥

⊥
r
l

⊥

⊥

rl
⊥

⊥

⊥

⊥

⊥

−1

0

G3

0

0
G1

0

0

G2

0

0 G4

G5

G5

(b) The zigzag automaton Aef
24

q2 q0 q1 q2 q0 q1 q2 q0 q3

G3 G1 G2 G3 G1 G2 G3 G4

�
r

�
l

r

�
�
l

�
�
r

l

�
r

�
l

r

�
�
l

�
�
r

l

�
r

�
l

r

�
�
l

�
�
rl
�

-1

0

0

0

0

0

-1

0

0

0

0

0

-1

0

0

0

(c) A run of Aef
24 on the word G3.(G1.G2.G3)2.G4 ∈ Σ+

R.

Figure 4.3: A zigzag automaton for the relation R ≡ x2 −x′1 ≤ −1 ∧ x3 −x′2 ≤
0 ∧ x1 −x′3 ≤ 0 ∧ x′4 −x4 ≤ 0 ∧ x′3 −x4 ≤ 0.

The weight of a graph symbol G ∈ ΣR is the sum of the weights that occur
on its edges, i.e. ω(G) = ∑

x
cÐ→y c. For an example, see Figure 4.3 (a).

The set of states of the zigzag automaton is Q = {`, r, `r, r`,�}N , i.e.
the set of N -tuples of symbols `, r, `r, r` and �. Intuitively, these symbols
capture the direction of the incoming and outgoing edges of the alphabet
symbols: ` for a path traversing from right to left, r for a path traversing
from left to right, `r for a right incoming and right outgoing path, r` for
a left incoming and left outgoing path, and � when there are no incoming
nor outgoing edges from that node. As a remark, the number of states of a
zigzag automaton is bounded by 5N . For example, Figure 4.3 (c) shows the
use of states in a zigzag automaton.

The transition relation ∆ ⊆ Q × ΣR × Q is defined as follows. For all
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q,q′ ∈ Q and G ∈ ΣR, we have q
GÐ→ q′, if and only if, for all 1 ≤ i ≤ N :

- qi = ` iff G has one edge ending in xi and no other edge involving xi,
- q′i = ` iff G has one edge starting in x′i and no other edge involving x′i,
- qi = r iff G has one edge starting in xi and no other edge involving xi,
- q′i = r iff G has one edge ending in x′i and no other edge involving x′i,
- qi = `r iff G has exactly two edges involving xi, x

(′)
j Ð→ xi Ð→ x(′)

k ,

- q′i = r` iff G has exactly two edges involving x′i, x
(′)
j Ð→ x′i Ð→ x(′)

k ,
- q′i ∈ {`r,�} iff G has no edge involving x′i,
- qi ∈ {r`,�} iff G has no edge involving xi.

The zigzag automaton for R is a union of four types of automata. For-
mally, for each i, j ∈ {1, . . . ,N} and t ∈ {of ,ob, ef , eb} (we use the abbrevi-
ations of =odd forward, ob=odd backward, ef =even forward and eb=even
backward), the weighted automaton Atij = ⟨ΣR, ω,Q, I

t
ij , F

t
ij ,∆⟩ recognizes

those paths x(p)
i

∗Ð→ x(q)
j of type t, where p, q ∈ {0, n}. The sets of initial and

final states are defined according to the type of the automaton, as follows:

Iof
ij = {q ∣ qi = r and qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}}
F of
ij = {q ∣ qj = r and qh ∈ {r`,�}, ∀h ∈ {1, . . . ,N} ∖ {j}}
Iob
ij = {q ∣ qi = ` and qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}}
F ob
ij = {q ∣ qj = ` and qh ∈ {r`,�}, ∀h ∈ {1, . . . ,N} ∖ {j}}

Ief
ij = { {q ∣ qi = r, qj = `, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i, j}} if i ≠ j

{q ∣ qi = `r, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}} if i = j
F ef
ij = {r`,�}N

Ieb
ij = {`r,�}N

F eb
ij = { {q ∣ qi = `, qj = r, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i, j}} if i ≠ j

{q ∣ qi = r`, qh ∈ {`r,�}, ∀h ∈ {1, . . . ,N} ∖ {i}} if i = j

The following theorem [BIL09] relates the language of the zigzag automa-
ton with the minimal paths in the unfolding graph of a relation R ∈ DB(x).
Theorem 6 ([BIL09]). Let R ∈ DB(x) be a difference bounds relation.
Then, for each n ∈ N+ such that Rn ≠ ∅, and all i, j ∈ {1, . . . ,N}, the
following hold:

1. each constraint graph w ∈ L(Aof
ij ) consists of a path x(0)

i

∗Ð→ x(n)
j and

minwn(x(0)
i , x(n)

j ) = minwAof
ij
(n),

2. each constraint graph w ∈ L(Aob
ij ) consists of a path x(n)

i

∗Ð→ x(0)
j and

minwn(x(n)
i , x(0)

j ) = minwAob
ij
(n),

3. each constraint graph w ∈ L(Aef
ij ) consists of a path x(0)

i

∗Ð→ x(0)
j and

minwn(x(0)
i , x(0)

j ) = minwAef
ij
(n),
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4. each constraint graph w ∈ L(Aeb
ij ) consists of a path x(n)

i

∗Ð→ x(n)
j and

minwn(x(n)
i , x(n)

j ) = minwAeb
ij
(n).

Proof. The points (1), (2), (3) and (4) are the Lemmas 4.6, 4.7, 4.3 and
4.4 from [BIL09], respectively.

We are now ready to give the definition of the transitive closure R+, of a
difference bounds relation R ∈ DB(x), in Presburger arithmetic. Let Atij =
⟨ΣR, ω,Q, I

t
ij , F

t
ij ,∆⟩ be a zigzag automaton for R, of one of the above types.

We define first the set of weights Wn(Atij) = {ω(w) ∣ w ∈ L(Atij) and ∣w∣ = n}
by the formula below:

Φt
ij(n,w) ≡ ∃y . ⋁

qf ∈F tij

φqf (y) ∧ ∑
p
gÐ→q∈∆

ypq = n ∧ ∑
p
gÐ→q∈∆

ypq ⋅ ω(g) = w (4.2)

where y = {ypq ∣ p gÐ→ q ∈ ∆} is the set of variables counting the number of

times each transition of Atij has been used in a run, and φq(y) defines the

set of Parikh images of the runs3, leading to a given state q ∈ Q. This is
a quantifier-free formula of Presburger arithmetic that can be computed in
time linear in the size of Atij , which is of the order of 2O(N) [VSS05].

The next step is to define minimal weight paths using Presburger for-
mulae of the form ∃∗∀∗: Θt

ij(n,w) ≡ Φt
ij(n,w) ∧ ∀v < w . ¬Φt

ij(n, v). Then
the following formula defines the transitive closure of R:

TCR(x,x′) ≡ ∃n > 0 . ∀w
N

⋀
i,j=1

⎛
⎜⎜⎜⎜
⎝

Φof
ij (n,w) → xi − y′j ≤ w

Φob
ij (n,w) → x′i − yj ≤ w

Φef
ij (n,w) → xi − yj ≤ w

Φeb
ij (n,w) → x′i − y′j ≤ w

⎞
⎟⎟⎟⎟
⎠

(4.3)

Observe that the universally quantified variable w can be removed by replac-
ing it with a term of the form ∑

p
gÐ→q∈∆ ypq ⋅ ω(g) from (4.2). The resulting

formula belongs thus to the ∃∗∀∗ fragment of Presburger arithmetic. This
argument is, by itself, sufficient to prove that the reachability problem for
flat counter machines with cycles labeled with difference bounds relations is
decidable. However, this proof of decidability does not establish the tight
complexity bounds, which will be given next, in Section 4.4.

3The Parikh image of a run is the tuple giving the number of times each transition is
fired along the run.
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4.1.2 Parametric Difference Bounds Relations

We consider a generalization of the class of difference bounds relations, by
allowing the bounds to be linear terms over a number of parameter variables.
A parametric difference bounds constraint is defined as a finite conjunction of
atomic propositions of the form x− y ≤ f(z), where z is a set of parameters,
distinct from x, and f is a linear term. Intuitively, the parameters z do
not change during the execution of the counter machine. In this case, the
transitive closure is not definable in Presburger arithmetic, as it was the
case previously, but in the D1 fragment of integer arithmetic (Section 3.3).

Let us consider the formulae Φt
ij (4.2) defining the weights of paths of

length n in a zigzag automaton, whose weights are now described by linear
terms over the parameters z. Due to the occurrence of non-linear terms
ypq ⋅ω(g) in Φt

ij , in which the variables ypq are multiplied by parameters z ∈ z,
the minimal weights cannot be directly defined by introducing a universal
quantifier, as in the case of standard difference bounds relations. We address
this problem by finding the elementary cycles of optimal ratio between their
weight and length in the weighted automata Atij = ⟨ΣR, ω,Q, I

t
ij , F

t
ij ,∆⟩,

respectively. These cycles are usually called critical cycles in the literature.

We apply the following transformation to each disjunct from (4.2), i.e.
for each qf ∈ F tij . Let y = {y1, . . . , ym} be a renaming of the existentially
quantified variables, and if yi is the renaming of ypq, then let ωi denote

the term ω(g), where p
gÐ→ q is the unique4 transition between p and q in

the zigzag automaton under consideration. Since φqf (y) ∧ ∑
p
gÐ→q∈∆ ypq = n

is an open Presburger formula, it is either false or it defines a non-empty
semilinear set [GS66], defined by a finite disjunction of formulae as:

⎛
⎜⎜⎜
⎝

y1

⋮
ym
n

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

a01

⋮
a0m

b0

⎞
⎟⎟⎟
⎠
+
⎛
⎜⎜⎜
⎝

a11

⋮
a1m

b1

⎞
⎟⎟⎟
⎠
λ1 + . . . +

⎛
⎜⎜⎜
⎝

ak1

⋮
akm
bk

⎞
⎟⎟⎟
⎠
λk

for some new existentially quantified variables λ1, . . . , λk ranging over N,
and constants aij , bi ∈ Z. Since w = ∑

p
gÐ→q∈∆ yqr ⋅ ω(g), we obtain, for each

disjunct of (4.2):

( n
w

) = ( b0
∑mj=1 a0jωj

) + ( b1
∑mj=1 a1jωj

)λ1 + . . . + ( bk
∑mj=1 akjωj

)λk

4The uniqueness follows from the definition of the transition table for zigzag automata.
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Since n > 0, it must be that bi > 0, for all 1 ≤ i ≤ k. Otherwise, if some
bi < 0 we can obtain a negative value for n by increasing λi sufficiently. On
the other hand, if bi = 0, for some i = 1, . . . , k, there would be an infinite
number of weights w corresponding to the same path of length w, resulting
in a contradiction. Consider now the following formulae, for all i = 1, . . . , k:

κi(z) ≡
k

⋀
p=1

∑mj=1 aijωj

bi
≤
∑mj=1 apjωj

bp

Intuitively, κi(z) defines the set of valuations of the parameters z that make
the i-th cycle critical in the weighted automaton Atij under consideration.

It is easy to see that ⋁ki=1 κi covers the set Zz of parameter valuations.
We perform a case split, in which the i-th case corresponds to a choice of
parameter values that satisfy κi, in which case the minimal weight w for a
given length n is defined by the following:

( n
w

) = ( b0
∑mj=1 a0jωj

) +
`≠i
∑

1≤`≤k
( b`
∑mj=1 a`jωj

) r` + ( bi
∑mj=1 aijωj

)(λi+
`≠i
∑

1≤`≤k
q`b`)

where q` and r` are the quotient and the remainder of λ` divided by bi, for
all ` ∈ {1, . . . , i − 1, i + 1, . . . , k}. This is because bi can be subtracted from
any λ`, ` ≠ i, at most q` times, by adding at the same time q`b` to λi, and
without changing n. Observe that each r` can be replaced by constants in
the range 0, . . . bi − 1. Finally, substituting the term λi + ∑`≠i1≤`≤k q`b` with a
fresh variable m, we obtain a formula of D1 with parameter m.

To sum up, the transitive closure of a parametric difference bounds re-
lation can be defined by a (quantifier-free) formula of D1 . Since D1 is a
decidable fragment of integer arithmetic (Section 3.3), we obtain the follow-
ing theorem:

Theorem 7 ([BIL09]). The reachability problem is decidable for flat counter
machines with cycles labeled by parametric difference bounds relations.

As in the non-parametric case, this proof of decidability does not provide
nice complexity bounds for the reachability problem. For the time being,
the complexity of the reachability problem for parametric difference bounds
constraints has not been given the needed attention, thus we add it to the
list of open problems for this chapter (Section 4.7).

4.2 Octagonal Relations

Octagonal constraints (also known as Unit Two Variables Per Inequality or
UTVPI, for short) appear in the context of abstract interpretation where
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they have been extensively studied as an abstract domain [Min06]. Since
octagons are a generalization of difference bounds constraints, most results
from this section extend the results from Section 4.1. In particular, we prove
that the transitive closures of relations defined by octagonal constraints are
Presburger-definable [BGI09], and obtain the decidability of the reachability
problem for flat counter machines whose cycles are labeled by such relations.

Definition 4. A formula φ(x) is an octagonal constraint if it is a finite
conjunction of terms of the form ±xi ± xj ≤ cij, where cij ∈ Z, for all 1 ≤
i, j ≤ N . A relation R ⊆ Zx × Zx over a set of variables x is an octagonal
relation if it can be defined by an octagonal constraint φ(x,x′). We denote
by OCT(x) the class of octagonal relations over the variables x.

Given a set of variables x = {x1, . . . , xN}, an octagonal constraint φ(x)
is usually represented by a difference bounds constraints φ(y), where y =
{y1, . . . , y2N}, y2i−1 stands for +xi and y2i stands for −xi, with the implicit
requirement that y2i−1 = −y2i, for each 1 ≤ i ≤ N . Observe that this implicit
condition cannot be directly represented as a difference bounds constraint.
Formally, we have:

xi − xj ≤ c occurs in φ ⇔ y2i−1 − y2j−1 ≤ c, y2j − y2i ≤ c occur in φ

−xi + xj ≤ c occurs in φ ⇔ y2j−1 − y2i−1 ≤ c, y2i − y2j ≤ c occur in φ

−xi − xj ≤ c occurs in φ ⇔ y2i − y2j−1 ≤ c, y2j − y2i−1 ≤ c occur in φ

xi + xj ≤ c occurs in φ ⇔ y2i−1 − y2j ≤ c, y2j−1 − y2i ≤ c occur in φ

In order to handle the y variables in the following, we define ı̄ = i − 1,
if i is even, and ı̄ = i + 1 if i is odd. Obviously, we have ¯̄ı = i, for all
i ∈ N+. For example, the octagonal constraint x1 + x2 = 3 is represented as
y1 − y4 ≤ 3 ∧ y2 − y3 ≤ −3, with the implicit constraints y1 + y2 = y3 + y4 = 0.

An octagonal constraint φ(x) is equivalently represented by the 2N ×2N
DBM Mφ, corresponding to φ(y). A 2N × 2N DBM M is coherent iff
Mij = M̄̄ı for all 1 ≤ i, j ≤ 2N . This property is needed because an atomic
proposition xi−xj ≤ cij , 1 ≤ i, j ≤ N , can be represented as both y2i−1−y2j−1 ≤
cij and y2j − y2i ≤ cij . Dually, a coherent 2N × 2N DBM M corresponds to
the following octagonal constraint:

ΩM ≡
N

⋀
i,j=1

xi−xj ≤M2i−1,2j−1∧
N

⋀
i,j=1

xi+xj ≤M2i−1,2j ∧
N

⋀
i,j=1

−xi−xj ≤M2i,2j−1

A coherent DBM M is said to be octagonal-consistent if and only if ΩM is
consistent.
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Definition 5. An octagonal-consistent coherent 2N × 2N DBM M is said
to be tightly closed if and only if it is closed and Mij ≤ ⌊Miı̄

2 ⌋ + ⌊M̄j

2 ⌋, for all
1 ≤ i, j ≤ N .

The last condition from Definition 5 ensures that the knowledge induced by
the implicit conditions yi + yı̄ = 0 has been propagated through the DBM.
Since 2yi = yi − yı̄ ≤ Mīı and −2yj = y̄ − yj ≤ M̄j , we have yi ≤ ⌊Miı̄

2 ⌋ and

−yj ≤ ⌊M̄j

2 ⌋, which implies yi − yj ≤ ⌊Miı̄

2 ⌋ + ⌊M̄j

2 ⌋, thus Mij ≤ ⌊Miı̄

2 ⌋ + ⌊M̄j

2 ⌋
must hold, if M is supposed to be the most precise DBM representation of
an octagonal constraint. If j = ı̄ in the previous, we obtain Mīı ≤ 2⌊Miı̄

2 ⌋,
implying that Mīı is necessarily even, if M is tightly closed.

Example 3. Consider the octagonal relation R(x1, x2, x
′
1, x

′
2) ≡ x1 + x2 ≤

5∧x′1−x1 ≤ −2∧x′2−x2 ≤ −3∧x′2−x′1 ≤ 1. Its difference bounds representation
is R(y,y′) ⇔ y1 − y4 ≤ 5 ∧ y3 − y2 ≤ 5 ∧ y′1 − y1 ≤ −2 ∧ y2 − y′2 ≤ −2 ∧ y′3 − y3 ≤
−3 ∧ y4 − y′4 ≤ −3 ∧ y′3 − y′1 ≤ 1 ∧ y′2 − y′4 ≤ 1, where y = {y1, . . . , y4}. Figure
4.4(a) shows the graph representation GR. Note that the implicit constraint
y′3 − y′4 ≤ 1, represented by a dashed edge in Figure 4.4(a), is not tight. The
tightening step replaces the bound 1, crossed in Figure 4.4(a), with 0. Figure
4.4(b) shows the tightly closed DBM representation of R, denoted M t

R. ∎

y′2 y2 y4 y′4

y′1 y1 y3 y′3−2

−2

−3

−3

1

1

1
0

5 5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

y1 y2 y3 y4 y′1 y′2 y′3 y′4
y1 0 ∞ ∞ 5 ∞ ∞ ∞ 2
y2 ∞ 0 ∞ ∞ ∞ −2 ∞ −1
y3 ∞ 5 0 ∞ ∞ 3 ∞ 4
y4 ∞ ∞ ∞ 0 ∞ ∞ ∞ −3
y′1 −2 ∞ ∞ 3 0 ∞ ∞ 0
y′2 ∞ ∞ ∞ ∞ ∞ 0 ∞ 1
y′3 −1 2 −3 4 1 0 0 0
y′4 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

GR M t
R

Figure 4.4: Graph and matrix representation of the difference bounds repre-
sentation R(y,y′) of an octagonal relation R(x,x′) ≡ x1+x2 ≤ 5 ∧ x′1−x1 ≤
−2 ∧ x′2 − x2 ≤ −3 ∧ x′2 − x′1 ≤ 1.

The following theorem [BHZ08] provides a cost-effective way of testing
octagonal-consistency and computing the tight closure of a coherent DBM.
Moreover, it shows that the tight closure of a given DBM is unique. Thus
tightly closed DBMs are canonical representations for octagonal constraints,
that can be computed in polynomial time from any non-canonical represen-
tation thereof.
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Theorem 8 ([BHZ08]). Let M be a coherent 2N × 2N DBM. Then M

is octagonal-consistent iff M is consistent and ⌊M
∗
iı̄

2 ⌋ + ⌊M
∗
ı̄i

2 ⌋ ≥ 0, for all
1 ≤ i ≤ 2N . Moreover, if M is octagonal-consistent, the tight closure of M
is the DBM M t defined as:

M t
ij = min{M∗

ij , ⌊
M∗
īı

2
⌋ + ⌊

M∗
̄j

2
⌋}

for all 1 ≤ i, j ≤ 2N where M∗ is the closure of M .

This theorem is the key for proving that the transitive closure of any
octagonal relation is Presburger-definable. Consider a relation R ∈ OCT(x)
and its corresponding difference bounds representation R ∈ DB(y). For any
n > 0, the unfolding graph Gn

R
defines the minimal weight paths that define

the n-th power of R. By applying the above theorem, we can compute
the tightening of this graph, which defines the n-th power of R, for any
n > 0. The most difficult part is the computation of the values M∗

īı, for any
i = 1, . . . ,2N .

⋯

0 ` n

y
(`)
i1

y
(`)
im−2

y
(`)
im−1

y
(`)
ī

y
(`)
i

y
(`)
i2

Gn−`−1

R
G`−1

R

Figure 4.5: Minimal weight path y
(`)
i

∗Ð→ y
(`)
ī

in Gn
R

.

To understand this point, consider Figure 4.5 below. Assume in the
following that Gn

R
has no cycles of negative weight. The absence of negative

cycles can be checked a-priori using Theorem 6 (Section 4.1). Since we
are aiming at computing minimal weight paths, it is sufficient to consider
acyclic paths only5. For a fixed 0 < ` < n, an acyclic path between the nodes

y
(`)
i and y

(`)
ī

, for some 1 ≤ i ≤ 2N , can be decomposed in at most 2N − 1

segments y
(`)
i0

∗Ð→ y
(`)
i1
, y

(`)
i1

∗Ð→ y
(`)
i2
, . . . , y

(`)
im−1

∗Ð→ y
(`)
m , where i0 = i and im = ī.

These segments start and end in y(`), but do not intersect with y(`), other
than in the beginning and in the end. Moreover, if the path considered is

5If a path has a cycle of a positive weight, it cannot be minimal.
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of minimal weight, these segments are of minimal weight as well. Observe
that, the paths involving nodes from y(≤`) connect the terminal nodes of
G`−1
R

, whereas the paths involving nodes from y(≥`) connect the initial nodes

of Gn−`−1
R

. We have the following relations:

(M∗
n)i(`)j ,i

(`)
j+1

= min`−1 (y(`)ij , y
(`)
ij+1

) if the path y
(`)
ij

∗Ð→ y
(`)
ij+1

involves only y(≤`)

(M∗
n)i(`)j ,i

(`)
j+1

= minn−`−1 (y(0)ij
, y

(0)
ij+1

) if the path y
(`)
ij

∗Ð→ y
(`)
ij+1

involves only y(≥`)

(M∗
n)i(`),i(`) = ∑m−1

j=0 (M∗
n)i(`)j ,i

(`)
j+1

where Mn is the incidence matrix (DBM) of the weighted graph Gn
R

. One of

the results of Section 4.1 is that the minimal weight functions min`−1(y(`)ij , y
(`)
ij+1

)
and minn−`−1(y(0)ij

, y
(0)
ij+1

) are Presburger-definable, respectively. Thus, the

matrix coefficients (M∗
n)i(`),i(`) are also Presburger-definable. Since the in-

teger half functions can be defined as ⌊u
2
⌋ = v ⇔ 2v ≤ u ≤ 2v + 1, one can

effectively use Theorem 8 to define the transitive closure of an octagonal
relation in Presburger arithmetic.

As a by-product, we can consider a generalization of octagonal relations,
in which the bounds are linear terms over a set of parameters, i.e. relations
defined as finite conjunctions of atomic propositions of the form ±x±y ≤ f(z),
where x, y ∈ x ∪ x′, z is disjoint from x, and f is a linear term. In this case,
the minimal weight functions are definable in the D1 fragment of integer
arithmetic, thus the transitive closure of a parametric octagonal relation is
also definable in D1 (Section 3.3). The following theorem summarizes the
result of this section:

Theorem 9 ([BGI09]). The reachability problem is decidable for flat counter
machines with cycles labeled by parametric octagonal relations.

Again, this theorem does not provide nice complexity bounds for the reach-
ability and termination problems for flat counter machines. These points
require further developments, and are treated in detail in Sections 4.4 and
4.6, respectively. The precise complexities of these problems for parametric
octagonal relations are listed as open problems in Section 4.7.

4.3 Periodic Relations

The previous sections (4.1 and 4.2) established decidability results for the
reachability problem for classes of flat counter machines with cycles labeled
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by (parametric) difference bounds (Theorem 7) and octagonal (Theorem
9) relations. These results are obtained by a definition of the transitive
closures of these relations into decidable fragments of integer arithmetic,
such as Presburger arithmetic, or D1 (Chapter 3, Section 3.3). In order
to derive tight complexity bounds for this problem, we noticed that the
behavior of a power sequence {Rn}∞n=0, when R ∈ OCT(x), is periodic, when
looking at the constants that occur in the definition of the successive powers
R0,R1,R2, . . . etc.

In this section, we give a formal proof of periodicity, based on a clas-
sical result from the literature on tropical (max-plus) algebra. We develop
this result further into an estimation of the prefix and period of these power
sequences, that allows to nail the reachability problem to Np-complete (Sec-
tion 4.4) and the termination problem to Ptime (Section 4.6), for the case
of octagonal relations, without parameters.

We consider infinite sequences {sk}∞k=0 in Z±∞, with the following exten-
sion of addition: (i) for all x ∈ Z∞, x+∞ = ∞+x = ∞, and (ii) for all x ∈ Z±∞,
x+(−∞) = −∞+x = −∞. A sequence {sk}∞k=0 is an arithmetic progression if
there exists a constant λ ∈ Z±∞, called rate, such that sk+1 = sk + λ, for all
k ≥ 0. A generalization of this notion are periodic sequences, defined below.

Definition 6. An infinite sequence {sk}∞k=0, where sk ∈ Z±∞, for all k ≥ 0,
is said to be periodic if and only if there exist integer constants b ≥ 0, c > 0
and λ0, . . . , λc−1 ∈ Z±∞ such that sb+(k+1)c+i = sb+kc+i + λi, for all k ≥ 0 and
all i ∈ [c]. The smallest b, c and λi are called the prefix, period and rates
of the sequence.

Note that an arithmetic progression is a periodic sequence with prefix 0 and
period 1. In the following, we consider sequences of square matrices and
say that an infinite sequence {Mk}∞k=0 of matrices Mk ∈ Zn×n±∞ is periodic if
every sequence {(Mk)ij}∞k=0 is periodic, for all i, j ∈ [n]. The next lemma
provides a characterization of periodicity for a sequence of matrices, with
an estimation of its prefix and period.

Lemma 1. A a sequence of Zn×n±∞ matrices {Mk}∞k=0 is periodic iff there exist
integers b ≥ 0, c > 0 and matrices Λ0, . . . ,Λc−1 ∈ Zn×n±∞ such that:

∀k ≥ 0∀i ∈ [c] . Mb+(k+1)c+i =Mb+kc+i +Λi .

If, moreover, bij and cij are the prefix and period of the sequence {(Mk)ij}∞k=0,
then b = max1≤i,j≤n(bij), c = lcm1≤i,j≤n(cij) are the smallest such integers.

Proof. See [BIK13, Lemma 1].
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Let us focus now on sequences of matrices that represent the power
sequences {Rk}∞k=0, where R ∈ OCT. Formally, let σ ∶ OCTx → Z4N×4N

∞ ∪
{[−∞]4N} be the bijection that maps each consistent relation R into its
canonical DBM σ(R) ∈ Z4N×4N

∞ and the inconsistent relation into the matrix
[−∞]4N , which has −∞ everywhere. Then R is said to be periodic if the
matrix sequence {σ(Rk)}∞k=0 is periodic. If every relation in a certain class
is periodic, we call that class periodic as well.

Example 4. Consider the octagonal relation R ⊆ Z{x,y} × Z{x,y} defined by
the formula x′ = y + 1 ∧ y′ = x, where for all ` ∈ N:

σ(R2`+1) =

x y x′ y′

x 0 ∞ ∞ `
y ∞ 0 −` − 1 ∞
x′ ∞ ` + 1 0 ∞
y′ −` ∞ ∞ 0

σ(R2`+2) =

x y x′ y′

x 0 ∞ −` − 1 ∞
y ∞ 0 ∞ −` − 1
x′ ` + 1 ∞ 0 ∞
y′ ∞ ` + 1 ∞ 0

Then {σ(Rk)}∞k=0 is periodic with prefix b = 1 and period c = 2, where:

Λ0 =

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

Λ1 =

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

One of the results is that the class OCT is periodic. The proof of this
fact relies essentially on the fact that the class DB is periodic, and uses (a
variant of) Theorem 8 to generalize this result from difference bounds to
octagonal relations. In the next section we give a generic nondeterministic
decision procedure for the reachability problem of flat counter machines with
cycles labeled by relations from a periodic class R. Moreover, we identify
certain conditions under which each branch of the procedure terminates in
polynomial time, providing an Np upper bound for the reachability problem.

4.4 An Algorithm for the Reachability Problem

In general, the decision procedures for the reachability problem for flat
counter machines rely on acceleration [Boi99, FL02b], which is defining the
transitive closure of the relations that occur on the cycles of these machines
by formulae from the quantifier-free fragment of Presburger arithmetic. To
show that these reachability problems belong to the class Np, it is essential
to build these QFPA formulae in polynomial time.
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For the sake of simplicity, we explain the idea of a nondeterministic
algorithm (Algorithm 1) for the reachability problem on the flat counter
machine below:

qinit
I(x)ÐÐ→

φ(x,x′)
ÿ
q

F (x)ÐÐ→ qfin (4.4)

where I(x) and F (x) are QFPA formulae and φ(x,x′) is an octagonal con-
straint defining a relation R ∈ OCTx, where x = {x1, . . . , xN} are variables.

Let us assume for now that this relation is periodic. The algorithm
guesses candidate values for the prefix b ≥ 0 and period c > 0 of R (line 2),
computes a candidate rate Λ (line 3), and checks if b, c and Λ satisfy the
following condition (line 4):

Ind(B,C,Λ) ∶ ∀n ≥ 0 . σ (σ−1(B + n ⋅Λ) ○ σ−1(C)) = B + (n + 1) ⋅Λ (4.5)

where B,C and Λ are square matrices of equal dimension, in our case B =
σ(Rb), C = σ(Rc) and Λ is such that σ(Rb) +Λ = σ(Rb+c). Intuitively, this
means that b, c and Λ are valid choices for the prefix, period and rate of the
sequence of matrices {σ(Rk)}∞

k=0
, in the sense of Lemma 1.

In case the reachability problem for M has a positive answer, i.e. there
exists a run from qinit to qfin, two cases are possible. Either the number of
iterations of the cycle is (i) strictly smaller than b, or (ii) between b + nc
and b + (n + 1)c, for some n ≥ 0. The first case is captured by the QFPA
formula φ<b (line 6), where Ω(σ(Ri)) is the canonical octagonal constraint
representing the relation Ri.

The second case is encoded by the QFPA formula φ≥b (line 8). Here
k /∈ x is a parameter variable and by Z[k]∞ we denote the set of univariate
linear terms of the form a ⋅ k + b, with a, b ∈ Z∞. Also Z[k]m×m∞ denotes
the set of m × m square matrices of such terms. With these notations,
ς is a mapping of matrices M[k] ∈ Z[k]4N×4N

∞ into parametric octagonal
constraints consisting of atomic propositions of the form ±x ± y ≤ a ⋅ k + b,
defined in the same way as the octagonal constraint Ω(M) is defined for a
matrix M ∈ Z4N×4N

∞ . Moreover, ς satisfies the following condition:

∀M ∈ Z[k]4N×4N
∞ ∀n ∈ N . ς(M)(n) = σ−1(M[n/k]) (4.6)

The final step is checking the satisfiability of the disjunction φ<b ∨ φ≥b (line
9). If the formula produced by a nondeterministic branch of the algorithm
is satisfiable, the reachability question has a positive answer. Otherwise,
if no branch produces a satisfiable formula, the reachability question has a
negative answer.
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Algorithm 1 algorithm for the reachability problem (4.4)

input: M = ⟨x,{qinit, q, qfin}, qinit, qfin,∆⟩ of the form (4.4), where x =
{x1, . . . , xN}
output: Yes if and only if M has a run from qinit to qfin

1: let R be the relation defined by φ(x,x′)
2: chose b ≥ 0 and c > 0
3: let Λ ∈ Z4N×4N

∞ be a matrix such that σ(Rb) +Λ = σ(Rb+c)
4: if Ind(σ(Rb), σ(Rc),Λ) then
5: chose i ∈ [b]
6: φ<b ← I(x) ∧Ω(σ(Ri)) ∧ F (x′)
7: chose j ∈ [c]
8: φ≥b ← k ≥ 0 ∧ I(x) ∧ ς(σ(Rb+j) + k ⋅Λ) ∧ F (x′)
9: if φ<b ∨ φ≥b is satisfiable then

10: return Yes
11: fail

To prove that the class of reachability problems for these counter ma-
chines is in Np, it is enough to show that, for any machine M of the form
(4.4), each branch of Algorithm 1 terminates in Ptime(∣M ∣). For this, the
matrices σ(Rc), σ(Ri) and σ(Rb+j) must be computable in Ptime(∣R∣), for
all i = 0, . . . , b and j = 0, . . . , c and the condition Ind(σ(Rb), σ(Rc),Λ) (4.5)
must be decidable in Nptime(∣R∣). Under these conditions, the QFPA for-
mulae φ<b and φ≥b are of polynomial size in ∣I ∣+∣R∣+∣F ∣, and the satisfiability
of their disjunction is decidable in Nptime(∣I ∣ + ∣R∣ + ∣F ∣).

The following theorem generalizes this argument to arbitrary flat counter
machines by giving sufficient conditions under which the class of reacha-
bility problems for flat counter machines with cycles labeled by octagonal
relations is Np-complete. In the following, we denote this class of problems
by ReachFlat(OCT).

Theorem 10. ReachFlat(OCT) is Np-complete if there exists a constant
d, such that the following hold, for each relation R ∈ OCT:

1. ∣Rn∣ = O((∣R∣ ⋅ logn)d), for all n > 0,

2. R is periodic with prefix and period of the order of 2O(∣R∣d).

Proof. First, we show that the condition Ind(B,C,Λ) is decidable in non-
deterministic polynomial time, by reduction to the satisfiability of a QFPA
formula. The proof relies on a symbolic tight closure algorithm, which builds
such a formula using a cubic number of steps [BIK13, Lemma 2]. For the
rest of the proof, see [BIK13, Theorem 2].
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4.5 The Exponential Periodicity of Octagons

In order to apply Theorem 10 we start by proving that the first assumption
from its statement holds for each octagonal relation R ∈ OCT, namely that
the size of the binary representation of the n-th power Rn is bounded by
a polynomial function with arguments ∣R∣ and logn. In this case, the bi-

nary size of an exponentially large power Rn, where n = 2O(∣R∣d) and d is a
constant, is bounded by a polynomial in ∣R∣. Moreover, such powers can be
computed in a polynomial number of steps, using exponentiation by squar-
ing. This is essential in proving that each branch of the nondeterministic
Algorithm 1 terminates in polynomial time, and also in the generalization
of this reasoning to arbitrary flat CM with cycles labeled by octagonal con-
straints (Theorem 10).

The core of the proof is showing periodicity of difference bounds rela-
tions and establishing the upper bounds for the prefix and period of sequence
{σ(Rk)}∞k=0, where R ∈ DB. The main idea is that the coefficients of any ma-
trix σ(Rk) can be derived from the k-th power of a larger matrixMR, where
the matrix product is defined using min as addition and + as multiplication.
More precisely, MR is the incidence matrix of the common transition table
of the weighted (zigzag) automata Atij for R. The sequence {Mk

R}∞k=0 gives

the minimal weights of the paths of length k = 0,1, . . . in Atij (Theorem 6).
To obtain the simply exponential bounds on the period and prefix of a se-
quence {σ(Rk)}∞k=0, we develop this periodicity result further, by studying
the structure of the strongly connected components of zigzag automata.

Let G = ⟨V,E,w⟩ be a weighted graph, where V is a set of vertices,
E ⊆ V × V is a set of edges, and w ∶ E → Z is a weight function. We
denote by µ(G) = max({abs(α) ∣ u αÐ→ v} ∪ {1}) the maximum between the
absolute values of the weights of G and 1. The average weight of a path

π is w(π) = w(π)
∣π∣ . A cycle is said to be critical if it has minimal average

weight among all cycles of G. The critical graph Gc consists of those vertices
and edges of G that belong to a critical cycle. If C is a strongly connected
component (SCC) of Gc, we define its cyclicity as the greatest common
divisor of the lengths of all its elementary cycles. The cyclicity of Gc is the
least common multiple of the cyclicities of its SCCs, and the cyclicity of G,
denoted c(G), is the cyclicity of Gc.

Weighted graphs are intimately related with the powers of their incidence
matrices, defined as follows. For two matrices A,B ∈ Zn×n∞ , let (A ⊠B)ij =
min1≤k≤n(Aik + Bkj) and 1n be the matrix (1n)ii = 0, for all 1 ≤ i ≤ n and
(1n)ij = ∞, for all 1 ≤ i, j ≤ n, where i ≠ j. The powers of a matrix M
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are defined as M0 = 1n and Mk+1 = M ⊠Mk, for all k ≥ 0. If M is the
incidence matrix of a weighted graph G, the coefficient (Mk)ij is the weight
of a minimal path of length k between the vertices i and j in G. In this case,
we write µ(M) and c(M) for µ(G) and c(G), respectively. The following
theorem provides the tool for proving periodicity of a sequence of matrices:

Theorem 11. For a matrix M ∈ Zn×n∞ , the sequence {Mk}∞k=0 is periodic
and its period divides c(M).

Proof. See [Sch00, Theorem 3.3].
Despite our best efforts, no estimation of the prefix of a power sequence

of a matrix could be found in the literature. This gap is filled next:

Theorem 12. Given a matrix M ∈ Zn×n∞ , the prefix of the periodic sequence
{Mk}∞k=0 is at most 4µ(M) ⋅ n6.

We are now ready to prove that the sequence of matrices {σ(Rn)}∞n=0

is periodic, where R ∈ DB(x) is any difference bounds relation and x =
{x1, . . . , xN} is a set of variables. The coefficients of σ(Rn) are the weights
of the minimal paths between extremal vertices from the set x(0) ∪ x(n) in
the unfolding GnR of the constraint graph GR — see the constraints (4.1). By
Theorem 6, these weights are given by the functions minwAtij

(n), whereAtij =
⟨Q,ω, Itij , F tij ,∆⟩ are the zigzag automata for the relation R. Since these
functions are periodic, it follows that the sequence {σ(Rn)}∞n=0 is periodic.
Moreover, the prefix of this sequence is polynomially bounded by ∥Q∥ and
its period divides this cyclicity. Since ∥Q∥= 2O(N) by the construction of
zigzag automata, we are left with bounding the cyclicity of zigzag automata.

A path x(p)
k

∗Ð→ x(q)
k in the unfolding GnR of the constraint graph GR is

essential if all variables occurring on it are pairwise distinct, except for
the labels of its source and destination vertices. Clearly, the length of an
essential path is bounded by the number N of variables occurring on this
path. An essential power is a path ξn obtained from the concatenation of
an essential path ξ with itself n > 0 times. The main idea of the proof
is that each critical cycle q

γÐ→ q in a zigzag automaton A is necessarily

connected to a critical cycle q
λÐ→ q, where λ consists of a finite set of essential

powers. This allows us to bound the length of λ by a simply exponential
value, which divides lcm(1, . . . ,N). It follows that the common cyclicity of
these zigzag automata is a divisor of lcm(1, . . . ,N). We use the fact that
lcm(1, . . . ,N) = 2O(N) [Nai82], which occurs as a consequence of the Prime
Number Theorem, and bound the cyclicity of zigzag automata by 2O(N).

We have gathered all the elements necessary to prove the second point of
Theorem 10, namely that the octagonal relations are periodic, with simply



4.6. THE TERMINATION PROBLEM 69

exponential prefixes and periods. As a consequence, the class of problems
ReachFlat(OCT) is Np-complete. The theorem below is a consequence of
the relation between the powers of octagonal relations and their encodings
using difference bounds constraints (Theorem 8). We infer that the class
OCT is periodic, because for two periodic sequences {sk}∞k=0 and {tk}∞k=0,
with prefixes bs, bt ≥ 0 and periods cs, ct > 0, respectively, the following
sequences are also periodic:

1. {sk + tk}∞k=0 with prefix at most max(bs, bt) and period which divides
lcm(cs, ct),

2. {⌊ sk2 ⌋}∞
k=0

with prefix bs and period 2cs,

3. {min(sk, tk)}∞k=0 with prefix at most max(bs, bt) +∑lcm(cs,ct)
i=0 (abs(si) +

abs(ti)) and period which divides lcm(cs, ct).

Theorem 13. There exists a constant d > 0 such that, for every relation
R ∈ OCT, the sequence {σ(Rk)}∞k=0 is periodic, with prefix b = 2O(∣R∣d) and

period c = 2O(∣R∣d).

Proof. See [BIK13, Theorem 8].

4.6 The Termination Problem

In this section we address the termination problem for flat counter machines
whose cycles are labeled with octagonal relations. More precisely, for a given
such cycle, we determine the set of configurations from which the cycle can
be iterated ad infinitum. A first observation is that the set of configurations
from which an infinite iteration is possible is the greatest fixpoint of the
pre-image preR of the transition relation6 R. This set, called the weakest
recurrent set, and denoted wrs(R), is the limit of the descending sequence
pre0

R(⊺),pre1
R(⊺),pre2

R(⊺), . . ., i.e. wrs(R) = ⋂∞i=1 pre
n
R(⊺), if either (i) the

descending Kleene sequence that over-approximates the greatest fixpoint
eventually stabilizes, or (ii) the relation is well founded, i.e. wrs(R) = ∅.

If, moreover, the closed form defining the infinite sequence of precondi-
tion sets {prenR(⊺)}n≥1 can be defined using a decidable fragment of arith-
metic, we obtain decidability proofs for the termination problem. Besides
showing decidability, we also establish a polynomial-time upper bound for
the case of (non-parametric) octagonal relations R ∈ OCT(x).

Let x = {x1, . . . , xN} be a set of variables in the rest of this section.
For a relation R ⊆ Zx × Zx, let preR ∶ 2Z

x → 2Z
x

be the pre-image function

6This definition is the dual of the reachability set, needed for checking safety properties:
the reachability set is the least fixpoint of the post-image of the transition relation.
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defined as preR(S) = {ν ∣ ∃ν′ ∈ S . (ν, ν′) ∈ R}, for any set S ⊆ Zx of
configurations. It is not difficult to prove that preR is a monotonic function,
thus the sequence {prenR(Zx)}∞n=0 is descending.

A relation R ⊆ Zx × Zx is said to be well-founded if and only if there
is no infinite sequence of valuations {νi}∞i=0 such that (νi, νi+1) ∈ R, for all
i ≥ 0. We recall that a relation R is said to be ∗-consistent if and only if
Ri ≠ ∅, for all i ≥ 0. Observer that if a relation is not ∗-consistent, then it is
also well-founded. However the dual is not true. For instance, the relation
R = {(n,n − 1) ∣ n ∈ N+} is both ∗-consistent and well-founded.

Definition 7. A set S ⊆ Zx is said to be a non-termination precondition for
a relation R ⊆ Zx × Zx if and only if for each ν ∈ S there exists an infinite
sequence of valuations {νi}∞i=0 such that ν = ν0 and νi ∈ Zx, (νi, νi+1) ∈ R,
for all i ≥ 0.

If S0, S1, . . . are all non-termination preconditions for R, then the (possibly
infinite) union ⋃i=0,1,... Si is a non-termination precondition for R as well.
The set wnt(R) = ⋃{S ∈ Zx ∣ S is a non-termination precondition for R} is
called the weakest non-termination precondition for R. A relation R is well
founded if and only if wnt(R) = ∅. A set S such that S ∩ wnt(R) = ∅ is
called a termination precondition.

Definition 8. A set S ⊆ Zx is said to be recurrent for a relation R ⊆ Zx×Zx

if and only if S ⊆ preR(S).

Notice that if S is a recurrent set for a relation R, then for each ν ∈ S there
exists ν′ ∈ S such that (ν, ν′) ∈ R, thus one can build an infinite sequence
of configurations, corresponding to an infinite iteration of R. It is easy to
check that the union of several (possibly infinitely many) recurrent sets is
also a recurrent set.

The set wrs(R) = ⋃{S ∈ Zx ∣ S is a recurrent set for R} is called the
weakest recurrent set for R. Thus wrs(R) is recurrent for R. The following
lemma shows that in fact, wrs(R) is exactly the set of valuations from which
an infinite iteration of R is possible and, equivalently, the greatest fixpoint
of the transition relation’s pre-image.

Lemma 2. For every relation R ⊆ Zx ×Zx, wrs(R) = wnt(R) = gfp(preR) .

Proof. See [BIK14a, Lemma 3.6].

The following lemma gives sufficient conditions under which wrs(R) can
be computed as the limit ⋂n≥0 prenR(Zx) of the infinite descending Kleene
sequence Zx ⊇ preR(Zx) ⊇ pre2

R(Zx) ⊇ pre3
R(Zx) ⊇ . . .
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Lemma 3. Let R ⊆ Zx × Zx be a relation such that at least one of the
following holds:

1. ⋂n≥1 prenR(Zx) = ∅, or
2. pren2

R (Zx) = pren1
R (Zx) for some n2 > n1 ≥ 1.

Then, we have wrs(R) = ⋂n≥1 prenR(Zx). Moreover, wrs(R) = ∅ if (1) holds
and wrs(R) = pren1

R (Zx) if (2) holds.

In the rest of this section we show that octagonal relations satisfy at least
one of the two conditions above. Let us denote by p̂reR(k,x) the closed
form of the sequence {prenR(Zx)}∞n=0 :

∀ν ∈ Zx ∀n ∈ N ∶ ν ∈ prenR(Zx) ⇔ ν ⊧ p̂reR[n/k] .

As shown in Section 4.2, the closed form of the power sequence {Rn}n≥0

is definable by a Presburger formula R̂(k,x,x′). Since, moreover, prenR =
preRn , for all n ∈ N, we have p̂reR(k,x) ≡ ∃x′ . R̂(k,x,x′). The above
lemma shows that wnt(R) is defined by the Presburger formula:

∀k ≥ 0 . p̂reR(k,x) ⇔ ∀k ≥ 0∃x′ . R̂(k,x,x′) .

Since satisfiability is decidable for Presburger arithmetic [Pre29], the (uni-
versal) termination problem for octagonal relations is decidable as well.

Example 5. Consider the relation R(x,x′) ⇔ x ≥ 0∧x′ = x− 1. The closed
form of the sequence {prenR(Zx)}n≥1 is p̂reR(k, x) ⇔ k ≥ 1 ∧ x ≥ k − 1. Then
we have:

(wnt(R))(x) ⇔ ∀k ≥ 1 . p̂reR(k, x) ⇔ ∀k ≥ 1 . k ≥ 1 ∧ x ≥ k − 1⇔�

Hence the relation R is well founded. ∎

4.6.1 Computing Weakest Recurrent Sets in Polynomial Time

If R ∈ OCT(x) is an octagonal relation, let R ∈ DB(y), for y = {y1, . . . , y2N},
be its difference bounds representation. The main result of this section is
a (deterministic) algorithm (Algorithm 2) that computes the weakest re-
current set of an octagonal relation R in Ptime(∣R∣). The main insight of
the algorithm is that the Kleene sequence {prenR(Zx)}∞n=0 either (1) never
stabilizes, in which case

pre1
R(Zx) ⊋ pre2

R(Zx) ⊋ pre3
R(Zx) ⊋ . . .
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and wrs(R) = ∅, or (2) stabilizes after at most 52N steps, in which case

wrs(R) = pre52N

R (Zx) = pre52N+1
R (Zx) = pre52N+2

R (Zx) = . . .

Then, the stability of the sequence can be checked by checking equality
between the 52N -th and (52N + 1)-th iterate. Since the size of the binary
representation of the n-th power of an octagonal relation increases by a
polynomial of logn (see the first condition of Theorem 10 for a formal state-
ment) the formulae defining these sets are computable in Ptime(∣R∣), using
exponentiation by squaring (the Square(R,n) function on lines 1 and 2 of
the algorithm). As a direct consequence, we obtain a decision procedure
for the termination problem with the same worst-case complexity, simply
by testing the consistency of the computed wrs(R), which is an octagonal
constraint as well.

For a 4N × 4N DBM M , we denote by ∎M its top left corner, which is a
2N ×2N DBM. The image mapping %(∎M) returns the octagonal constraint
involving only atomic propositions of the for ±xi ± xj ≤ c, for 1 ≤ i, j ≤ 2N .

Algorithm 2 Weakest Recurrent Sets for Octagonal Relations

input An octagonal constraint R(x,x′) where x = {x1, . . . , xN}
output An octagonal constraint representing wrs(R)

1: V (x,x′) ← Square(R,52N)
2: W (x,x′) ← Square(R,52N + 1)
3: if W ⇔ false or ∎M t

V > ∎M t
W then

4: return false
5: else
6: return %(∎M t

V )

The following theorem proves that Algorithm 2 is correct.

Theorem 14. Let R ∈ OCT(x) be an octagonal relation, where x = {x1, . . . , xN}.
Then, Algorithm 2, with input a formula that defines R, returns an octago-
nal constraint that defines wrs(R). Moreover, the well-foundedness problem
wrs(R) = ∅ can be decided in Ptime(∣R∣).

Proof. See [BIK14a, Theorems 4.38 and 4.39].

For parametric octagonal relations, the decidability status and complex-
ity of the termination problem remains open (Section 4.7).
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4.7 Discussion and Open Problems

The first proof of Presburger-definability of closed forms for difference bounds
relations has been given by Comon and Jurski [CJ98], using an overapproxi-
mation, called folded graph, of the set of paths in the unfolding of a constraint
graph. Their proof is based on the fact that only certain paths in this graph
are relevant for the definition of the closed form, namely those paths that
do not change direction while traversing vertices from the same SCC of the
folded graph.

Our first proof is based on the fact that these paths can be recognized
by a finite weighted automaton [BIL09]. This proves the decidability of
the reachability problem in a more general context, when the bounds are
given by parametric linear terms. Moreover, using results from the theory
of weighted automata and tropical algebra, we prove that the sequence of
DBMs encoding the powers of a relation {Rn}∞n=0 is periodic, giving simply-
exponential bounds on the prefix and period of this sequence. In particular,
the simple exponential upper bound on the period of such sequences requires
an insight on the particular structure of cycles in the zigzag automaton
[BIL09], and relies on the idea of restricting to a set of simple paths with
a bounded number of direction changes, whose weights subsume the set of
weights of the minimal paths in the unfolding graph [CJ98].

Developing further the idea of folded graphs [CJ98], Konečný showed
that the closed form of the power sequence of a difference bounds (respec-
tively, octagonal) relation can be defined by a quantifier-free Presburger
formula which, moreover, can be built in polynomial time by a determinis-
tic algorithm [Kon14]. This gives an alternative proof of the fact that the
reachability problem for flat counter machines is in Nptime, using a polyno-
mial reduction to the satisfiability of quantifier-free Presburger arithmetic.

Open Problems

The following decidable problems currently require tight complexity bounds:
1. The reachability and termination problems for flat counter machines

with parametric octagonal cycles.
2. The reachability and termination problems for flat counter machines

with cycles labeled by affine relations of the form ϕ(x) ∧ x′ = Ax + b,
where ϕ is a quantifier-free Presburger formula and the set of matrix
powers A,A2, . . . is finite (finite monoid [Boi99, FL02b]). As a remark,
the model checking problem for Linear Temporal Logic, in the case
where A is the identity matrix is coined to Np-complete [DDS12].



Chapter 5

Recursive Counter Machines

Counter machines (Chapter 4) are suitable for modeling intra-procedural
executions of programs with integer variables, and can, incidentally, be used
as a tool for reasoning about array logics and programs with dynamically
allocated recursive data structures (Chapter 6). In this chapter we describe
an extension of this model, by allowing counter machines to make recursive
calls to other counter machines.

From an operational point of view, this is equivalent to having a stack on
which the values of the local variables are pushed prior to a call and retrieved
upon return from a call. In other words, a recursive counter machine may be
viewed as a pushdown automaton equipped with an infinite stack alphabet.
For technical convenience, we work with visibly pushdown grammars instead
of pushdown automata, and to represent the execution of a recursive counter
machine as a derivation of a grammar, directly inferred from the description
of the machine.

Procedure summaries are relations between the input and return values
of a procedure, resulting from its terminating executions. Computing sum-
maries is important, as they are a key enabler for the development of mod-
ular verification techniques for inter-procedural programs, such as checking
safety, termination or equivalence properties. Given a recursive counter
machine, represented as a visibly pushdown grammar, we give an effective
method to compute increasingly larger under-approximations of its sum-
maries, by considering only derivations that do not exceed a given budget,
called index, on the number of occurrences of nonterminals occurring at each
derivation step.

The under-approximation method converges yielding the precise pro-
gram summaries, provided that the language of actions generated by the

74
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grammar is contained in the language of a regular expression w∗
1 . . .w

∗
d where

each wi is a finite sequence of program statements. Finally, we show that the
reachability problem for recursive counter machines, whose statements are
described by octagonal relations, is in Nexptime, with an Np-hard lower
bound [GI15a]. Despite our best efforts, we did not close this complexity
gap yet. However, when setting the derivation index to a fixed constant,
the complexity of the resulting reachability problem for programs with ar-
bitrary call graphs becomes Np-complete. This is joint work with Pierre
Ganty (IMDEA, Madrid) [GIK13, GIK12, GI15a].

5.1 Programs as Visibly Pushdown Grammars

In the following, we use the term program to denote a recursive counter
machine, and procedure to denote one of its components. In other words, a
program is a collection of procedures calling each other, possibly according to
recursive schemes. Formally, a program is a tuple P = ⟨P1, . . . , Pn⟩ and each
procedure is given by a control flow graph Pi = ⟨xi,xini ,xouti , Si, q

init
i , Fi,∆i⟩,

where xi are the local variables1 of Pi (xi∩xj = ∅ for all i ≠ j), xini ,x
out
i ⊆ xi

are ordered sequences of input and output variables, Si are the states of Pi
(Si ∩ Sj = ∅, for all i ≠ j), qinit

i ∈ Si ∖ Fi is the initial, and Fi ⊆ Si (Fi ≠ ∅)
are the final states, and ∆i is a set of transitions:

- q
ϕ(xi,x

′
i)ÐÐÐÐ→ q′ is an internal transition, where q, q′ ∈ Si, and ϕ(xi,x′i) is an

arithmetic formula involving only the local variables of Pi,

- q
z′=Pj(u)
ÐÐÐÐ→ q′ is a call, where q, q′ ∈ Si, Pj is the callee, u is an ordered

sequence of linear terms over xi, z ⊆ xi is an ordered sequence of variables,
such that ∣u∣ = ∣xinj ∣ and ∣z∣ = ∣xoutj ∣.

The call graph of a program P = ⟨P1, . . . , Pn⟩ is a directed graph with
vertices P1, . . . , Pn and an edge (Pi, Pj), for each Pi and Pj , such that Pi has
a call to Pj . A program is recursive if its call graph has at least one cycle,
and non-recursive if its call graph is a dag. We denote by F(P) = ⋃ni=1 Fi
the set of final states of the program P, by nF(Pi) the set Si∖Fi of non-final
states of Pi, and by nF(P) = ⋃ni=1 nF(P) be the set of non-final states of P.

Example 6. Figure 5.1 shows a program P = ⟨P ⟩, where

P = ⟨{x, z},{x},{z},{qinit
1 , q2, q3, ε}, qinit

1 ,{ε},{t1, t2, t3, t4}⟩

1Observe that there are no global variables in the definition of integer program. Those
can be encoded as input and output variables to each procedure.
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int P(int x) {
x′ = x

t2

t1

t4
q3

q2

ε

qinit1

x = 0

z′ = 0

x′ = x
z′ = z + 2

z′ = P (x − 1)
x′ = x

(b)

t3

(a)

int z;

1: assume(x ≥ 0);

2: if (x > 0)

3: z := P(x-1);

4: z := z+2;

6: z := 0

7: return z; }

5: else

x > 0

Figure 5.1: A recursive program that returns the input value multiplied by
two (a) and its control flow graph (b)

is the only procedure. Since P calls itself once (by the call t2), this program
is recursive. ∎

To model the control flow of procedural programs, we use languages
generated by visibly pushdown grammars [AM09], a subset of context-free
grammars. In this setting, words are defined over a tagged alphabet Σ̂ =
Σ∪⟨⟨Σ∪Σ⟩⟩, where ⟨⟨Σ = {⟨⟨a ∣ a ∈ Σ} represents procedure calls and Σ⟩⟩ = {a⟩⟩ ∣
a ∈ Σ} represents procedure returns. Formally, a visibly pushdown grammar
G = ⟨Ξ, Σ̂,∆⟩ consists of a set of nonterminals Ξ, a tagged alphabet Σ̂ and
a set of productions ∆, of the following forms, for some a, b ∈ Σ:

(a) X → a (b) X → aY (c) X → ⟨⟨aY b⟩⟩Z

We are interested in computing the summary relation between the values
of the input and output variables of a procedure. To this end, we give the
semantics of a program P = ⟨P1, . . . , Pn⟩ as a tuple of relations, denoted
[[q]] in the following, describing, for each non-final state q ∈ nF(Pi) of a
procedure Pi, the effect of the program when started in q upon reaching
a state in Fi. The summary of a procedure [[Pi]] = [[qinit

i ]] is the relation
corresponding to its unique initial state.

An interprocedurally valid path is represented by a tagged word over
an alphabet Θ̂, which maps each internal transition t to a symbol τ , and
each call transition t to a pair of symbols ⟨⟨τ, τ⟩⟩ ∈ Θ̂. In the sequel, we
denote by Q the nonterminal corresponding to the state q, and by τ ∈ Θ
the alphabet symbol corresponding to the transition t of P. Formally, we
associate each program P a visibly pushdown grammar, denoted in the
following by GP = ⟨Ξ, Θ̂,∆⟩, such that Q ∈ Ξ if and only if q ∈ nF(P) and:

(a) Q→ τ ∈ ∆ if and only if t is q
ϕÐ→ q′ and q′ ∈ F(P),

(b) Q→ τ Q′ ∈ ∆ if and only if t is q
ϕÐ→ q′ and q′ ∈ nF(P),
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(c) Q→ ⟨⟨τ Qinit
j τ⟩⟩ Q′ ∈ ∆ if and only if t is q

z′=Pj(u)
ÐÐÐÐ→ q′.

Example 7. The visibly pushdown grammar for the program in Figure 5.1
is given below:

pc2 ∶ Q2 → ⟨⟨τ2 Qinit1 τ2⟩⟩ Q3

pa3 ∶ Q3 → τ3

pa4 ∶ Qinit1 → τ4

pb1 ∶ Qinit1 → τ1Q2

∎

Each tagged word generated by visibly pushdown grammars is associated a
nested word, i.e. a pair (w,↝), where ↝ ⊆ {1, . . . , ∣w∣} × {1, . . . , ∣w∣} is a set
of nesting edges, where:

1. i↝ j only if i < j; edges only go forward;
2. ∥{j ∣ i↝ j}∥≤ 1 and ∥{i ∣ i↝ j}∥≤ 1; no two edges share a call/return

position;
3. if i ↝ j and k ↝ ` then it is not the case that i < k ≤ j < `; edges do

not cross.

Dually, we associate a nested word to a tagged word as follows: there is
an edge between tagged symbols ⟨⟨a and a⟩⟩ if and only if both symbols are
produced by the same derivation step. Finally, let w nw denote the mapping
which given a tagged word in the language of a visibly pushdown grammar
returns the nested word thereof.

Example 8. For the tagged word w = τ1⟨⟨τ2τ1⟨⟨τ2τ4τ2⟩⟩τ3τ2⟩⟩τ3, w nw(w) =
(τ1τ2τ1τ2τ4τ2τ3τ2τ3,{2↝ 8,4↝ 6}) is the associated nested word. ∎

The semantics of a program is the union of the relations (between initial
and final valuations of the variables) induced by the nested words corre-
sponding to its executions. To define the relational semantics of a nested
word, we first associate to each τ ∈ Θ̂ an integer relation ρτ , defined as:

• for an internal transition t∶ q ϕÐ→ q′ ∈ ∆i, we define ρτ ≡ ϕ(xi,x′i);

• for a call transition t∶ q
z′=Pj(u)
ÐÐÐÐ→ q′ ∈ ∆i, we define a call relation ρ⟨⟨τ ≡

(xinj
′ = u) ⊆ Zxi × Zxj , a return relation ρτ⟩⟩ ≡ (z′ = xoutj ) ⊆ Zxj × Zxi

and a frame relation φτ ≡ ⋀x∈xi∖zx′ = x. Intuitively, the frame relation
copies the values of all local variables, that are not involved in the call
as return value receivers (z), across the call.

We define the semantics of the program P = ⟨P1, . . . , Pn⟩ in a top-down
manner. Assuming a fixed ordering of the non-final states in the program,
i.e. nF(P) = ⟨q1, . . . , qm⟩, the semantics of the program P is the tuple of
relations [[P]] = ⟨[[q1]], . . . , [[qm]]⟩. For each non-final state q ∈ nF(Pi) where
1 ≤ i ≤ n, we denote by [[q]] ⊆ Zxi ×Zxi the relation (over the local variables
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of procedure Pi) defined as [[q]] = ⋃α∈LQ(GP) [[α]], where LQ(GP) is the
language generated by the grammar GP with axiom Q. Then, for each
procedure Pi in the program, we have [[Pi]] = ⋃α∈L

Qinit
i

(GP) [[α]].
It remains to define [[α]], the semantics of the tagged word (or equiv-

alently interprocedural valid path) α. Out of convenience, we define the
semantics of its corresponding nested word w nw(α) = (θ,↝) over the al-
phabet Θ, and define [[α]] = [[w nw(α)]]. For a nesting relation ↝ ⊆
{1, . . . , ∣θ∣} × {1, . . . , ∣θ∣}, we define ↝i,j = {(s − (i−1), t − (i−1)) ∣ (s, t) ∈
↝∩{i, . . . , j}× {i, . . . , j}}, for some i, j ∈ {1, . . . , `}, i < j. Finally, we define:

[[(θ,↝)]] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ(θ)1
if ∣θ∣ = 1

ρ(θ)1
○ [[((θ)2...∣θ∣,↝2,∣θ∣)]] if ∣θ∣ > 1, 1↝ j for no j

CaRet jθ ○ [[((θ)j+1...∣θ∣,↝j+1,∣θ∣)]] if ∣θ∣ > 1, 1↝ j for some j

where, in the last case, which corresponds to call transition t ∈ ∆i, we have
(θ)1 = (θ)j = τ and define CaRet jθ = (ρ⟨⟨τ ○ [[(θ)2...j−1,↝2,j−1)]] ○ ρτ⟩⟩) ∩ φτ .

Example 9. The semantics of the nested word θ = (τ1τ2τ1τ2τ4τ2τ3τ2τ3,{2↝ 8,4↝ 6})
is the relation defined by:

[[θ]] = ρτ1 ○ ((ρ⟨⟨τ2 ○ ρτ1 ○ ((ρ⟨⟨τ2 ○ ρτ4 ○ ρτ2⟩⟩) ∩ φτ2) ○ ρτ3 ○ ρτ2⟩⟩) ∩ φτ2) ○ ρτ3

One can verify that [[θ]] ≡ x = 2 ∧ z′ = 4, i.e. the result of calling P with
input valuation x = 2 is an output valuation z = 4. ∎

5.2 Underapproximating Summaries

In what follows we define under-approximations of context-free languages,
by filtering out derivations. The outcome is the definition of an under-
approximation sequence of the semantics [[P]] of a program P, called k-index
under-approximations, where k > 0 is an integer constant. Intuitively, each
iterate of the under-approximation sequence corresponds to the execution
of a recursive program, with unbounded stack usage, that proceeds along
those traces produced by the visibly pushdown grammar GP using at most
k nonterminals at each derivation step. In particular, we show that the
summary semantics of such a program can be inferred from the semantics
of a non-recursive program, obtained directly from the program P and the
constant k > 0 by a linear-time source-to-source program transformation.

First, we require several technical definitions. Given a grammar G =
⟨Ξ,Σ,∆⟩, two strings u, v ∈ (Σ ∪ Ξ)∗, a production (X,w) ∈ ∆ and 1 ≤
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j ≤ ∣u∣, we define a step u
(X,w)/j
ÔÔÔ⇒G v if, and only if, (u)j = X and v =

(u)1⋯(u)j−1 ⋅ w ⋅ (u)j+1⋯(u)∣u∣. We omit (X,w) or j above the arrow and
the subscript G when they are not important. Step sequences are defined
using the reflexive and transitive closure of the step relation Ô⇒G, denoted
Ô⇒∗

G. For instance, X Ô⇒∗
G w means there exists a sequence of steps that

produces the word w ∈ (Σ∪Ξ)∗, starting from X. We call any step sequence
vÔ⇒∗

G w a derivation whenever v ∈ Ξ and w ∈ Σ∗. The language produced by
G, starting with a nonterminal X is the set LX(G) = {w ∈ Σ∗ ∣X Ô⇒∗

G w}.

A control word is a sequence of productions γ1 . . . γn ∈ ∆∗. Given a
control word γ of length n we write u

γÔ⇒G v whenever there exist words

w0, . . . ,wn ∈ (Ξ ∪ Σ)∗ such that u = w0
γ1Ô⇒G w1 . . .wn−1

γnÔ⇒G wn = v. For a
nonterminal X ∈ Ξ and a set Γ ⊆ ∆∗ of control words, also referred to as a
control set, we denote by L̂X(Γ,G) = {w ∈ Σ∗ ∣ ∃γ ∈ Γ∶X γÔ⇒ w} the language
generated by G using only control words in Γ.

A step sequence (derivation) is said to be depth-first if it has the follow-
ing informal property: if X and Y are two nonterminals produced by the
application of one rule, then the steps corresponding to a full derivation of
the form X Ô⇒∗ u will be applied without interleaving with the steps cor-
responding to a derivation of the form Y Ô⇒∗ v. In other words, once the
derivation of X has started, it will be finished before the derivation of Y
begins. It is well-known that restricting the set of derivations of a grammar
to depth-first derivations only, does not change the produced language.

Example 10. Consider the grammar G = ⟨{X,Y,Z}, {a, b},∆⟩ where ∆ =
{X → Y Z, Y → aY ∣ ε, Z → Zb ∣ ε}. Then X

(X,Y Z)
ÔÔ⇒ Y Z

(Y,aY )
ÔÔ⇒ aY Z

(Z,Zb)
ÔÔ⇒

aY Zb
(Y,ε)
Ô⇒ aZb

(Z,ε)
Ô⇒ ab is not a depth-first derivation, whereas X

(X,Y Z)
ÔÔ⇒

Y Z
(Y,aY )
ÔÔ⇒ aY Z

(Y,ε)
Ô⇒ aZ

(Z,Zb)
ÔÔ⇒ aZb

(Z,ε)
Ô⇒ ab is a depth-first derivation. ∎

The central notion of this section are index-bounded derivations, i.e.
derivations in which each step has a limited budget of nonterminals. This
notion is the key to our under-approximation method. For a given integer
constant k > 0, a word u ∈ (Σ ∪Ξ)∗ is said to be of index k, if u contains at
most k occurrences of nonterminals. A step u⇒ v is said to be k-indexed,
denoted uÔ⇒

(k)
v, if and only if both u and v are of index k. As expected, a

depth-first step sequence is k-indexed if all its steps are k-indexed, denoted
uÔÔ⇒

df(k)
∗ v. For any nonterminal(s) X ∈ Ξ, Y ∈ Ξ ∪ {ε}, and k > 0, we define:

L(k)
X (G) = {w ∈ Σ∗ ∣X ÔÔ⇒

df(k)

∗ w} Γdf(k)
X,Y (G) = {γ ∈ ∆∗ ∣ ∃u, v ∈ Σ∗∶X

γ
ÔÔ⇒
df(k)

uY v}
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We write Γdf(k)
X (G) for Γdf(k)

X,ε (G) in the following.

Example 11. Inspecting the grammar GP for the program P in Figure 5.1
reveals that LQinit

1
(GP) = {(τ1⟨⟨τ2)n τ4 (τ2⟩⟩τ3)n ∣ n ∈ N}. For each value of n

we give a 2-index derivation capturing the word (τ1⟨⟨τ2)n τ4 (τ2⟩⟩τ3)n : repeat

n times the steps Qinit
1

pb1p
c
2Ô⇒ τ1⟨⟨τ2Q

init
1 τ2⟩⟩Q3

pa3Ô⇒ τ1⟨⟨τ2Q
init
1 τ2⟩⟩τ3 followed by

Qinit
1

pa4Ô⇒ τ4. Therefore the 2-index under-approximation of GP shows that
LQinit

1
(GP) = L(2)

Qinit
1

(GP). ∎

Given a grammar G and a nonterminal X, for any k > 0 we have
L(k)
X (G) ⊆ LX(G). The k-index under-approximation of the semantics of

a program P = ⟨P1, . . . , Pn⟩ is [[P ]](k) = ⟨[[P1]](k), . . . , [[Pn]](k)⟩, where:

[[Pi]](k) = ⋃
α∈L(k)

Qinit
i

(GP)
[[α]], for each i = 1, . . . , n .

It is not hard to prove that the summary [[P]] is the limit of the increasing
sequence of under-approximations [[P]](1) ⊆ [[P]](2) ⊆ . . . This sequence can
be seen as the Newton fixpoint iteration, defined by Esparza, Kieffer and
Luttenberger [EKL10], applied to programs with integer parameters, return
values, and local variables.

The under-approximation sequence {[[P]](k)}∞
k=1

is thus defined by filter-
ing out derivations of GP of index more than k. The remaining question is
how to compute the iterates of this sequence, given the grammar GP and
the constant k > 0. A first observation is that the relation [[α]] induced by
a tagged word α can be equivalently computed by looking at the control
word γ such that Qinit

i

γÔ⇒ α, for some procedure index i = 1, . . . , n. To avoid
cluttering the presentation, we do not give the details of the definition of
control word semantics here, and refer the reader to [GIK12, Section 3.3].

Second, the control set Γdf(k)
Qinit
i

(G) is the language of an effectively con-

structible finite automaton (Lemma 4). Hence each iterate [[P]](k) can be
thus computed by applying an intra-procedural analysis algorithm to the
procedure-less program obtained by annotating this automaton with ap-
propriate relations, given by the semantics of control words. For efficiency
reasons, we give a modular construction of the k-th iterate of the under-
approximation sequence, that uses the (k − 1)-th iterate, for all k > 1. That
is, the previously computed summaries are reused in the current iterate.

We are now ready to describe a source-to-source program transforma-
tion, from a recursive program to a non-recursive program, in which all
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computation traces correspond to words generated by index-bounded deriva-
tions of the visibly pushdown grammar associated with the original pro-
gram. Let P be a recursive program and GP = ⟨Ξ, Θ̂,∆⟩ be its associ-
ated pushdown grammar, where each non-final state q of P is associated
a nonterminal Q ∈ Ξ. Then, for a given constant K > 0, we define a non-
recursive program HK that captures only the traces of P corresponding to
K-index depth-first derivations of GP (Algorithm 3). Formally, we define
HK = ⟨query0, query1, . . . , queryK⟩, i.e. the program is structured in K + 1
procedures, such that:
- query0 consists of a single statement assume(false), i.e. no execution going

through a call of query0 is possible,
- each procedure queryk, with the exception of query0, issues calls only to

queryk−1, for all k > 1,
- all executions of queryk, for each 1 ≤ k ≤ K correspond to k-index depth-

first derivations of GP .
Each procedure queryk has five sets of local variables, all of the same cardi-
nality as x: two sets, named xI and xO, are used as input variables, whereas
the other three sets, named xJ ,xK and xL are used locally by queryk. Be-
sides, each queryk has local variables called PC, τ , y, z and input variable
X. There are no output variables in queryk.

First, the procedure queryk matches the current production rule to be
simulated. To this end, we distinguish between productions of type (a)
Q Ð→ τ , (b) Q Ð→ τQ′ and (c) Q Ð→ ⟨⟨τ,Qinitj τ⟩⟩ Q′ (see Example 7) of the

visibly pushdown grammar GP . Since Ξ and Θ̂ are finite sets, we associate
each nonterminal Q ∈ Ξ an index IQ ∈ {1, . . . ,∥Ξ∥}, each symbol τ ∈ Θ̂ an
index Iτ ∈ {1, . . . ,∥Θ̂∥}, and identify the productions of GP by the formulae:

πa(x, y) ≡ ⋁(QÐ→τ)∈∆ x = IQ ∧ y = Iτ
πb(x, y, z) ≡ ⋁(QÐ→τQ′)∈∆ x = IQ ∧ y = Iτ ∧ z = IQ′

πc(x, y, z, t, s) ≡ ⋁(QÐ→⟨⟨τQinit
j τ⟩⟩Q′)∈∆ x = IQ ∧ y = I⟨⟨τ ∧ z = IQinit

j
∧ t = Iτ⟩⟩ ∧ s = IQ′

If the current production is of type (a) (Q Ð→ τ), the relation ρτ(xI ,xO)
must be checked before returning to the caller (queryk+1). For productions
of type (b) (QÐ→ τQ′), the relation ρτ(xI ,xJ) is checked, before passing the
values of xJ to xI and moving on to the next production, that consumes the
nonterminal Q′. The case of productions of type (c) (Q Ð→ ⟨⟨τ,Qinitj τ⟩⟩ Q′)
is slightly more involved. The working variables xJ , xK and xL are used
to check the call ρ⟨⟨τ(xI ,xJ), return ρτ⟩⟩(xK ,xL) and frame φτ(xI ,xL) rela-

tions. Then the nondeterministic execution of queryk chooses between the
(i) in-order execution, i.e. the derivation of Qinitj before Q′, corresponding to
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the program label asgnkc , and (ii) out-of-order execution, i.e. the derivation
of Q′ before Qinitj , corresponding to the program label swapk.

Formally, each interprocedurally valid path of queryk, started with pa-
rameter X = Qinit

i , corresponds (modulo a language homomorphism) to a
control word from Γdf(k)

Qinit
i

(GP), labeling an index-bounded depth-first deriva-

tion of Qinit
i . For simplicity’s sake, we do not give the details of this proof

here, and refer the interested reader to [GIK12, Lemma 5].

Algorithm 3 proc queryk(X,xI ,xO) for 1 ≤ k ≤K
var xJ ,xK ,xL
var PC, τ,y, z
PC←X
startk: goto prodka or prodkb or prodkc
prodka: havoc(τ)
assume πa(PC, τ) ▷ rule of type (a): Q→ τ
asgnka: assume ρτ(xI ,xO)
return
prodkb : havoc(τ,y)
assume πb(PC, τ,y) ▷ rule of type (b): Q→ τ Q′

havoc(xJ)
assume ρτ(xI ,xJ)
xI ← xJ
asgnkb : PC← y
goto startk

prodkc : havoc(τ,y,z)
assume πc(PC, ⟨⟨τ,y, τ⟩⟩,z) ▷ rule of type (c): Q→⟨⟨τQinit

j τ⟩⟩Q′

havoc(xJ ,xK ,xL)
assume ρ⟨⟨τ(xI ,xJ) ▷ call relation
assume ρτ⟩⟩(xK ,xL) ▷ return relation
assume φτ(xI ,xL) ▷ frame relation
goto swapk or asgnkc
swapk: swap(y, z)
swap(xJ ,xL)
swap(xK ,xO)
asgnkc : xI ← xL
PC← z
queryk−1(y,xJ ,xK)
goto startk
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For example, let us consider the execution of the call query2(Qinit
1 , ( 1 0 ), ( 1 2 ))

following Qinit1

pb1p
b
2p
c
3Ô⇒ τ1τ2⟨τ3Qinit1 τ3⟩Q4

pa4Ô⇒ τ1τ2⟨τ3Qinit1 τ3⟩τ4
pb1p

b
5p
b
6p
a
7Ô⇒ τ1τ2⟨τ3τ1τ5τ6τ7τ3⟩τ4.

In the table below, the first row (labelled PC) gives the value of local vari-
able PC when control hits the labelled statement given at the second row
(labelled ip). The third row (labelled xI/xO) represents the content of the
two arrays. xI/xO = ( a b )( c d ) says that, in xI , x has value a and z has
value b; in xO, x has value c and z has value d.

PC Qinit
1 − Q2 − Q3 − −

ip start2 prod2
b (pb1) start2 prod2

b (pb2) start2 prod2
c (pc3) swap2

xI/xO ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 )
PC Q4 − Qinit

1 − Q2 − Q5

ip start1 prod1
a (pa4) start2 prod2

b (pb1) start2 prod2
b (pb5) start2

xI/xO ( 1 0 )( 1 2 ) ( 1 0 )( 1 2 ) ( 0 0 )( 42 0 ) ( 0 0 )( 42 0 ) ( 0 0 )( 42 0 ) ( 0 0 )( 42 0 ) ( 0 0 )( 42 0 )
PC − Q6 −
ip prod2

b (pb6) start2 prod2
a (pa7)

xI/xO ( 0 0 )( 42 0 ) ( 0 0 )( 42 0 ) ( 0 0 )( 42 0 )

The execution of query2(Qinit
1 , ( 1 0 ), ( 1 2 )) starts on row 1, column 1 and

proceeds until the call to query1(Q4, ( 1 0 ), ( 1 2 )) at row 2, column 1 (the
out of order case). The latter ends at row 2, column 2, where the execution
of query2(Qinit

1 , ( 1 0 ), ( 1 2 )) resumes. Since the execution is out of order,
and the previous havoc(xJ ,xK ,xL) results into xJ = ( 0 0 ), xK = ( 42 0 )
and xL = ( 1 0 ) (this choice complies with the call relation), the values of
xI/xO are updated to ( 0 0 )/( 42 0 ). The choice for equal values (0) of z in
both xI and x0 is checked in row 3, column 3.

The following theorem summarizes the result of this section, namely that
any K-index under-approximation of the semantics of a recursive program
P can be computed by looking at the semantics of a non-recursive program
HK , obtained from P by a syntactic source-to-source transformation. For a
valuation ν ∈ Zx and a set of variables y ⊂ x, we denote by ν↓y the restriction
of ν to the variables in y.

Theorem 15. Let P = ⟨P1, . . . , Pn⟩ be a program, x = x1 ⋅ . . . ⋅ xn be the
tuple of variables in P, and let q ∈ nF(Pi) be a non-final control state of
Pi = ⟨xi,xini ,xouti , Si, q

init
i , Fi,∆i⟩. Moreover, let HK = ⟨query0, . . . , queryK⟩

be the program defined by Algorithm 3. For any 1 ≤ k ≤K, we have:

[[P]](k)q = {⟨(Ĩ↓xI [x/xI])↓xi , (Ĩ↓xO[x/xO])↓xi⟩ ∣ Ĩ ⋅Õ ∈ [[HK]]queryk , Ĩ(X) = Q} .

Proof. See [GIK12, Theorem 1].
Reducing the computation of a program summary [[P]] to that of com-

puting a sequence of under-approximations {[[P]](k)}∞
k=1

, that are defined
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by a sequence of non-recursive programs {[[Hk]]}∞
k=1

does not yet solve the

problem of computing each iterate [[P]](k). In general, the summary of a
non-recursive integer program is not expressible in a decidable fragment of
arithmetic, due to the undecidability of the reachability problem for counter
machines [Min67]. In the next section we identify a non-trivial case in
which this computation is possible and, moreover, the under-approximation
sequence is bound to stabilize after a number of iterations that is linear in
the size (number of states) of P.

5.3 Interprocedural Reachability Problems

In this section, we define a restriction of recursive integer programs, for
which the k-index under-approximation sequence converges, and, moreover,
computing each iterate of this sequence reduces to computing the set of
reachable configurations of a flat counter machine (Chapter 4). We restrict
the class of input programs by considering that all updates to the integer
variables x are defined by octagonal constraints (Definition 4) and that ev-
ery execution of the program belongs to the language of a given regular
expression w∗

1 . . .w
∗
d , where the wi’s are finite sequences of program state-

ments. These (not necessarily regular) sets are called bounded languages by
Ginsburg and Spanier [GS64].

The reachability problem for this class of recursive programs is called
flat-octagonal reachability (fo-reachability, for short) in the following. Con-
cretely, given: a program P with procedures and local/global variables,
whose statements are specified by octagonal constraints, and a bounded ex-
pression b = w∗

1 . . .w
∗
d , where wi’s are sequences of statements of P, the

fo-reachability problem REACHfo(P,b) asks: can P run to completion by
executing a sequence of program statements w ∈ b ? Studying the complex-
ity of this problem provides the theoretical foundations for implementing
efficient decision procedures, of practical interest in areas of software veri-
fication, such as bug-finding [EG11], or counterexample-guided abstraction
refinement [KLW13, HIK+12].

The main idea is that, when considering only execution traces of P that
belong to the language of b, the set of control words producing these traces
can be captured by a bounded control set Γb = γ∗1 . . . γ∗e , where the γi’s are
sequences of productions of GP . The control set Γb is thus the language of
a flat finite automaton. By labeling the transitions of this automaton with
octagonal relations (as in Algorithm 3) we obtain a flat counter machine
with octagonal cycles. In the rest of this section, we show that the flat finite
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automaton recognizing Γb can be built in time ∣GP ∣O(k), where ∣GP ∣ is the
size (number of productions) of GP and k is the maximal index among the
derivations induced by Γb. Since, in general, it is the case that L(GP) ∩
b = L(k)(GP) ∩ b for k = O(∣GP ∣) [Luk78], the size of the flat automaton
recognizing Γb is simply exponential. As shown earlier (Theorem 10) the
reachability problem can be solved in Nptime in the size of this automaton,
hence in Nexptime in the size of the recursive program. The Np-hardness
follows from Theorem 10, considering an instance of the reachability problem
for a non-recursive program.

5.3.1 Regular k-Index Depth-first Control Sets

It is known that the set Γdf(k)
X (G) of k-index depth-first derivations of a

grammar G, with axiom X, is recognizable by a finite automaton [Luk80,
Lemma 5]. Below we give a formal definition of this automaton, that will be
used to produce bounded control sets for covering the language of G. Given
k > 0 and a grammar G = ⟨Ξ,Σ,∆⟩, we define a labeled graph Adf(k)

G such
that its paths defines the set of k-index depth-first step sequences of G. This
representation of a k-index depth-first control set is a crucial ingredient in
the decidability proof for the fo-reachability problem, which is given in the
next section.

For a d-dimensional vector v ∈ Nd, we write (v)i for its i-th element
(1 ≤ i ≤ d). A vector v ∈ Nd is said to be contiguous if {(v)1, . . . , (v)d} =
{0, . . . , k}, for some k ≥ 0. Given an alphabet Σ define the ranked alphabet
ΣN to be the set {σ⟨i⟩ ∣ σ ∈ Σ, i ∈ N}. A ranked word is a word over a
ranked alphabet. Given a word w of length n and an n-dimensional vector
α ∈ Nn, the ranked word wα is the sequence (w)1

⟨(α)1⟩ . . . (w)n⟨(α)n⟩, in
which the i-th element of α annotates the i-th symbol of w. We also denote
w⟨⟨c⟩⟩ = (w)1

⟨c⟩ . . . (w)∣w∣
⟨c⟩ as a shorthand. Let Adf(k)

G = ⟨Q,∆,→⟩ be the
following labeled graph, where:

Q = {wα ∣ w ∈ Ξ∗, ∣w∣ ≤ k,α ∈ N∣w∣ is contiguous, (α)1 ≤ ⋯ ≤ (α)∣w∣}
is the set of vertices, the edges are labeled by the set ∆ of productions of
G, and the edge relation is defined next. For all vertices q, q′ ∈ Q and labels

(X,w) ∈ ∆, we have q
(X,w)ÐÐÐ→ q′ if and only if:

- q = uX⟨i⟩ v for some u, v, where i is the maximum rank in q, and

- q′ = uv (w↓Ξ)⟨⟨i
′⟩⟩, where ∣uv (w↓Ξ)⟨⟨i

′⟩⟩∣ ≤ k and i′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if uv = ε
i else if (uv)↓Ξ⟨i⟩ = ε
i + 1 else
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Below we show the automaton Adf(2)
GP

corresponding to the visibly pushdown
grammar GP that models the program P in Figure 5.1:

pa4
Qinit

1
⟨0⟩
Q

⟨0⟩
3

pb1

pc2p3

pb1

ε

pa4

X
⟨0⟩
3 X

⟨1⟩
2 Q

⟨0⟩
3 Qinit

1
⟨1⟩

Q
⟨0⟩
2Qinit

1
⟨0⟩

pb1
X

⟨0⟩
3pa3

Q
⟨0⟩
3 Q

⟨1⟩
3

We denote by ∣Adf(k)
G ∣ =∥Q∥ the size (number of vertices) of Adf(k)

G and
omit the subscript G, when the grammar is clear from the context. The size
of a grammar G = ⟨Ξ,Σ,∆⟩ is defined as ∣G∣ = ∑(X,w)∈∆(∣w∣ + 1).

Lemma 4. Given G = ⟨Ξ,Σ,∆⟩, and k > 0, for each X ∈ Ξ, Y ∈ Ξ∪{ε} and
γ ∈ ∆∗, we have γ ∈ Γdf(k)

X,Y (G) if and only if X⟨0⟩ γÐ→ Y ⟨0⟩ is a path in Adf(k)
G .

Moreover, we have ∣Adf(k)
G ∣ ≤ ∣G∣2k.

Proof. See [GI15a, Lemma 1].

5.3.2 A Decision Procedure for FO-reachability Problems

Let GP = ⟨Ξ, Θ̂,∆⟩ be the visibly pushdown grammar that describes the
program P, Q ∈ Ξ be the nonterminal corresponding to the initial state
of P, and let b = w∗

1 . . .w
∗
d be a bounded expression, where w1, . . . ,wd ∈

Θ̂∗. The general fo-reachability problem REACHfo(P,b) is equivalent to
the question ⋃α∈LQ(GP)∩b [[α]] = ∅. In addition, we define a k-index fo-

reachability problem REACH(k)
fo (P,b) as: ⋃

α∈L(k)
Q (GP)∩b [[α]] = ∅. In this

section we provide an algorithm that solves both problems, and provide
complexity upper bounds. These bounds are tight for REACH(k)

fo (P,b),
when k is a constant, not part of the input.

First, we compute, in time polynomial in the sizes of P and b, a grammar
G∩ = ⟨Ξ∩, Θ̂,∆∩⟩, such that LQ(GP) = ⋃`i=1LXi(G∩), for some nonterminals
X1, . . . ,X` ∈ Ξ∩. The grammar G∩ is an automata-theoretic product be-
tween the grammar G and the bounded expression b. To avoid clutter, we
defer the formal definition of G∩ to the technical report [GI15b] and explain
the construction by means of the example below.

Example 12. Let us consider the bounded expression b = (ac)∗ (ab)∗ (db)∗.

Consider the grammar Gb with the following productions: q
(1)
1 → aq

(1)
2 ∣ ε,

q
(2)
1 → aq

(2)
2 ∣ ε, q

(3)
1 → dq

(3)
2 ∣ ε, q

(1)
2 → cq

(1)
1 ∣ cq

(2)
1 ∣ cq

(3)
1 , q

(2)
2 →

bq
(2)
1 ∣ bq

(3)
1 , q

(3)
2 → bq

(3)
1 . It is easy to check that b = ⋃3

i=1Lq
(i)
1

(Gb). Let
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G = ⟨{X,Y,Z,T},{a, b, c, d},∆⟩ where ∆ = {X → aY, Y → Zb, Z → cT, Z →
ε, T → Xd}, i.e. we have LX(G) = {(ac)n ab (db)n ∣ n ∈ N}. The following
productions define a grammar G∩:

[q(j)1 Xq
(3)
1 ] p1→ a [q(j)2 Y q

(3)
1 ] [q(1)2 Y q

(3)
1 ] p2→ [q(1)2 Zq

(3)
2 ] b

[q(1)2 Zq
(3)
2 ] p3→ c [q(j)1 Tq

(3)
2 ] [q(2)2 Zq

(2)
2 ] p4→ ε

[q(j)1 Tq
(3)
2 ] p5→ [q(j)1 Xq

(3)
1 ]d, j = 1,2 [q(2)1 Xq

(3)
1 ] p6→ a [q(2)2 Y q

(3)
1 ]

[q(2)2 Y q
(3)
1 ] p7→ [q(2)2 Zq

(2)
2 ] b

One checks LX(G) = LX(G) ∩ b = L[q(1)
1 Xq

(3)
1 ](G

∩) ∪L[q(2)
1 Xq

(3)
1 ](G

∩). ∎

A bounded expression b = w∗
1 . . .w

∗
d over alphabet Σ is said to be d-

letter-bounded (or simply letter-bounded, when d is not important) when
∣wi∣ = 1, for all i = 1, . . . , d. A letter-bounded expression b̃ is strict if all
its symbols are distinct. A language L ⊆ Σ∗ is (strict, letter-) bounded iff
L ⊆ b, for some (strict, letter-) bounded expression b.

Second, we reduce the problem from b = w∗
1 . . .w

∗
d to the strict letter-

bounded case b̃ = a∗1 . . . a∗d, by building a grammar G&, with the same non-
terminals as G∩, such that, for each Xi ∈ Ξ∩, we have:

1. LXi(G&) ⊆ b̃,

2. wi11 . . .w
id
d ∈ L(k)

Xi
(G∩) iff ai11 . . . a

id
d ∈ L(k)

Xi
(G&), for all k > 0

3. from each control set Γ̃ such that L
(k)
Xi

(G& ⊆ L̂Xi(Γ̃,G&), we compute,

in polynomial time, a control set Γ such that L
(k)
Xi

(G∩) ⊆ L̂Xi(Γ,G∩).

Example 13 (continued from Example 12). Let A = {a1, a2, a3}, b̃ = a∗1a∗2a∗3
and h∶A → Σ∗ be the homomorphism given by h(a1) = ac, h(a2) = ab and
h(a3) = db. The grammar G& results from deleting a’s and d’s in G∩ and
replacing b in p2 by a3, b in p7 by a2 and c by a1. Then, it is easy to check that
h−1(LX(G)) ∩ b̃ = L[q(1)

1 Xq
(3)
1 ](G

&) ∪L[q(2)
1 Xq

(3)
1 ](G

&) = {an1 a2 a
n
3 ∣ n ∈ N}. ∎

Third, for the strict letter-bounded grammar G&, we compute a control
set Γ̃ ⊆ (∆&)∗ using the result of the theorem below:

Theorem 16. For a grammar G = ⟨Ξ,A,∆⟩, and X ∈ Ξ, such that LX(G) ⊆
b̃, where b̃ is the strict d-letter bounded expression for LX(G), for each
k > 0, there exists a finite set of bounded expressions Sb̃ over ∆ such that

L
(k)
X (G) ⊆ L̂X(⋃Sb̃ ∩Γ

df(k+1)
X ,G). Moreover, Sb̃ can be constructed in time

∣G∣O(k)+d and each Γ̃ ∈ Sb̃ can be constructed in time ∣G∣O(k).

Proof. See [GI15a, Theorem 3].
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The main ingredient of the proof is a decomposition2 of a k-index depth-
first derivation with control word γ into a (k + 1)-index depth-first deriva-
tion, consisting of a prefix γ♯ producing a word in a∗1 a

∗
d and a production

(Xi,w) followed by two control words γ′ and γ′′ that produce words con-
tained within two bounded expressions a∗` . . . a

∗
m and a∗m . . . a

∗
r , respectively,

where max(m − `, r −m) < d − 1. This reduces the problem of computing a
bounded control set for b̃ = a∗1 . . . a∗d to the constant case d = 2, for which we

prove that the control set can be computed in time ∣G∣O(k).
The time needed to build a representation of each control set Γi,j is

of the order of ∣G∣O(∣G∣) = 2O(∣G∣ log ∣G∣). To decide the fo-reachability prob-
lem REACHfo(P,b), a nondeterministic algorithm first chooses such a con-
trol set Γi,j , then decides the ReachFlat(OCT) problem for the flat CM
obtained by labeling the finite automaton recognizing Γi,j with octagonal
constraints, as described in Section 5.2. The fo-reachability problem for this
CM is decidable in Nptime in the size of the CM, thus REACHfo(P,b) is in
NExptime. The restricted k-index fo-reachability problem REACH(k)

fo (P,b)
becomes Np-complete, when k is constant.

Theorem 17. Let P be an octagonal program, GP = ⟨Ξ, Σ̂,∆⟩ be its corre-
sponding visibly pushdown grammar and b = w∗

1 . . .w
∗
d be a bounded expres-

sion, where w1, . . . ,wd ∈ Σ̂∗. Then the problem REACHfo(P,b) is decidable
in NExptime with an Np-hard lower bound, and REACH(k)

fo (P,b) is Np-
complete if k > 0 is a constant.

Proof. See [GI15b, Theorem 2].

5.4 Discussion and Open Problems

The under-approximation method described in this chapter can be seen as
a generalization of the acceleration technique to recursive integer programs.
Moreover, the completeness result based on the restriction of the set of in-
terprocedurally valid execution traces to a bounded language is nothing but
the generalization of the flatness restriction from Chapter 4 to the recursive
case. The main open problem is, currently, closing the gap between the
Nexptime and Np bounds for the reachability problem for bounded pro-
grams with octagonal constraints. Another, equally interesting, problem is
considering other classes of relations, such as affine relations with the finite
monoid condition [Boi99, FL02b].

2Inspired by a decomposition given by Ginsburg [Gin66, Chapter 5.3, Lemma 5.3.3].



Chapter 6

Program Verification

In this chapter we describe several applications of counter machines to pro-
gram verification. We consider programs that manipulate higher-order data
structures such as lists, trees and arrays, by developing verification methods
targeted to the particular data types.

First, we distinguish programs with dynamically allocated data struc-
tures and low-level pointer manipulations from programs with statically de-
clared arrays. Within the former class, we consider programs with singly-
linked lists, that are independent of the data stored in the list cells, and
reduce their verification problems (safety and termination) to equivalent
(reachability and termination) problems on counter machines. The idea of
this reduction is that the set of reachable memory configurations can be
captured by a finite-range abstraction (a finite number of shape graphs).
This translation allows to use available tools for the verification of counter
machines to deal with programs with dynamic memory and, moreover, to
derive several decidability results for the verification of programs with lists.

Second, we consider programs with dynamically allocated tree-shaped
data structures. In this case, the set of reachable memory configurations
can be over-approximated by a tree automaton [BHRV06]. The main limi-
tation of using tree automata is that they cannot capture sets of balanced
trees (Avl and Red-Black search trees), that are widely used within pro-
grams such as operating system kernels and databases. We tackle this prob-
lem by defining a new class of tree automata, called tree automata with size
constraints (TASC) which are closed under boolean operations (union, inter-
section and complement) and whose emptiness problem is decidable. Based
on this novel class of tree automata, we develop a Hoare-style deductive
verification approach, based on a strongest post-condition calculus.

89
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Finally, we consider programs handling array structures that store in-
teger values. Reasoning about this class of programs requires expressive
logics that allow to encode universal properties of unbounded array seg-
ments. Our focus here is on defining such logics that have nice algorithmic
properties, such as decidability of entailments. We describe two such log-
ics, called singly-indexed logic (SIL) and logic of integer arrays (LIA), whose
decidability is established by reduction to the reachability problems of flat
counter machines with octagonal constraints (Chapter 4).

Let us start by coining a few notions formally. For a partial function
f ∶ A⇀ B, and � ∉ B, we denote by f(x) = � the fact that f is undefined at
some point x ∈ A. The domain of f is denoted dom(f) = {x ∈ A ∣ f(x) ≠ �}.
By f ∶ A⇀fin B, we denote any partial function whose domain is finite.

We consider Var = {u, v,w, . . .} and Loc = {`,m,n, . . .} to be countably
infinite sets of program variables and memory locations, respectively. Let
nil ∈ Var be a designated variable, null ∈ Loc be a designated location and
Sel = {1, . . . , k} be a finite set of natural numbers, called selectors.

Definition 9. A state is a pair ⟨s, h⟩ where s ∶ Var ⇀fin Loc is a partial
function mapping program variables into locations such that s(nil) = null, and
h ∶ Loc ⇀fin Sel ⇀fin Loc is a finite partial function such that null /∈ dom(h)
and for all ` ∈ dom(h) there exists i ∈ Sel such that (h(`))(i) ≠ �.

For a state ⟨s, h⟩, s is called the store and h the heap. We write `
iÐ→ `′

instead of (h(`))(i) = `′ and call this a selector edge of the state ⟨s, h⟩.
We distinguish heaps based on the number of selectors, which is deter-

mined by the type of the data structure used. If ∥Sel∥= 1, i.e. each location
has at most one outgoing selector edge, the heap consists of singly-linked
lists only, possibly with sharing and circularities. Otherwise, if ∥Sel∥> 1 and

there is no sharing (no two edges `1
k1Ð→ ` and `2

k2Ð→ `), the heap consists of
trees only. Finally, if ∥Sel∥> 1 and sharing is allowed, we are in the general
case of unrestricted graph structures.

6.1 Programs with Lists

In this section, we define a model for imperative programs manipulating
dynamic singly-linked list data structures. We assume that lists are im-
plemented using data types with one selector, typically called next, as it is
the case in most common imperative programming languages. We consider
programs without function calls and concurrency constructs, therefore all
variables are assumed to be global. In addition to the list data structures,
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the programs we consider can have integer variables. Simple examples of
such programs include list reversion, list insertion, sorting procedures, pro-
grams counting the elements in a list, etc.

The abstract syntax of the programs considered is given in Figure 6.1 (a).
We use Lab to denote a finite set of program labels (control locations), Var
to denote a finite set of pointer variables, and IVar to represent a finite set
of integer variables (counters). Pointers can be used in assignments such as
u ∶= nil, u ∶= w, and u ∶= w.next; selector updates u.next ∶= w and u.next ∶= nil;
and new cell creation u ∶= new. Counters can be incremented i ∶= i + 1, decre-
mented i ∶= i − 1, and reset i ∶= 0. The control structure is composed of iter-
ation (while) statements and conditional (if-then-else) statements. The
guards of the control statements are pointer equality u = w and u = nil, zero
tests for counters i = 0, and boolean combinations of the above. An example
of a simple program from the considered class is the list reversal program in
Figure 6.1 (b).

` ∈ Lab
u, v ∈ Var
i ∈ IVar

Prog ∶= {` ∶ Stm;}∗
Stm ∶= While ∣ IfElse ∣ Asgn

While ∶= while Guard do {Stm;}∗ od

IfElse ∶= if Guard then {Stm;}∗ [else {Stm;}∗] fi
Asgn ∶= u ∶= nil ∣ u ∶= new ∣ u ∶= v ∣ u ∶= v.next ∣

u.next ∶= nil ∣u.next ∶= v ∣ i ∶= 0 ∣ i ∶= i ± 1
Guard ∶= u = v ∣ u = nil ∣ i = 0 ∣ ¬Guard ∣ Guard ∧Guard

(a)

1: while u ≠ nil do
2: w ∶= u.next;
3: u.next ∶= v;
4: v ∶= u;
5: u ∶= w;
6: do

(b)

Figure 6.1: Abstract syntax of programs with lists

The semantics of a program is described as a stepwise transformation of
a state (Definition 9). To keep the presentation succint, we do not give the
rules of the operational semantics here and point the reader to [BBH+11,
Section 2.2] for a formal definition thereof.

Given a state ⟨s, h⟩, a cut point is a location ` ∈ Loc such that either

(i) there exist two distinct locations `1, `2 ∈ Loc such that `1
nextÐ→ ` and

`2
nextÐ→ `, or (ii) there exists a variable u ∈ Var such that s(u) = `. This notion

induces an equivalence relation on locations, defined as follows. Let ∼ be
the reflexive, symmetric and transitive closure of the relation ◁ ⊆ Loc×Loc,
where `◁ `′ iff `

nextÐ→ `′ and `′ is not a cut point. For a location `, we denote
by [`] its equivalence class with respect to ∼ (also called a list segment) and
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define the quotient state ⟨s/∼, h/∼⟩ as follows:

- for all u ∈ Var, we have s/∼(u) = [`] if s(u) = `,
- for all `, ` ∈ Loc, we have [`] nextÐ→ [`′] if there exist `0 ∈ [`] and `′0 ∈ [`′]

such that `0
nextÐ→ `′0 and `′0 is a cut point of the state ⟨s, h⟩.

For technical convenience, we assume that each location in the domain of the
heap is reachable, via a set of edges, from a program variable, i.e. the heap
does not contain garbage nodes. We are now ready to define a finite-range
abstraction of states:

Definition 10. A symbolic shape graph (SSG) is a directed graph S =
⟨N,E,V ⟩, where N is a set of vertices, E ∶ N ⇀fin N is a successor mapping
and V ∶ Var ⇀fin N is a variable mapping.

In analogy with concrete states (Definition 9), we say that a vertex v ∈ N of
an SSG S = ⟨N,E,V ⟩ is a cut point if (i) there exist two distinct vertices
n1, n2 ∈ N such that E(n1) = E(n2) = n, or (ii) there exist a variable u ∈ Var
such that V (u) = n. An SSG is in normal form if each vertex is a cut point
and it is reachable from a variable. The main idea is that the number of
SSGs in normal form is finite:

Lemma 5. If ⟨N,E,V ⟩ is an SSG in normal form, then ∥N∥≤ 2 ∥dom(V )∥.
Moreover, for a given constant n > 0, the number of SSGs in normal form
such that ∥dom(V )∥≤ n is of the order of 2Θ(n logn).

Proof. See [BBH+11, Lemma 1].

A SSG ⟨N,E,V ⟩ is an abstraction of a state ⟨s, h⟩ if there exists a bijec-
tion β ∶ dom(h/∼) ∪ {�} → N ∪ {�} such that β(�) = � and:

- for all ` ∈ Loc, we have E(β([`])) = β(h/∼([`])), and
- for all u ∈ Var, we have V (u) = β(s/∼(u)).
In other words, each list segment is mapped into a vertex of the SSG and
this mapping is an isomorphism between the quotient state and the SSG.
This abstraction comes, however, with loss of information. Namely, we lose
track of the number of locations in each list segment of the concrete state.

To recover this information, we associate an integer counter with each
vertex and build, for each program written using the syntax from Figure 6.1
(a), a counter machine whose semantics is in bisimulation with the concrete
semantics of the program. This entails a strong preservation of temporal
logic properties. In particular, safety and termination are strongly preserved
by the resulting counter machine, meaning that one can prove (disprove)
safety and termination properties of such programs based on the behavior
of their counter machines, obtained by the following translation.
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Consider a program with lists that uses a subset V ⊆ Var of pointer
variables, such that ∥V∥= K, and N integer variables i1, . . . , iN ∈ IVar. We
build a counter machine M = ⟨x,Q, ι, F,∆⟩, where:

- x contains a variable xn for each vertex n ∈ N of an SSG S = ⟨N,E,V ⟩ in
normal form, such that dom(V ) ⊆ V and, moreover, i1, . . . , iN ∈ x,

- Q is the set of pairs ⟨`, S⟩, where ` ∈ Lab is a label of the program and
S = ⟨N,E,V ⟩ is an SSG in normal form such that dom(V ) ⊆ V,

- ι = ⟨`0, S0⟩ where `0 is the initial label of the program and S0 is the SSG
representing the set of initial states,

- F is the set of pairs ⟨`f , S⟩, where `f is a final label of the program,
- ∆ is defined by several rules (see [BBH+11, Section 4.1] for a complete

formalization). Given a state q = ⟨`, S⟩ the set of successor states q′ =
⟨`′, S′⟩ is defined based on the type of the current program statement at `
and the structure of S. Due to the rather large number of possible cases,
we chose not to give the formal description here and rely on the following
example to illustrate the principle.

x > 0

x = 1

x′ = 1

x = 1

y′ = 1

x′ = x − 1

y′ = 1

x > 1

x′ = x − 1

z′ = 1

x > 1

z′ = 1

y′ = y + z

` = 3

` = 6

` = 4

` = 5

x

u

x

u

x

u, v

x

v

xy

u w

u w

xy

xy

v u,w

v u

y x

v u

y x

y xz

v u w

y z x

v u w

w

y x

u, v

x′ = 1

x′ = x + y

x

u

` = 1

x

u

` = 2

Figure 6.2: Non-circular list reversal

Example 14. Figure 6.2 shows the counter automaton obtained from the
list reversal program from Figure 6.1 (b), started with a non-circular list
pointed to by u as its input. The counter variable corresponding to each
abstract node is depicted inside the node itself. Variables pointing to null are
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omitted. For each label of the program the corresponding control states are
those reached after the execution of the statement at that label. ∎

The first statement (while u ≠ nil) enters the main cycle if the number
of nodes in the list segment pointed to by u is greater than 0 (x > 0). The
assignment w ∶= u.next at line 2 causes a case split based on the size of this
list segment. If x = 1 (the left branch in Figure 6.2) w is assigned to null
and we do not represent it in the shape graph in line 2 (left). Otherwise,
if x > 1, this assignment causes a split of the list segment pointed to by u
into two parts: one pointed to by u, of size y = 1 and the rest, pointed to
by w, of size x− 1 (line 3). The assignment v ∶= u on line 4 merges two list
segments, pointed to by u and v, respectively, in case the two list segments
are in the successor relation, according to the SSG (line 4, 3rd column). In
this case, we also add their sizes (x′ = x + y). The rest of the transitions of
the counter machine can be understood among the same lines. The main
property of this transformation is given by the next theorem:

Theorem 18 ([BBH+06, BBH+11]). The semantics of a list program is in
bisimulation with the semantics of its corresponding counter machine.

Proof. See [BBH+11, Theorem 2].
As a direct consequence, a safety (reachability) or termination property of
a program with singly-linked lists can be decided on the counter machine
obtained using this transformation, using available tools for reachability
and termination of counter machines. Observe, however, that the result-
ing counter machine is not flat, even when the input program is flat, as
shown by Example 14. The problem is caused by the assignment statements
u ∶= v.next that cause the control of the counter machine to branch, ac-
cording to whether the counter of the list segment pointed to by v is one
or greater than one. In the next section we tackle this problem by intro-
ducing a different translation scheme, for a restriction of list programs, that
preserves the flatness of the control structure thereof.

6.1.1 Undecidability Results

We focus next on establishing a boundary between decidability and undecid-
ability for several classes of decision problems concerning programs working
on singly-linked lists. We consider essentially safety properties, specified by
inserting assertions assert(Guard) in the text of the program and termi-
nation, i.e. the absence of infinite computations. Moreover, we consider flat
programs, whose control structure does not contain nested while cycles and
if-then-else statements inside while cycles, and restrict the set of program
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statements, by prohibiting destructive updates, namely the statements of the
form u ∶= new, u.next ∶= v and u.next ∶= nil. Observe that these programs can
traverse the input structure, by moving several iterator variables down the
lists, but cannot change the structure itself.

Surprisingly, even with these restrictions, safety and termination prop-
erties remain undecidable for programs with lists. The source of the unde-
cidability is the complexity of the input heap structure. We show that, as
soon as the input structure contains more than one cycle. The next section
shows that safety and termination become decidable, if the input heap is re-
stricted to having at most one cycle, which establishes a sharp decidability
boundary for this class of programs.

The undecidability results are by reduction from the satisfiability prob-
lem for the quantifier-free fragment of the theory ⟨N,+, lcm⟩, where lcm(x, y)
denotes the least common multiple of x and y. This fragment is unde-
cidable, as a consequence of the undecidability of Hilbert’s Tenth Prob-
lem [Mat70] and the following encoding of multiplication using addition
and the least common multiple: x2 = y ⇔ y + x = lcm(x,x + 1) and
x ⋅ y = z ⇔ 2z + x2 + y2 = (x + y)2. Since this reduction does not intro-
duce quantifiers, any quantifier-free formula of ⟨N,+, ⋅⟩ can be translated
into a quantifier-free formula of ⟨N,+, lcm⟩, possibly by introducing addi-
tional variables. Observe moreover that the validity problem ∀x . φ(x) is
also undecidable, when φ is a quantifier-free formula of ⟨N,+, lcm⟩, because
this problem is equivalent to the satisfiability of ¬φ(x).

Definition 11. A parametric shape graph (PSG) is a directed graph S =
⟨x,N,E,V,X⟩, where ⟨N,E,V ⟩ is a symbolic shape graph, x is a set of
integer variables and X ∶ N → x is a one-to-one mapping of vertices with
integer variables.

Given a PSG S = ⟨x,N,E,V,X⟩ and a valuation ν ∶ x ↦ N+, we denote by
[[S]]ν the state obtained by replacing each vertex v ∈ N with a list segment
of length ν(X(v)). Moreover, we define [[S]] = {[[S]]ν ∣ ν ∶ x↦ N+}.

For any quantifier-free formula φ(x) in the theory ⟨N,+, lcm⟩, we build
a flat program with lists Pφ and a parametric shape graph Sφ such that
∀x . φ(x) holds if and only if Pφ, started on any state ⟨s, h⟩ ∈ [[Sφ]], does
not violate any of its assertions and terminates. The reduction uses the
gadgets from Figure 6.3, as we explain next.

First, notice that the gadget programs Px=y, Px+y=z and Pz=lcm(x,y) ter-
minate. In particular, when Pϕ terminates and Cϕ holds, then it must be
the case that the formula ϕ(x, y, z) holds as well.
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ϕ Pϕ Cϕ Sϕ

x = y

1: i := u;

2: j := w;

3: while i ≠ null ∧ j ≠ null do

4: i := i.next;

5: j := j.next;

6: od

i = null
∧

j = null

u

y
v

x

x + y = z

1: i := u;

2: j := w;

3: while i ≠ null ∧ j ≠ null do

4: i := i.next;

5: j := j.next;

6: od;

i = null
∧

j = null
w

x y

z

u v

z = lcm(x, y)

1: i := u.next;

2: j := v.next;

3: k := w.next;

4: while (i ≠ u ∨ j ≠ v)

∧ k ≠ null do

5: i := i.next;

6: j := j.next;

7: k := k.next;

8: od;

k = null
∧

i = u
∧
j = v

v

x

z

u

w

y

Figure 6.3: Gadgets for proving undecidability

We assume w.l.o.g. that the formula φ(x) is given in conjunctive normal
form and we check the validity of each of its clauses. Let ⋁ni=1ψi(x) be such
a clause, i.e. a disjunction of atomic propositions of the form x = y, x+y = z
or z = lcm(x, y), or their negations. Moreover, we consider a separate PSG
Sψi as in Figure 6.3. The program checking the validity of the clause is the
following:

Pψ1 ; if C¬ψ1 then Pψ2 ;
if C¬ψ2 then Pψ3 ;

...
assert(false);
...

fi
fi

where, for all 1 ≤ i ≤ n we have:

- if ψi is a positive literal, Pψi and Cψi are as in Figure 6.3,
- if ψi is a negative literal, Pψi is P¬ψi and Cψi is ¬C¬ψi .
Moreover, the program has to test that all list segments encoding occur-
rences of the same variable are of the same length. This can be done in
the beginning, using a sequence of flat programs of the same kind as Px=y,
and is skipped for brevity reasons. It is not hard to see that the assertion
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assert(false) is reached if and only if the clause ⋁ni=1ψi is not valid.

To show undecidability of the termination problem, we use the same
reduction, with the only difference that the assert(false) statement is
replaced by a non-terminating loop while(true) do...od. The program
then terminates if and only if the clause ⋁ni=1ψi is valid.

Observe that the least common multiple relation has been encoded using
an input heap with at least two separate cycles. The above considerations
lead to the following theorem:

Theorem 19 ([BI07]). The safety and termination problems for flat list
programs without destructive updates, running on input heaps with more
than one cycle are undecidable.

Proof. See [BI07, Theorem 2].

6.1.2 Decidability Results

Assuming that the input heap of the program has at most one cycle, we show
that the safety and termination problems become decidable, by reduction
to the reachability and termination problems of a class of counter machines,
with deterministic affine transitions and guards defined by L1

div formulae
(Chapter 3). The translation scheme used to produce these counter machines
is different from the one described previously, in that it preserves the flatness
of the control structure.

The idea of the encoding is to fix a set of root variables, call them
r1, . . . , rp, that are not changed by the program, such that every node in
the input PSG is reachable from at least one root variable. The rest of
the variables in the program, called iterators, are denoted as u1, . . . ,ur. At
each step during the execution of the program, the position of an iterator
ui is uniquely determined by a root variable rj and the distance (number of
successor edges) from rj to ui. This distance is kept in a counter variable yi.
The resulting counter machine is M = ⟨y,Q, ι, F,∆⟩, where:

- y = {y1, . . . , yr}, where yj is the counter associated with the iterator uj ,
- Q = Lab × {r1, . . . , rp,�}r, each state is a tuple ⟨`, ri1 , . . . , rir⟩, where rij is

the current root of the iterator uj , or � is uj is null,
- ι = ⟨`0, ri01 , . . . , ri0r⟩, `0 is the initial label and ri0j

is the initial root of uj ,

- F = {`f1 , . . . , `
f
k} × {r1, . . . , rp,�}r, where `f1 , . . . , `

f
k are the final labels,

- ∆ is the set of rules ⟨`, ri1 , . . . , rir⟩
ϕ(y,y′)ÐÐÐ→ ⟨`′, ri′1 , . . . , ri′r⟩ corresponding to

program statements, as follows:
– uj ∶= nil yields ϕ ≡ y′j = 0 ∧ Idj , ri′j = � and i′k = ik for all k ≠ j,
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– uj ∶= uh yields ϕ ≡ y′j = yh ∧ Idj , i
′
j = ih and i′k = ik for all k ≠ j,

– ui ∶= uh.next yields ϕ ≡ y′j = yh+1∧ Idj , i
′
j = ih and i′k = ik for all k ≠ j.

where Idj ≡ ⋀k≠j y′k = yk.

x4

ri rj

x1 x2

x3

ui = uj

(a)

ri rj

x1 x2

x3

ui = uj

(b)

Figure 6.4: Iterator equalities

A guard (a boolean combination of propositions of the form ui = nil or
ui = uj) has a more complex encoding, due to the fact that the position on
an iterator in the heap can be represented in several ways. Let us consider
the more interesting case ui = uj , depicted in Figure 6.4, where V (ui) =
V (uj) = n0 ∈ N is the node pointed to by both ui and uj in the current PSG
S = ⟨x,N,E,V,X⟩. Let ri and rj denote the roots of ui and uj , respectively.
We distinguish the following cases:

1. n0 does not belong to a cycle. In this case there are unique paths πi ∶
V (ri) = ni1, ni2, . . . , niki = V (ui) = n0 and πj ∶ V (rj) = nj1, n

j
2, . . . , n

j
kj

=
V (uj) = n0 in S. The equality ui = uj can be encoded as:

yi − ( ∑
n∈πi

X(n)) = yj − ( ∑
n∈πj

X(n)) .

For instance, the condition ui = uj in the PSG from Figure 6.4 (a)
translates to xi − x1 = xj − x2.

2. n0 belongs to the only cycle in S, call this γ, and let πi and πj be the
paths from ri and rj to a designated common vertex on γ. In this case,
the condition ui = uj is encoded as:

(∑
n∈γ

X(n)) ∣ ((yi − ∑
n∈πi

X(n)) − (yj − ∑
n∈πj

X(n))) .

For instance, in Figure 6.4 (b) we obtain (x3 + x4) ∣ (yi − x1) − (yj −
x2). Observe, moreover, that, since γ is the only cycle in S, and the
structure of S does not change during the program execution, all terms
to the left of the divisibility sign are the same, for all guards.

The resulting counter machine will thus have transition rules labeled by
formulae of the form: ψ(x,y)∧x′ = x∧y′ = Ay+b where ψ is a formula of the
L1

div fragment of integer arithmetic, A ∈ {0,1}r×r is an affine transformation
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matrix whose set of powers is finite (A meets the finite monoid condition
[Boi99]) and b ∈ Zr is an integer vector. Using acceleration, it can be proved
that reachability and termination are decidable for this class of automata, by
reduction to the validity problem for the L1

div fragment (Chapter 3, Section
3.1), leading to the following result:

Theorem 20 ([BI07]). The safety and termination problems for flat list
programs without destructive updates, running on input heaps with at most
one cycle are decidable.
Proof. See [BI07, Corollary 3].

6.2 Programs with Trees

In this section we consider programs with tree-shaped data structures, in
which a heap cell may have several outgoing edges (usually, we consider two
edges, called left and right) and each node is reachable by exactly one path
from a unique root node. A typical example of a tree structure widely used
in practice are Red-black trees, in which (i) every node is colored either
red or black, (ii) the root and all leaves are black, (iii) if a node is red, both
its children are black, and (iv) each path from the root to a leaf contains
the same number of black nodes. An example is given in Figure 6.5 (a).

nil nil nil nil

nil nil

nil nil8

10

18

15 19

27

5

y

x

x

y

α β

γ α

β γ
RightRotate(T,y)

LeftRotate(T’,x)

(a) (b)

T: T’:

Figure 6.5: (a) Red-black tree, (b) left and right rotations

The main operations on balanced trees (and hence also Red-black
trees) are searching, insertion, and deletion. When implementing the last
two operations, one has to make sure that the trees remain balanced. This
is usually done using tree rotations, cf. Figure 6.5 (b), which can change
the number of black nodes on a given path and requires re-balancing. If we
consider rotations as a primitive program statement (instead of the low-level
pointer manipulations used to implement rotations) every heap configura-
tion can be represented by a tree, thus tree automata [CDG+05] are the
natural way to encode infinite sets thereof.
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Let us first introduce trees and tree automata formally. Let N∗ be the
set of sequences of positive integers. We denote by ε the empty sequence and
by p.q the concatenation of two sequences p, q ∈ N∗. We say that q is a prefix
of p, denoted q ⪯ p if p = q.r, for some sequence r ∈ N∗. A prefix-closed set
S has the property that, for all p ∈ S, q ⪯ p implies q ∈ S. A ranked alphabet
is a countable set of symbols Σ with an associated arity function #(σ) ≥ 0,
for all σ ∈ Σ. A tree is a finite partial function t ∶ N∗ ⇀fin Σ, whose domain,
denoted dom(t), is a finite prefix-closed subset of N∗. For each position
p ∈ dom(t), a position p.i ∈ dom(t) is called a child of p, for some i ∈ N. Let
Fr(t) = {p ∈ dom(t) ∣ ∀i ∈ N . p.i /∈ dom(t)} be the set of leaves (frontier) of
the tree t. The subtree of t starting at position p ∈ dom(t) is the tree t∣p
defined as t∣p(q) = t(p.q) if and only if p.q ∈ dom(t).

A (finite, nondeterministic, bottom-up) tree automaton (TA) [CDG+05]
is a tuple A = ⟨Q,Σ,∆, F ⟩, where Σ is a finite ranked alphabet, Q is a
finite set of states, F ⊆ Q is a set of final states and ∆ is a set of transition
rules of the form σ(q1, . . . , qn) → q, for some σ ∈ Σ such that #(σ) = n,
and q, q1, . . . , qn ∈ Q. The TA is deterministic if, for each σ ∈ Σ such that
#(σ) = n, and each q1, . . . , qn ∈ Q, there exists at most one rule in ∆ with left
hand side σ(q1, . . . , qn). A run of A over a tree t ∶ N∗ ⇀fin Σ is a function
π ∶ dom(t) → Q such that, for each node p ∈ dom(t), we have q = π(p)
only if qi = π(p.i) for all i = 0, . . . ,#(t(p)) − 1, and there exists a rule

t(p)(q0, . . . , q#(t(p))−1) → q ∈ ∆. We write t
πÔ⇒A q to denote that π is a run

of A over t such that π(ε) = q, and omit π and A when they are clear from the
context. The language of a state q of A is defined as Lq(A) = {t ∣ tÔ⇒A q},
and the language of A is defined as L(A) = ⋃q∈F Lq(A).

The main limitation of classical tree automata is that they cannot rec-
ognize sets of trees that are defined by arithmetic constraints involving the
lengths of all their paths, such as the balancing constraint from the defini-
tion of Red-black trees: all paths have the same number of black nodes.
To cope with this limitation, we introduce a new class of tree automata,
called tree automata with size constraints (TASC) [HIV10] and study their
boolean closure properties and their decision problems. These tree automata
are capable of recognizing balanced trees and can be, moreover, used to de-
fine the successor set of a set of TASC-recognizable trees. In this thesis we
focus on the former aspects and refer the reader to [HIV10], for a definition
of strongest post-conditions using TASC.

Definition 12. A size function associates every tree t ∶ N∗ ⇀fin Σ with an
integer ∣t∣, defined inductively on the structure of the tree. For each f ∈ Σ,
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if #(f) = 0, then ∣f ∣ is a constant, otherwise, for #(f) = n > 0, we have:

∣f(t1, . . . , tn)∣ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

b1∣t1∣ + c1 if ⊧ δ1(∣t1∣, . . . , ∣tn∣)
. . .

bn∣tn∣ + cn if ⊧ δn(∣t1∣, . . . , ∣tn∣)

where b1, . . . , bn ∈ {0,1}, c1, . . . , cn ∈ Z, and δ1(x1, . . . , xn), . . . , δn(x1, . . . , xn)
are difference bounds constraints defining a partition of Nn, depending on f .

A sized alphabet is a ranked alphabet equipped with a size function.

Example 15. Let Σ = {red,black,null} be a ranked alphabet, with #(red) =
#(black) = 2 and #(null) = 0. We define the size function to be the maxi-
mal number of black nodes from the root to a leaf: ∣null∣ = 1, ∣red(t1, t2)∣ =
max(∣t1∣, ∣t2∣) and ∣black(t1, t2)∣ = max(∣t1∣, ∣t2∣) + 1. ∎

A tree automaton with size constraints (TASC) over a sized alphabet
(Σ, ∣.∣) is a tuple A = ⟨Q,Σ,∆, F ⟩ where Q is a finite set of states, F ⊆ Q
is a designated set of final states, and ∆ is a set of transition rules of the

form f(q1, . . . , qn)
ϕ(∣1∣,...,∣n∣)ÐÐÐÐÐ→ q where f ∈ Σ, #(f) = n, and ϕ(x1, . . . , xn) is

difference bounds constraint. For constant symbols a ∈ Σ, #(a) = 0, the
automaton has unconstrained rules of the form aÐ→ q.

A run of A over a tree t ∶ N∗ ⇀fin Σ is a mapping π ∶ dom(t) ⇀fin Q,
labeling each position of t by a state. Formally, for each position p ∈ dom(t),
such that q = π(p), we have:

• if #(t(p)) = n > 0 and qi = π(p.i), for all 1 ≤ i ≤ n, then ∆ has a rule

t(p)(q1, . . . , qn)
ϕ(∣1∣,...,∣n∣)ÐÐÐÐÐ→ q and ⊧ ϕ(∣t∣p.1∣, . . . , ∣t∣p.n∣),

• otherwise, if #(t(p)) = 0, then ∆ has a rule t(p) Ð→ q.

A run π is said to be accepting if π(ε) ∈ F . The language of A, denoted as
L(A) is the set of all trees over which A has an accepting run.

Example 16. (contd. from Example 15) A TASC recognizing the set of
balanced red-black trees is Arb = ⟨{qb, qr},Σ,∆,{qb}⟩, where:

∆ = {nullÐ→ qb,black(qb/r, qb/r)
∣1∣=∣2∣ÐÐ→ qb, red(qb, qb)

∣1∣=∣2∣ÐÐ→ qr} .

By writing qx/y within the left-hand side of a transition rule, we mean the
set of rules in which either qx or qy take the place of qx/y. ∎
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6.2.1 Closure Properties

We prove first that TASC are closed under determinization and the boolean
operations of union, intersection and complement. The decidability of their
emptiness problem is the subject of the next section.

A TASC is said to be deterministic (complete) if it has at most (at least)
one run for every input tree. For a given TASC A, we define a deterministic
and complete TASC Ad such that L(Ad) = L(A), by a generalisation of
the classical subset construction for tree automata [CDG+05]. Given A =
⟨Q,Σ,∆, F ⟩, we define Ad = ⟨2Q,Σ,∆d,{S ⊆ Q ∣ S ∩ F ≠ ∅}⟩, where for each

symbol f ∈ Σ such that #(f) = n > 0, we have f(S1, . . . , Sn)
φÐ→ S ∈ ∆d iff:

S ⊆ {q ∣ f(q1, . . . , qn)
ψÐ→ q ∈ ∆, q1 ∈ S1, . . . , qn ∈ Sn} and

ψ ≡ ⋀{ψ ∣ f(q1, . . . , qn)
ψÐ→ q ∈ ∆, q1 ∈ S1, . . . , qn ∈ Sn, q ∈ S} ∧

⋀{¬ψ ∣ f(q1, . . . , qn)
ψÐ→ q ∈ ∆, q1 ∈ S1, . . . , qn ∈ Sn, q /∈ S} .

Observe that the constraints labeling the rules of Ad are difference bounds
constraints as well, because difference bounds constraints are closed under
conjunctions and negation can be eliminated. For constant symbols #(f) =
0, we have f Ð→ S ∈ ∆d iff S = {q ∣ f Ð→ q ∈ ∆}.

Lemma 6. For any given TASC A, Ad is deterministic and complete and,
moreover, L(Ad) = L(A).

Proof. See [HIV10, Theorem 1].
The complement of a TASC A = ⟨Q,Σ,∆, F ⟩ is A = ⟨Qd,Σ,∆d,Qd ∖ F d⟩,

where Ad = ⟨Qd,Σ,∆d, F d⟩ is the deterministic and complete TASC obtained
by applying the above construction to A. For two TASC A1 = ⟨Q1,Σ,∆1, F1⟩
and A2 = ⟨Q2,Σ,∆, F2⟩, with disjoint sets of states, i.e. Q1∩Q2 = ∅, we define
their union as A1 ∪ A2 = ⟨Q1 ∪Q2,Σ,∆1 ∪∆2, F1 ∪ F2⟩. Consequently, the

intersection can be defined as A1 ∩A2 = A1 ∪A2.

6.2.2 Decision Problems

In this section we prove that the emptiness problem is decidable for TASC.
Since TASC are closed under the boolean operations of complement, union
and intersection, it follows that the universality and the inclusion problems
are also decidable for TASC.

We show that all runs of a TASC are in a one-to-one correspondence
to the accepting runs of an effectively constructed Alternating Pushdown
System (APDS), whose emptiness problem is decidable [BEM97]. Namely,
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it is shown that, given a regular set of configurations C, the set pre∗S(C) of
predecessors w.r.t. the semantics of S is effectively regular, i.e. recognized
by an alternating automaton that can be built in polynomial time in the
size of S and exponential time in the size of the automaton recognizing C.

Given a TASC, we translate it into an APDS whose stack encodes the
value of one integer counter, denoted by y from now on. An APDS is a
tuple S = ⟨Q,Γ, δ, F ⟩ where Q is a finite set of control locations, Γ is a finite
stack alphabet, F ⊆ Q is a set of final control locations, and δ is a mapping
from Q×Γ into P(P(Q×Γ∗)). Notice that an APDS does not have an input
alphabet since we are interested in the behaviors it generates, rather than in
the accepted language. A run of an APDS is a tree t ∶ N∗ ⇀fin (Q×Γ∗), such
that, for any p ∈ dom(t), if t(p) = ⟨q, γw⟩, then {t(p.i) ∣ 1 ≤ i ≤ #(t(p))} =
{⟨q1,w1w⟩, . . . , ⟨qn,wnw⟩}, where {⟨q1,w1⟩, . . . , ⟨qn,wn⟩} ∈ δ(q, γ). The run
is accepting if all control locations occurring on its frontier are final.

For a TASC A = ⟨Q,Σ,∆, F ⟩, let SA = ⟨QA,Γ, δA, FA⟩ be the APDS
where QA = Q × Σ ∪ Π, Γ = {−,0,1}, and FA = {qf} ⊂ Π. Here, Π is an
additional set of states that are needed in the construction of SA from A
and that are not of the form ⟨q, f⟩. We use 0 as the bottom of the stack
marker, − on top of the stack denotes a negative value, and 1 is used for the
unary encoding of the absolute value of the counter. We represent an integer
value n ∈ Z using the unary encoding (n)1 = 1n0 if n ≥ 0 and (n)1 = −1−n0 if
n < 0. The primitive operations on the counter y, i.e. increment, decrement,
and zero test, are encoded by the moves given below. For example, if the
value of y in a control state q is −2, a transition that increments y and
moves into q′ is simulated by the sequence of moves: ⟨q,−110⟩ ↝ ⟨q−,110⟩ ↝
⟨q′−,10⟩ ↝ ⟨q′,−10⟩, where (−2)1 = −110 and (−1)1 = −10.

q
y′=y+1ÐÐÐÐÐ→ q′ q

y′=y−1ÐÐÐÐÐ→ q′ q
y=0ÐÐ→ q′

⟨q,1⟩ ↪ ⟨q′,11⟩
⟨q,0⟩ ↪ ⟨q′,10⟩
⟨q,−⟩ ↪ ⟨q−, ε⟩
⟨q−,1⟩ ↪ ⟨q′−, ε⟩
⟨q′−,1⟩ ↪ ⟨q′,−1⟩
⟨q′−,0⟩ ↪ ⟨q′,0⟩

⟨q,1⟩ ↪ ⟨q′, ε⟩
⟨q,0⟩ ↪ ⟨q′,−10⟩
⟨q,−⟩ ↪ ⟨q′,−1⟩

⟨q,0⟩ ↪ ⟨q′,0⟩

We shall encode a move of A as a series of moves of SA. As A moves
bottom-up on the tree, SA will perform a series of alternating top-down
transitions, simulating the move of A in reverse. The stack (counter) of SA
is intended to encode the value of the size function ∣.∣ at the current tree node.
Suppose that A has a transition rule f(q1, . . . , qn)

ϕÐ→ q and that the current
node is of the form f(t1, . . . , tn) with ∣f(t1, . . . , tn)∣ = br ∣tr ∣ + cr, and δr is the
disjunctive condition such that ⊧ δr(∣t1∣, . . . , ∣tn∣) (Definition 12). W.l.o.g.,
we consider that ϕ and δr have the same set of free variables, denoted
x1, . . . , xn. In what follows, we consider the case br = 1, i.e., ∣f(t1, . . . , tn)∣ =
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∣tr ∣ + cr. The case br = 0 can be treated in a similar way, by guessing the
value ∣tr ∣. The position r is called the reference position of the subtree
f(t1, . . . , tn). The value ∣tr ∣ is called the reference value of f(t1, . . . , tn).

Without losing generality, we consider that the difference bounds con-
straint formula ϕ ∧ δr is written as a finite disjunction of difference bounds
constraints of the form [HIV10, Lemma 4]:

n−1

⋀
k=1

xI(k) − xI(k+1) ◇k dk ∧ ⋀
m∈M⊆{1,...,n}

xm ≤ em ∧ ⋀
p∈P⊆{1,...,n}

xp ≥ `p

where ◇k ∈ {≤,=}, dk, em, `p ∈ Z are constants, and I is a permutation of
{1, . . . , n}. For the rest of this section, let us fix one such disjunct.

After each sequence of universal moves, SA creates n copies of its counter
y, let us name them y1, . . . , yn. Each counter yi holds the value ∣tI(i)∣ for
1 ≤ i ≤ n, and the counter y holds the value ∣f(t1, . . . , tn)∣. Let ir = I−1(r)
be the index of the counter yir that holds the reference value of the given
transition, i.e., y = yir + cr. With this notation, Figure 6.6 (a) shows the
alternating moves of SA that simulate the A-transition considered, for one
disjunct of ϕ ∧ δr. Figure 6.6 (b) shows the moves for transitions aÐ→ q.

(c)

yir−1

y = 0

. . .
yir

y′ = y − 1

. . .

. . .

⟨qI(ir+1), fI(ir+1), (yir+1)1⟩

ν1

(a)

. . .

. . .

ν2

ν3

y′ = y − 1

y′ = y + 1

. . .

y′ = y − sgn(∣a∣)

(b)

⟨q,a, (y)1⟩

⟨q,f, (ym)1⟩

y′ = y + 1

⟨qI(ir−1), fI(ir−1), (yir−1)1⟩

y′ = y − sgn(cr)

yir+1

⟨q,f, (y)1⟩

y′ = y − sgn(em)

. . .

. . .

y = 0

y′ = y + 1

y′ = y + sgn(dir−1)

y′ = y − sgn(dir+1)

⟨qr,fr, (yir )1⟩

Figure 6.6: Simulation of a TASC by an APDS

Filled circles in Figure 6.6 represent states from Q×Σ, and empty circles
are additional states from Π. The only accepting state of SA, named qf , is
marked by a double circle. The notation sgn(.) denotes the sign function,
i.e. sgn(n) = 1 if n > 0, sgn(0) = 0, and sgn(n) = −1 if n < 0. Next,
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ν1, ν2, . . . are symbolic names for the universal moves performed by SA. The
configurations of SA from Q × Σ × Γ∗ are labeled by triples of the form
⟨q, f, (y)1⟩, where (y)1 denotes the unary encoding of the value of the y
counter. Moreover, for simplicity, configurations from Π × Γ∗ are label-led
only with (y)1 in Figure 6.6.

When simulating the A-transition f(q1, . . . , qn)
ϕÐ→ q, SA starts with the

configuration ⟨q, f, (y)1⟩ (cf. Figure 6.6 (a)). In order to derive the reference
value yir from y, SA performs abs(cr) decrement or increment actions, de-
pending on whether the sign of cr is positive or negative. Then SA performs
the universal move ν1 making three copies of itself (unless ir = 1 when the
upper branch is omitted and/or ir = n when the lower branch is omitted).
The middle branch simply moves to the appropriate control state ⟨qr, fr⟩
with stack (yir)1. The upper and lower branches are used to produce the
values yir−1 and yir+1, if needed.

The upper branch of the universal move ν1 depicted in Figure 6.6 de-
pends on ◇r ∈ {≤,=}. If ◇r is =, then SA performs a sequence of incre-
ment/decrement operations of length dir−1 in order to obtain the value yir−1

from yir (since yir−1 = yir + dir−1). If ◇r is ≤, then there is an additional
existential (nondeterministic) transition—depicted using a dotted arrow in
Figure 6.6 (a)—which decrements the counter an arbitrary number of times
in order to obtain a smaller value (since yir−1 ≤ yir + dir−1).

In order to simulate moves of the form aÐ→ q (Figure 6.6 (b)), SA simply
decrements/increments the counter, depending on the sign of ∣a∣, a number
of times equal to the absolute value of ∣a∣. The condition y = 0 ensures
that SA accepts only with the empty stack. The universal dotted branch in
Figure 6.6 (c) is used to test that ym ≤ em for some 1 ≤ m ≤ n. A similar
test for yp ≥ lp can be issued by replacing y′ = y + 1 with y′ = y − 1 on the
cycle. The following theorem states the result of this section:

Theorem 21. The emptiness, universality and inclusion problems are de-
cidable for TASC.
Proof. For the emptiness problem, see [HIV10, Theorem 2]. The other
decidability results are consequences of the fact that TASC are closed under
complement and intersection.

The decidability of the emptiness problem for TASC can also be proved
via a reduction to the class of tree automata with one memory (TAOM)
[CC05] by encoding the size of a tree as a unary term. The inequality
constraints from the guards of the TASC can be simulated analogously by
adding increment/decrement self loops to the tree automata with one mem-
ory. Both the emptiness problems for APDS and TAOM are shown to belong
to DExptime. It is currently an open problem whether the same complexity
bound applies to TASC.
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6.3 Logics of Integer Arrays

In this section we shift the focus from programs with dynamic memory
and recursively defined data structures and concentrate on programs with
statically declared arrays. Arrays are important, mostly for safety-critical
embedded control software, for which the standards forbid the use of point-
ers and dynamic memory allocation, thus all program data must be con-
tained within static arrays. Another application are parametric systems
[APR+01, BJS07] consisting of N replicated processes running concurrently.
Here one uses arrays of size N to represent the local data of each process.
The properties typically expressed about arrays in a program involve uni-
versally quantified index variables, such as, e.g.:

- the array a is sorted: ∀i . a[i + 1] ≥ a[i],
- all elements of a are bigger than all elements of b: ∀i∀j . a[i] ≥ b[j],
- all elements of a on even positions are positive: ∀i . i ≡2 0→ a[i] > 0.

In general, we consider boolean combinations of formulae of the form ∀i . γ(i) →
υ(a, i), where γ(i) is a guard defining a constraint over the universally quan-
tified index variables i and υ(a, i) is a value expression that defines a con-
straint over array read terms a[i + n], where n is an integer constant.

Without specific syntactic restrictions, a logic of such expressive power
is shown to be undecidable, by encoding the history of computations of a 2-
counter machine [Min67] as models of an array formula. From this reduction,
one can derive two restrictions leading to decidability. The first restriction,
considered by Bradley, Manna, and Sipma [BMS06], forbids using a[i] and
a[i + 1] in the same value expression. The second restriction, considered in
the following, allows only conjunctive array expressions, allowing to reason
about consecutive arrays elements a[i] and a[i + 1], which appears to be
important in program verification.

We define two novel logics, called Singly-Indexed Logic (SIL) [HIV08a]
and Logic of Integer Arrays (LIA) [HIV08b], for which we proved the de-
cidability of their satisfiability problems by reduction to the reachability
problem for flat counter machines with octagonal constraints (Chapter 4).
Essentially, in SIL we consider array properties ∀i . γ(i) → υ(a, i) with only
one universally quantified index variable, whereas in LIA we lift this restric-
tion and consider any number of universally quantified index variables.

The advantage of the single index restriction (SIL) is that the flat counter
machines produced are deterministic, thus the translation can be defined
compositionally, by induction on the boolean structure of the formula. If we
lift this restriction (LIA), eliminating negations of array properties requires
an expensive normalization step, that avoids the complementation of the
produced counter machines.
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6.3.1 A Singly-Indexed Logic

We consider three disjoint sets of variables, namely bound variables BVar,
index variables IVar and array variables AVar. The bound variables are used
to define intervals in which some universal property is required to hold. The
index variables are the only variables that may occur under the scope of a
universal quantifier, as in ∃`∃u . ` < u ∧ ∀i . ` ≤ i ≤ u → a[i] = 0, where
`, u ∈ BVar, i ∈ IVar and a ∈ AVar. The abstract syntax of the logic SIL is
given below:

i ∈ IVar index variables
a, b ∈ AVar array variables
∼ ∈ {≤,≥}

B ∶= n ∈ Z ∣ ` ∈ BVar ∣ ∣a∣ ∣ B ±B bound terms
A ∶= a[i + d] array reads (d ∈ {0,1})
G ∶= ⊺ ∣ i ∼ B ∣ i ≡s t ∣ G ∧G ∣ G ∨G guard expressions (0 ≤ t < s)
V ∶= A ∼ B ∣ A ±A ∼ n ∣ i ±A ∼ n ∣ V ∧ V value expressions
C ∶= B ∼ n ∣ B ≡s t bound constraints (0 ≤ t < s)
P ∶= ∀i . G→ V array properties
F ∶= P ∣ C ∣ ¬F ∣ F ∧ F ∣ F ∨ F formulae

Observe that, a value expression is a comparison between (i) array read
terms a[i + d] (within a window d ∈ {0,1}) and bound terms, (ii) two array
read terms, or (iii) an array read term and an index variable. Allowing
comparisons between more than two terms and/or disjunctions within value
expressions would lead to undecidability, by allowing to encode histories of
2-counter machines within the arrays [Min67].

We use ∣a∣ for the length of the array a and define, for a value expression
υ, the sanity condition B(υ), ensuring that no out-of-bounds reads occur:

B(a[i + d] ∼ B) ≡ 0 ≤ i + d < ∣a∣ B(i ± a[i + d] ∼ n) ≡ 0 ≤ i + d < ∣a∣
B(a[i + d] ± b[i + e] ∼ n) ≡ 0 ≤ i + d < ∣a∣ ∧ 0 ≤ i + e < ∣b∣

B(υ1 ∧ υ2) ≡ B(υ1) ∧ B(υ2)

The semantics of the SIL logic is given in terms of a forcing relation ι, µ ⊧ φ,
where ι ∶ BVar ∪ IVar ⇀ Z is a partial interpretation of bound and index
variables and µ ∶ AVar → Z∗ associates each array variable a finite sequence
of integers. Then the interpretation [[t]]ι,µ of a term t is defined inductively,
where, in particular, we have [[∣a∣]]ι,µ = ∣µ(a)∣ is the length and [[a[i+d]]]ι,µ =
µ(a)ι(i)+d is the (ι(i) + d)-th element of the sequence µ(a). The semantics
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of an array property is defined as:

ι, µ ⊧ ∀i . γ → υ iff for all n ∈ Z: ι[i← n], µ ⊧ γ ∧ B(υ) ⇒ ι[i← n], µ ⊧ υ .

A pair (ι, µ) such that ι, µ ⊧ ϕ is a model of ϕ. The satisfiability problem
asks, given ϕ, for the existence of a model.

We address the satisfiability problem for the logic SIL using a composi-
tional translation of formulae into counter machines. In fact, we show that
the set of array valuations µ ∶ AVar → Z∗ that are models of a SIL formula
corresponds to the accepting runs of a deterministic flat counter machine,
with octagonal constraints, defined by induction on the structure of the for-
mula. Since the reachability problem for these counter machines is decidable
(as proved in Chapter 4), we can infer that the satisfiability problem of the
SIL logic is also decidable.

A counter machine M = ⟨x,Q, ι, F,∆⟩ is deterministic if for every two

transition rules q
φ1Ð→ q1 and q

φ2Ð→ q2, we have φ1∧φ2 → �. The trace language
L(M) of a counter machine is the set of all finite sequences of counter
valuations ν1, . . . , νk ∈ (Zk)∗ for which there exists a sequence of transition

rules ι
φ1Ð→ q1

φ2Ð→ . . .
φkÐ→ qk+1 such that qk+1 ∈ F and (νi, νi+1) ⊧ φi, for all 1 ≤

i ≤ k. It is easy to prove that a deterministic counter machine has exactly one
run for a given finite sequence of counter valuations ν1, ν2, . . . , νk ∈ L(M).
Moreover, the class of deterministic flat counter machines with octagonal
relations is closed under the boolean operations of union, intersection and
complement, with respect to their trace languages [HIV08a, Lemmas 1, 2].

Let φ(k,a) be a SIL formula with free variables k ⊆ BVar and a ⊆ AVar.
The counter machine Mφ will have the set x of counters:

- for each k ∈ k and each a ∈ a, we have parameters xk and x∣a∣, whose values
remain unchanged during the execution of Mφ,

- for each a ∈ a, we have a counter xa whose value, at step i during the
execution of Mφ is a[i],

- τ is a special counter, initially 0, incremented by each transition of Mφ,
indicating the current position in the arrays.

Mφ is the intersection Mτ ∩Mφ, where Mτ = ⟨x,{q0, qτ},{q0},{qτ},→τ ⟩ and:

q0

τ=0∧τ ′=τ+1∧⋀k∈k x
′
k=xk∧⋀a∈a x

′
∣a∣=x∣a∣ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ qτ

qτ
τ ′=τ+1∧⋀k∈k x

′
k=xk∧⋀a∈a x

′
∣a∣=x∣a∣ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→ qτ

are the only transition rules of Mτ . The definition of Mφ is by induction
on the structure of φ:
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• M¬φ =Mφ, where L(Mφ) = (Zx)∗ ∖ L(Mφ),
• Mφ1∧φ2 =Mφ1 ∩Mφ2 , where L(Mφ1 ∩Mφ2) = L(Mφ1) ∩ L(Mφ2),
• Mφ1∨φ2 =Mφ1 ∪Mφ2 , where L(Mφ1 ∪Mφ2) = L(Mφ1) ∪ L(Mφ2),
• if φ is a bound constraint (generated by the abstract syntax with

axiom C) then Mφ = ⟨x,Q, q0,{q1},→⟩, with transition rules q0
φÐ→ q1

and q1
⊺Ð→ q1, where φ is obtained from φ, by replacing all occurrences

of k ∈ k by xk and all occurrences of ∣a∣, a ∈ a by x∣a∣,
• if φ is the array property ∀i . f ≤ i ≤ g∧ i ≡s t→ υ, Mφ is shown below:

rs−1

>

rs−2 r2

r1

r0q0
qf

qs−2 q2

qs−1 q1

τ < f − 1

f ≤ τ ≤ g ∧ υ

τ > g

τ = f − 1

rtrt+1

⊺

f ≤ τ ≤ g

The terms f , g and υ are obtained from f , g and υ by replacing all
occurrences of k ∈ k by xk, all occurrences of ∣a∣, a ∈ a by x∣a∣, each occurrence
of i not inside an array read by τ and each occurrence of array reads a[i]
and a[i + 1] by xa and x′a, for all a ∈ a, respectively. The control structure
of Mφ keeps track of the current value of τ modulo s. Observe that the
counter machine is flat and deterministic, due to the treatment of τ within
the guards of the transitions. In the first cycle q0 Ð→ q1 Ð→ . . . Ð→ qs−1 Ð→ q0

the machine waits until the variable τ reaches the lower bound f − 1. Then
the control is transferred to the second cycle r0 Ð→ r1 Ð→ . . . Ð→ rs−1 Ð→ r0

that checks the value expression υ when τ ≡s t, on the transition rt Ð→ rt+1.
Finally, this cycle is left towards the final state qf , when τ > g. The following
theorem states the main result of this section:

Theorem 22. The satisfiability problem is decidable for the logic SIL.

Proof. See [HIV08a, Theorem 2].

6.3.2 A Logic of Integer Arrays

In the following, we lift the single-index restriction and consider the logic of
integer arrays (LIA), which is the set of quantifier-free boolean combinations
of array properties of the following form:

∀i∀j . `1 ≤ i ≤ u1∧`2 ≤ j ≤ u2∧i ≡s1 t1∧j ≡s2 t2∧m ≤ i−j ≤ n→ a[i]±b[j] ∼ p
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where `1, u1, `2, u2 ∈ Z∞ are the lower and upper bounds for i and j, re-
spectively and m,n ∈ Z∞ are the lower and upper bounds on the difference
between i and j. Observe that these array properties relate elements of a
and b situated at a distance which can be arbitrarily large.

Because of this issue, such array properties cannot be directly encoded
as counter machines checking the validity of a value expression at certain
moments during its computation. This limitation can be overcome by in-
troducing additional array variables, whose adjacent elements are related by
transitive inequality (≤), that capture the non-local constraints a[i]−b[j] ≤ p
by the transitive closure of a finite set of local constraints. For instance, for
the array property ∀i∀j . i ≤ j → a[i] − b[j] ≤ 5, the non-local constraint
a[0] − b[3] ≤ 5 is encoded as a[0] − t[0] ≤ 5 ∧ t[0] − t[1] ≤ 0 ∧ t[1] − t[2] ≤
0 ∧ t[2] − t[3] ≤ 0 ∧ t[3] − b[3] ≤ 0, where t is an additional array variable.
This step is best understood by looking at the constraint graphs defined by
the array property formulae, as in the example below:

0

`1 u1

a

b

t

5 5 5

u2`2

0 0 0
0

0
0 0

0 00

(a) ∀i∀j . `1 ≤ i ≤ u1 ∧ `2 ≤ j ≤ u2 ∧ i − j ≤
3 ∧ i ≡2 0 ∧ j ≡2 1→ a[i] − b[j] ≤ 5

0

`1

a
5 5

u1

t

b

`2 u2

0 0

0

0 0 0 0

(b) ∀i∀j . `1 ≤ i ≤ u1 ∧ `2 ≤ j ≤
u2 ∧ i ≡2 0 ∧ j ≡2 1 → a[i] − b[j] ≤ 5

Figure 6.7: Constraint graphs for array properties

However, introducing new array variables is not possible for the array
properties occurring under an odd number of negations, because this would
mean introducing universally quantified array variables in the logic, leading
to undecidability. To work around the negation problem, we normalize any
quantifier-free boolean combination of array properties to formulae of the
form: φ ≡ ⋁c⋀d φcd(a,k) ∧ θc(k), where a is a set of array variables, k is a
set of integer variables, and
- each θc is a conjunction of terms of the forms (i) g(k) ≥ 0 or (ii) g(k) ≡s t

where g(k) is a linear term and 0 ≤ t < s are constants,
- each φcd is of one of the following forms, for ∼∈ {≤,≥}, linear terms fk, g`,
f1
k , g

1
` , f

2
k , g

2
` over k and constants m ∈ N, p, q ∈ Z∞, 0 ≤ t < s, 0 ≤ v < u:

∀i .
K

⋀
k=1

fk ≤ i ∧
L

⋀
l=1

i ≤ gl ∧ i ≡s t→ a[i] ∼ h(k) (F1)
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(F1) formulae bind all values of a in some interval by some linear combi-
nation h of variables in k.

∀i .
K

⋀
k=1

fk ≤ i ∧
L

⋀
l=1

i ≤ gl ∧ i ≡s t→ a[i] − b[i + p] ∼ q (F2)

(F2) formulae relate all values of a and b in the same interval such that
the distance between the indices of a and b, respectively, is constant.

∀i, j . ⋀K1

k=1 f
1
k ≤ i ∧ ⋀L1

l=1 i ≤ g
1
l ∧ ⋀K2

k=1 f
2
k ≤ j ∧ ⋀L2

l=1 j ≤ g
2
l ∧

i − j ≤ p ∧ i ≡s t ∧ j ≡u v → a[i] − b[j] ∼ q (F3)

(F3) formulae relate all values of a with all values of b within two intervals.
If φ ≡ ⋁c⋀d φcd(a,k) ∧ θc(k) is in normal form, the counter machine whose
trace language is the set of array valuations of φ is defined as Mφ = Mτ ∩
(⋃c⋂dMφcd ∩Mθc), where Mτ is the counter machine that increments the
step variable τ and copies the values of the parameters {xk ∣ k ∈ k} (Section
6.3.1), Mθc consists of a single transition that checks the condition θc on
the parameters and Mφcd is defined according to the type (F1)-(F3) of the
array property. The most interesting case is (F3), explained next.

The definition of the counter machines is simplified, by observing that
the constraint graphs that define the models of the formulae in the logic,
after elimination of the non-local constraints by introducing new array vari-
ables, consists of edges that span a fixed size window and are either vertical,
horizontal or diagonal. The counter machine for an array property of type
(F1)-(F3) is the intersection of several counter machines of a fixed structure.

x′1 − x2 ≤ 0

qf

q1 q1
2

q0
1 q0

2

q1
3

x′a − x1 ≤ 5

x′1 − x2 ≤ 0q0 x ′
a − x

1 ≤ 5

x
′
1
−
x2

≤
0

x′2 − xt ≤ 0

x ′
2 − x

t ≤ 0

¬(∃i . `1 ≤ i ≤ u1 ∧ i ≡2 0)

τ ≡2
1

τ
≥ `1 − 4

x′2 − xt ≤ 0

`1 − 3 ≤ τ < u1 − 3
x′a − x1 ≤ 5

τ ≥ `1
− 4

τ
≡
2 0

τ ≡2 1

ι

x′2 − xt ≤ 0

x′a − x1 ≤ 5

⊺

`1 − 3 ≤ τ < u1 − 3
x′1 − x2 ≤ 0

τ ≡2 0
τ = u1 − 3

τ = u1 − 3

Figure 6.8: Counter machine for diagonal edges in Fig. 6.7 (a)

For instance, the counter machine in Figure 6.8 defines the diagonal
edges of the constraint graph in Figure 6.7 (a). Observe that the constraints
a[i]−t[i−3] ≤ 5, that occur for i ≡2 0, span a window of size 3. We represent
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these constraints in the counter machine by introducing additional variables

x1 and x2 and firing the transitions q0
x′a−x1≤5

ÐÐÐÐ→ q1

x′1−x2≤0

ÐÐÐÐ→ q0

x′2−xt≤0

ÐÐÐÐ→1 instead,
if τ ≡2 0 (a similar sequence is possible for the case τ ≡2 1).

The counter machine for each array property is flat and flatness is pre-
served by union and intersection of counter machines. We have thus re-
duced the satisfiability problem for a LIA formula to the reachability of a
flat counter machine with octagonal constraints.

Theorem 23. The satisfiability problem is decidable for the logic LIA.

Proof. See [HIV08b, Corollary 1].

6.4 Discussion and Open Problems

The Turing-completeness result for 2-counter machines [Min67] proves, in
principle, that every program or computer system can be analyzed using
a reduction to counter machines with only increment, decrement and zero
test. However, the effective definitions of these reductions, even for specific
classes of programs, requires hard work. On the other hand, one can build
up on existing complexity results for various decidable classes of counter
machines to derive decidability and complexity bounds for certain program
verification problems, which can, over time, improve the state of the art
of existing program verifiers. Counter machines provide also effective ways
of deciding satisfiability within logics over infinite data domains, e.g. array
logics (Section 6.3).

An interesting research direction consists in applying other known de-
cidability and complexity results for counter machines, such as reversal-
bounded or (branching) vector addition systems to design more expressive
array logics and study their computational complexities. For instance, the
logics to automata translations from Section 6.3.1 and 6.3.2 build flat counter
machines with octagonal constraints of size which is likely to be simply ex-
ponential in the size of the input formulae1. Given the result of Theorem
10, the satisfiability problems of SIL and LIA could potentially belong to
Nexptime. Finding a matching lower bound is currently an open problem.
Another problem is defining an array logic matching the expressive power
of the recursive counter machine model, with the restriction that the set of
interprocedurally valid paths belong to a bounded language (Section 5.3).

1The intersection operation used to define conjunctions of array properties already
causes an exponential blowup, even in the absence of negations.



Chapter 7

Separation Logic

Separation Logic (initially called BI, for logic of bunched implications [OP99])
is a logical framework centered on the notion of resource. Generally speak-
ing, resources are entities that can be distributed among certain populations.
They can be also split into disjoint parts and combined as a whole. From
an abstract perspective, resources form a monoid with their join operation,
e.g. the set of words over a given alphabet with word concatenation as join.

In program verification, Separation Logic (SL) [IO01, Rey02] is mainly
used to describe dynamically allocated recursive data structures and develop
modular verification techniques, based on the principle of local reasoning :
analyzing different parts (functions, threads) of the program that work on
separate sections of the heap and combine the analysis results a-posteriori.
Using Separation Logic as a specification formalism is attractive because
of the possibility of writing higher-order inductive definitions that naturally
describe recursive data structures, such as singly- or doubly-linked lists, skip
lists, trees and more complex variations, such as nested and overlaid data
structures, e.g. trees with linked leaves, hash maps, etc.

However, the expressive power of SL comes with a high price: the satis-
fiability problem is undecidable, even without inductive definitions. On the
other hand, the satisfiability problem for the quantifier-free fragment of SL
without inductive definitions is shown to be Pspace-complete [CYO01].

In this chapter we define a fragment of SL with general inductive def-
initions, for which both satisfiability of an assertion (predicate) and the
validity of entailments between assertions (predicates) are decidable, with
elementary complexity. This result relies on an embedding into the Monadic
Second Order Logic (MSO) of graphs with bounded treewidth [Cou90]. By
applying a further restriction, we define a fragment in which the entailment

113
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problem is Exptime-complete, by reduction to the inclusion problem for
tree automata.

We consider a set of variables Var. The syntax of SL, without inductive
definitions, is given below:

u, v ∈ Var
P ∈ Pred
φ ∶= u = v ∣ u = nil ∣ u↦ (v1, . . . , vk) ∣ emp

φ1 ∗ φ2 ∣ φ1 ⊸ φ2 ∣ φ1 ∧ φ2 ∣ ¬φ1 ∣ ∃u . φ1

We recall the definition of states (Definition 9, Chapter 6), where the
set of selectors is Sel = {1, . . . , k} and Loc denotes an infinite countable set
of memory locations. The semantics of SL is given by a forcing relation
between states ⟨s, h⟩ and formulae, as follows:

⟨s, h⟩ ⊧SL u = v ⇔ s(u) = s(v)
⟨s, h⟩ ⊧SL u = nil ⇔ s(u) = null
⟨s, h⟩ ⊧SL u↦ (v1, . . . , vk) ⇔ s(u) = `0, s(v1) = `1, . . . s(vk) = `k and

h = {(`0, λi . if 1 ≤ i ≤ k then `i else �)},
for some `0, `1, . . . , `n ∈ Loc

⟨s, h⟩ ⊧SL emp ⇔ h = ∅
⟨s, h⟩ ⊧SL φ ∗ ϕ ⇔ ⟨s, h1⟩ ⊧SL φ and ⟨s, h2⟩ ⊧SL ϕ, for some h1, h2

such that dom(h1) ∩ dom(h2) = ∅ and h1 ∪ h2 = h
⟨s, h⟩ ⊧SL φ⊸ ϕ ⇔ for all h′,dom(h′) ∩ dom(h) = ∅ and ⟨s, h′⟩ ⊧SL φ

implies ⟨s, h′ ∪ h⟩ ⊧SL ϕ
⟨s, h⟩ ⊧SL ∃u . φ ⇔ ⟨s[u← `], h⟩ ⊧SL ϕ, for some ` ∈ Loc

The semantics of the boolean connectives ∧ and ¬ is as in classical first-
order logic. Observe that the points-to proposition u↦ (v1, . . . , vk) holds in
a state whose heap has exactly one location in the domain. Consequently,
u1 ↦ v1 ∧ u2 ↦ v2 holds only if u1 = u2 and v1 = v2. On the other hand, the
separating conjunction ∗ asks that the heap can be split into two disjoint
heaps, each satisfying one of its subformulae. For instance, u1 ↦ v1∗u2 ↦ v2

holds only for states ⟨s, h⟩ such that ∥dom(h)∥= 2.
Given a set Pred of predicate names, with arities denoted as #(P), for

each P ∈ Pred, an inductive system is a set of definitions:

{Pi(xi,1, . . . , xi,#(Pi)) ≡
mi

⋁
i=1

rij(xi,1, . . . , xi,#(Pi))}
n

i=1

where xi,1, . . . , xi,#(Pi) ∈ Var are called parameters, and rij(xi,1, . . . , xi,#(Pi))
are open SL formulae, called rules, which may contain atomic propositions
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of the form P(u1, . . . ,u#(P)), for some P ∈ Pred and variables u1, . . . ,u#(P) ∈
Var. We extend the forcing relation to predicates, as follows:

⟨s, h⟩ ⊧SL Pi⇔ ⟨s, h⟩ ⊧SL ∃xi,1 . . .∃xi,#(Pi) . rij(xi,1, . . . , xi,#(Pi)), for some 1 ≤ j ≤mi

For a formula φ, possibly containing predicates, we define the set of models
[[φ]] = {⟨s, h⟩ ∣ ⟨s, h⟩ ⊧SL φ}. This set is the least fixed point of a (provably)
monotonic and continuous function mapping sets of states into sets of states.

The satisfiability problem asks, given a predicate P, whether [[P]] ≠ ∅.
The entailment problem Pi ⊧SL Pj asks whether [[Pi]] ⊆ [[Pj]]. Both prob-
lems are undecidable even when the rules of the system do not contain pred-
icates or the separation logic connectives ∗ and ⊸. In fact, only first-order
quantification and binary points-to propositions x ↦ (y, z) are sufficient to
encode the computation of a Turing machine as a satisfiability problem
[CYO01]. Next, we define a decidable fragment of SL with inductive defini-
tions, that allows to reason about rather general recursive data structures.

7.1 A Decidable Inductive Fragment of SL

To begin with, we restrict the rules of the inductive system to formulae of
the form r(x1, . . . , xp) ≡ ∃y1 . . .∃yq . Σ ∧Π where:

- Σ is a separating conjunction of atomic propositions emp, u0 ↦ (v1, . . . , vk)
and predicates Pi(u1, . . . ,u#(Pi)) with u0, . . . ,u#(Pi), v1, . . . , vk ∈ {x1, . . . , xp}∪
{y1, . . . , yq}, and

- Π is a conjunction of equalities and disequalities between the variables in
{x1, . . . , xp} ∪ {y1, . . . , yq}.

This restriction has little impact on the expressive power of the logic, be-
cause many useful recursive data structures can still be encoded as inductive
predicates of this form, as in Figure 7.1. However, even with these restric-
tions, the entailment problem remains undecidable (Lemma 7). To work
around this problem, we assume that each rule r(x1, . . . , xp) in the given
inductive system meets the following conditions:

1. Progress. The rule r contains exactly one occurrence of a points-to
proposition u ↦ (v1, . . . , vk). We say that the rule r allocates the
variable u. A predicate allocates a parameter xi if each rule in its
definition allocates xi.

2. Connectivity. There exists at least one points-to edge (possibly in-
volving equalities) between the variable allocated in r and the variable
allocated in each of the predicates occurring in r.
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3. Establishment. All existentially quantified variables in r are eventually
allocated, in every unfolding of the predicates occurring in r.

list(hd, tl) ≡ emp ∧ hd = tl ∨
∃x . hd↦ x ∗ list(x, tl)

...hd tl

dll(hd,p, tl,n) ≡ hd↦ (n,p) ∧ hd = tl ∨
∃x . hd↦ (x,p) ∗ dll(x,hd, tl,n)

...p hd tl n

tree(root) ≡ emp ∧ root = nil ∨
∃l∃r . root↦ (l, r) ∗ tree(l) ∗ tree(r)

root

tll(root, ll, lr) ≡ root↦ (nil,nil, lr) ∧ root = ll ∨
∃l∃r∃z . root↦ (l, r,nil) ∗ tll(l, ll, z)∗

tll(r, z, lr)

root null

null null

ll lr

Figure 7.1: Inductive Data Structures Defined in SL.

We call SLbtw the fragment of SL involving predicates defined according
to conditions (1), (2) and (3). In the following, we formalize these conditions
and prove that the satisfiability and entailment problems become decidable
in their presence. Given a conjunction of equalities and disequalities Π, we
write x =Π y if x = y is a consequence of Π.

Definition 13. A rule r(x1, . . . , xn) ≡ ∃y1 . . .∃ym . u↦ (v1, . . . , vk)∗Pi1(
Ð→y1)∗

. . .∗Pis(
Ð→ym)∧Π is connected if, for each j = 1, . . . , s, there exists a variable

(Ð→yj )` such that vp =Π (Ð→yj )` and the parameter xj,` of Pj(xj,1, . . . , xj,mj) is
allocated by Pj, for some 1 ≤ ` ≤mj.

An inductive system is connected if each of its rules is connected and
disconnected otherwise. Observe that all inductive systems from Figure 7.1
are connected. The following lemma shows that connectivity is a necessary
condition for decidability of entailments:

Lemma 7. The entailment problem is undecidable for disconnected induc-
tive systems.
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Proof. By reduction from the undecidability of the universality problem for
context-free languages. Given a context-free grammar G = ⟨Ξ,A,∆⟩ and a
nonterminal X ∈ Ξ, we build an inductive system PG having a predicate
PY for each nonterminal Y ∈ Ξ, such that LY (G) and [[PY ]] are in one-to-
one relation (each word corresponds to a singly-linked list with appropriate
selectors). Moreover, we consider a self-recursive predicate P ∗ that encodes
the universal language A∗. Then LX(G) is universal iff P ∗ ⊧SL PX .

In the following we aim at proving that, given a predicate P of an induc-
tive SLbtw system, all states in [[P ]] are represented by graphs of bounded
treewidth, hence the name of the logic. Let us first introduce this notion.

For a state S = ⟨s, h⟩, let loc(S) = dom(h) ∪ ⋃`∈dom(h),i∈Sel(h(`))(i) ∪
{s(u) ∣ u ∈ dom(s)} be the set of locations that occur in S, either in the
domain of the heap, referred to by a selector edge or pointed to by a variable
in the store. For a tree t and p, q, r ∈ dom(t), we say that q is between p
and r if there exists a sequence p = p0, . . . , pn = r ∈ dom(t) of pairwise
distinct positions, such that pi+1 is either the parent, or a child of pi, for all
i = 0, . . . , n − 1 and pj = q for some 0 ≤ j ≤ n.

Definition 14. Given a state S = ⟨s, h⟩, a tree decomposition of S is a tree
t ∶ N∗ ⇀fin 2loc(S) such that:

1. loc(S) = ⋃p∈dom(t) t(p),

2. for each edge `
iÐ→ `′ in S there exists p ∈ dom(t) such that `, `′ ∈ t(p),

3. for each p, q, r ∈ dom(t), q is between p and r only if t(p)∩ t(r) ⊆ t(q).
The width of the decomposition is w(t) = maxp∈dom(t) {∥t(p)∥ −1}. The
treewidth of S is tw(S) = min{w(t) ∣ t is a tree decomposition of S}.

For instance, the treewidth of a state representing a tree data structure
is 1. The optimal tree decomposition is an isomorphic tree t such that
t(p.i) = {p, p.i}, for every p ∈ dom(t) and i ∈ N such that p.i ∈ dom(t). On
the other hand, the set of treewidths of n × n squared grids, for n > 0, does
not have an upper bound [See91]. The following condition is required to
ensure that the set {tw(S) ∣ S ∈ [[P ]]} is bounded, for any predicate P of an
inductive system.

Definition 15. Given a rule r(x1, . . . , xn) ≡ ∃y1 . . .∃ym . u ↦ (v1, . . . , vk) ∗
Pi1(

Ð→y1) ∗ . . . ∗ Pim(Ð→ys) ∧ Π, the parameter xi, for 1 ≤ i ≤ n is allocated
in r if and only if: (i) xi =Π u, or (ii) there exists 1 ≤ j ≤ s such that
xi =Π (Ð→yj )q and the corresponding parameter xj,q is allocated in every rule of
Pj(xj,1, . . . , xj,mj), for some 1 ≤ q ≤ mj. Moreover, the rule r is established
is for every j = 1, . . . ,m there exists 1 ≤ ` ≤ s and 1 ≤ q ≤ m` such that
yj =Π (Ð→y`)q and the corresponding parameter xij ,q is allocated.
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An inductive system is established if each of its rules is established. Consider,
for instance, the predicate le(x) ≡ x↦ (nil,nil)∨∃y, z . x↦ (y, z) ∗ le(y). The
set of models [[le]] consists of singly-linked lists in which the first selector
points to the successor node and the second selector may point to any node
in the heap. Then [[le]] contains a square grid of size n × n for each list of
length n2, thus the set {tw(S) ∣ S ∈ [[le]]} is not bounded.

The following lemma proves that conditions (1), (2) and (3) are sufficient
to ensure boundedness of this set, for each SLbtw-definable inductive system.
For a rule r(x1, . . . , xn) ≡ ∃y1 . . .∃ym . Σ ∧ Π, we define ∣r∣nvar = n +m, i.e.
the number of variables, both parameters and existentially quantified, that

occur in r. For an inductive system P = {P ≡ ⋁mij=1 rij}
n

i=1
, we define ∣P∣nvar =

maxni=1 maxmij=1 ∣r∣nvar to be the maximum such number.

Lemma 8. Given P a connected and established inductive system, which,
moreover satisfies the progress condition (1) and P ∈ P a predicate, for each
state S ∈ [[P]], we have tw(S) = O(∣P∣nvar).

Proof. For S = ⟨s, h⟩ ∈ [[P]], the connectivity condition defines the structure
of the tree decomposition, which is a tree t that connects all locations in
loc(S), such that each edge (p, p.i) ∈ dom(t) × dom(t) corresponds to an

existing selector edge `
iÐ→ `′ in S. The bags of t are defined as follows.

First `, `′ ∈ t(p) for each selector edge `
iÐ→ `′ of S that maps to some edge

(p, p.i) ∈ dom(t) × dom(t). Let `
iÐ→ `′ be a selector edge in S, not already

covered by the edges of t such that ` ∈ t(p) and `′ ∈ t(p′). Then we add `′

to all bags t(q), where q is between p and p′ in t. It remains to show that

w(t) ≤ ∣P∣nvar. This is the case because for each selector edge `
iÐ→ `′ of S, not

covered by an edge of t, `′ ∈ t(q) only if there exists a chain y1 = . . . = yn of
equalities between pairwise distinct existentially quantified variables, which
corresponds to a path from p to q. Since each yi is created by a distinct
application of a rule in P and the number of existentially quantified variables
in a rule is bounded by ∣P∣nvar, we have that tw(S) = O(∣P∣nvar).

Example 17. Let us consider the model of the tll predicate (Figure 7.1)
shown in Figure 7.2 (a). A possible tree decomposition follows the unfolding
structure of the tll definition. Each rule allocates a variable to a location `p,
where p is the corresponding tree position. The bags of the tree decomposi-
tion contain the locations `p, `p.0 and `p.1 for each p ∈ dom(t) ∖ Fr(t). For
each non-local edge, the destination location is added to all bags between the
position where the source and the destination are allocated. For instance,

for the edge `01 3Ð→ `10, we add `10 to the bags at positions 1, ε,0 and 01. ∎
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`ε

`1

`11

nullnull

`10

nullnull

`0

`01

nullnull

`00

nullnull

(a)

{`ε, `0, `1, `10}

{`1, `10, `11}

{`11}

∅∅

{`10, `11}

∅∅

{`0, `00, `01, `10}

{`01, `10}

∅∅

{`00, `01}

∅∅

(b)

Figure 7.2: Tree Decomposition of a Tree with Linked Leaves

The proofs of decidability for the satisfiability and entailment problems
in SLbtw are based on an encoding of the semantics of SLbtw into Monadic
Second Order logic (MSO) interpreted over states. That is, for each predicate
P ∈ Pred, we have an MSO formula ΨP such that S ∈ [[P]] ⇔ S ⊧MSO

ΨP. Since, moreover, the set [[P]] has bounded treewidth (Lemma 8) the
satisfiability and entailment problems for SLbtw reduce to the satisfiability
problem for MSO over states (graphs) of bounded treewidth. This problem
is known to be decidable, by Courcelle’s Theorem [Cou90].

In particular, the establishment condition (Definition 15) is not necessary
to check satisfiability of a SLbtw predicate. In this case, it is sufficient to
show that, if P has a model, then it also has a model of bounded treewidth
(using the same idea as in the proof of Lemma 8).

On the other hand, the entailment problem requires this condition, as
explained next. Given the entailment P ⊧SL Q, we build MSO formulae ΨP

and ΨQ and reduce the problem to checking the satisfiability of the formula
ΨP∧¬ΨQ. Since any model S of this formula is also a model of P, by Lemma
8 its treewidth is bounded by a linear function in the maximum number of
variables in the inductive system ∣Pnvar∣. By Courcelle’s Theorem [Cou90],
the satisfiability problem is decidable for any formula ΨP∧¬ΨQ derived from
an entailment problem P ⊧SL Q, which proves that the entailment problem
is decidable for SLbtw.

In the rest of this section, we sketch the translation of SLbtw into MSO.
Let Varmso be a set of first- and second-order variables. The first-order
variables x, y, . . . range over locations and the second-order variables X,Y, . . .
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range over sets of locations. The syntax of MSO is given below:

x, y,X ∈ Varmso

i ∈ Sel
ϕ ∶= x = y ∣ edgei(x, y) ∣ null(x) ∣X(x) ∣ ϕ ∧ ϕ ∣ ¬ϕ ∣ ∃x . ϕ ∣ ∃X . ϕ

An interpretation ι ∶ Varmso ⇀ Loc∪2Loc associates first-order variables with
locations and second-order variables with sets of locations. The semantics
of MSO is given by a forcing relation ⟨s, h⟩, ι ⊧MSO ϕ, defined by induction
on the structure of ϕ, where ⟨s, h⟩ is a state and ι is an interpretation:

⟨s, h⟩, ι ⊧MSO null(x) ⇔ ι(x) = nil
⟨s, h⟩, ι ⊧MSO edgei(x, y) ⇔ (h(ι(x)))(i) = ι(y)

The semantics of the first- and second-order quantifiers ∃x, ∃X and that
of the boolean connectives ∧,¬ is the classical one. The problem asking
for the existence of a state S such that tw(S) ≤ k and S ⊧MSO ϕ, where
k > 0 is a given integer constant and ϕ is a closed MSO formula, is decidable
[Cou90]. It is known that the complexity of this problem is non-elementary,
even when MSO is interpreted over words, with successor function [Sto74].

The translation of SLbtw into MSO maps any SL variable x ∈ Var into a
first-order variable x ∈ Varmso and the special variable nil into xnil, with an
associated constraint null(xnil). The SL atomic propositions and separat-
ing conjunction are translated into MSO formulae, with a free variable X
denoting the set of locations in the heap, by a recursive function Tr(φ):

Tr(emp) ≡ ∀x . ¬X(x)
Tr(x↦ (y1, . . . , yk)) ≡ Sing(x,X) ∧ ⋀ki=1 edgei(x, yi)

Tr(φ1 ∗ φ2) ≡ ∃Y ∃Z . Tr(φ1)[Y /X] ∧Tr(φ2)[Z/X] ∧Part(Y,Z,X)

where Sing(x,X) means that X is a singleton whose only element is x and
Part(Y,Z,X) means that Y and Z are a partition of X. Clearly, these are
MSO-definable constraints.

The next step is to define the (possibly infinite) set of states that are
models of a given predicate Pi defined by an inductive system P. We observe
that each such state can be decomposed into a tree-like structure, called the
backbone and a set of non-local edges, defined below:

Definition 16. A backbone of a state S = ⟨s, h⟩ is a bijective tree t ∶ N∗ →
dom(h) such that for all p ∈ dom(t) and d ∈ N, p.d ∈ dom(t) only if t(p) iÐ→
t(p.d) is a selector edge of S, for some i ∈ Sel. Given a backbone t of S, a

selector edge `
iÐ→ `′ of S is local w.r.t. t if ` = t(p) and `′ = t(p.d) for some

positions p, p.d ∈ dom(t).
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Intuitively, each state S ∈ [[Pi]] is the model of a first-order SL formula
obtained by a finite unfolding of Pi. In this respect, the progress condition
(1) ensures that each unfolding step (corresponding to the application of a
rule) associates exactly one variable to a location in the domain of the heap.

The translation uses a second-order variable Xd
ij for the set of locations

allocated by the rule rij , when applied to a backbone position p = q.d that
is the d-th child of its parent (d = −1 when p = ε). The set of local edges
between the positions q and q.d of the unfolding tree, where q is labeled
by a rule rij and q.d is labeled by a rule r`k is defined by a constraint
localdi,j,`,k(x, y), inferred by an analysis of rij and r`k. Then the successor
relation in the backbone is defined by an MSO formula:

succd(x, y) ≡ ⋁
1≤i,`≤n
1≤j≤mi
1≤k≤m`

Xij(x) ∧Xd
`k(y) ∧ localdi,j,`,k(x, y)

With this definition, the backbone of any state S ∈ [[Pi]] is defined by an
MSO formula backbonei(x,X), where x is the root of the backbone and X
is the set of all variables Xd

ij . Intuitively, this formula ensures that the
sets in X define a tree structure which, moreover, corresponds to a correct
unfolding of the predicate Pi in the inductive system P.

The last step of the translation is the definition of non-local edges of a
state w.r.t. the backbone defined by its unfolding tree. For instance, the

non-local edge `01 3Ð→ `10 in Figure 7.2 (a) is the consequence of the atomic
propositions r0 ↦ (nil,nil, lr01), l1 ↦ (nil,nil, ll10) and the chain of equalities
lr01 = lr0 = zε = ll1 = l1, where r0, zε, l1, lr01, lr0, ll1 and ll10 are existentially
quantified variables in the SL formula corresponding to the unfolding tree.

The main idea is that these chains of equalities follow regular paths
in the backbone tree, which can be encoded using tree walking automata
(TWA) [Boj08]. For instance, in the case of the tll predicate in Figure 7.1,
all non-local edges correspond to regular walks of the form ↖∗↗↘↙∗ in
the backbone tree, where ↗ (↖) moves up when being a left (right) child
and ↙ (↘) moves down to the left (right) child. In a nutshell, we define
a TWA AP for the entire inductive system P, where the source and the
destination of each non-local edge are marked by the initial and final states
of AP , respectively. Then we build an MSO formula non local(X) which
encodes the set of trees accepted by AP . We refer the interested reader to
[IRS13] for the details of these definitions.

Finally, the parameters of the predicate Pi(xi,1, . . . , xi,#(Pi)) have to be
mapped to locations in the heap. Because parameters can be propagated
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though an unfolding tree via equalities, we use another TWA to track their
final destinations. By encoding this TWA into MSO, we obtain an MSO
formula param(xi,1, . . . , xi,#(Pi),X) describing these equalities. The formula
ΨPi describing the models of Pi is then defined as follows:

ΨPi ≡ ∃x∃X . backbonei(x,X) ∧ non local(X) ∧ param(xi,1, . . . , xi,#(Pi),X)

Then an entailment problem Pi(x1, . . . , xp) ⊧SL Pj(x1, . . . , xp) is equivalent to
the unsatisfiability of the MSO formula ΨPi(x1, . . . , xn) ∧ ¬ΨPj(x1, . . . , xn),
interpreted over states with treewidth bounded by O(∣P∣nvar). By Cour-
celle’s Theorem [Cou90], this latter problem is decidable.

A finer analysis of the translation of SLbtw predicates into MSO and of
the translation of MSO over graphs of bounded treewidth into MSO over
trees [Cou90] reveals that the number of quantifier alternations in the final
formulae is always bounded by a constant. This means that the satisfiabil-
ity problem for these formulae has elementary time complexity (although
an upper bound computed in this way would involve several exponentials),
leading to the following result:

Theorem 24 ([IRS13]). The satisfiability and entailment problems for SLbtw

are in Elementary.

7.2 An Exptime Inductive Fragment of SL

The SLbtw defined in the previous section is not very appealing for program
verification purposes, due to the high complexity of the MSO translation
and the blowup in the size of automata needed to check satisfiability of MSO
formulae over trees. For this reason, we define a subset of SLbtw, called SLloc,
for which entailments can be encoded as inclusion of languages recognized
by tree automata and, moreover, the reduction takes polynomial time in the
size of the input inductive system. Since the language inclusion problem
for TA is Exptime-complete, we derive a similar result for the entailment
problem in SLloc, with a matching lower bound obtained by reduction from
the universality problem for TA [CDG+05, Theorem 1.7.7, Corollary 1.7.9].

We recall that a variable x ∈ Var is allocated in an SLbtw formula if
it occurs on the left-hand side of an atomic proposition x ↦ (y1, . . . , yk).
A variable yi is referenced if it occurs on the right-hand side of such a
proposition. With these notions, we define the subset SLloc consisting only
of local inductive systems:

Definition 17. An inductive system P = {Pi(xi,1, . . . , xi,#(Pi))}
n

i=1
is local

if and only if:
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- each parameter xi,j is allocated in each rule of Pi and (Ð→y j) is referenced
at each occurrence Pi(Ð→y ) in P, or

- each parameter xi,j is referenced in each rule of Pi and (Ð→y j) is allocated
at each occurrence Pi(Ð→y ) in P.

For instance, the list,dll and tree systems in Figure 7.1 are local, whereas tll
is not. We recall that, due to the progress (1) and connectivity (2) condi-
tions, each state S ∈ [[Pi]] is the model of a basic SL formula corresponding
to an unfolding tree of the predicate Pi. The locality condition ensures fur-
thermore that each selector edge of a state S ∈ [[Pi]] is local with respect to
the backbone defined by the unfolding tree (Definition 16).

The first step of the entailment decision procedure is building a TA for a
given local inductive system. Roughly speaking, the TA we build recognizes
unfolding trees of the inductive system. The alphabet of such a TA consists
of small basic SL formulae describing the neighborhood of each allocated
variable, together with a specification of the connections between each such
formula and its parent and children in the unfolding tree. Each alphabet
symbol in the TA is called a tile. Once the tile alphabet is defined, the states
of the TA correspond naturally to the predicates of the inductive system,
and the transition rules correspond to the rules of the system.

Formally, a tile is a tuple T = ⟨ϕ,x−1,x0, . . . ,xd−1⟩, for some d ≥ 0,
where ϕ ≡ (∃u) u ↦ (v1, . . . , vk) ∧ Π is a SL formula in which u is possibly
existentially quantified, Π is a conjunction of equalities between variables,
and each xi is a tuple of pairwise distinct variables, called a port. We
further assume that all ports contain only free variables from ϕ and that
they are pairwise disjoint. The variables x−1 are incoming, x0, . . . ,xd−1 are
outgoing, and par(T ) = FV (ϕ) ∖ (x−1 ∪ . . . ∪ xd−1) are called parameters.
The arity of a tile T = ⟨ϕ,x−1, . . . ,xd−1⟩ is the number of outgoing ports,
denoted by #(T ) = d. We denote form(T ) ≡ ϕ and porti(T ) ≡ xi, for all
−1 ≤ i < d. Moreover, we assume that each port xi can be factorized as
xfwi ⋅xbwi (distinguishing forward links going from the root to the leaves and
backward links going in the opposite direction, respectively) such that:
- the backward incoming tuple xbw−1 consists only of variables referenced by

the unique allocated variable u, ordered by the corresponding selectors.
- each forward outgoing tuple xfwi consists of variables referenced by the

unique allocated variable z, ordered by the corresponding selectors.
- (xfw−1 ∪xbw0 ∪ . . .∪xbwd−1)∩{v1, . . . , vk} = ∅ and Π ≡ xfw−1 = u ∧ ⋀d−1

i=0 xbwi = u.1

We denote by portfwi (T ) and portbwi (T ) the tuples xfwi and xbwi , respectively,
for all −1 ≤ i < d. The set of canonical tiles is denoted as T .

1For a tuple x = ⟨x1, . . . , xk⟩, we write x = u for ⋀ki=1 xi = u.
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Definition 18. A tree t ∶ N∗ ⇀fin T is canonical if, for each 0 ≤ i < #(t(p)),

we have ∣portfwi (t(p))∣ = ∣portfw−1 (t(p.i))∣ and ∣portbwi (t(p))∣ = ∣portbw−1(t(p.i))∣.

Given a tree t ∶ N∗ ⇀fin T labeled with tiles, we denote by Φ(t) its charac-
teristic formula, obtained by renaming each variable x in t(p) by xp, for each
p ∈ dom(t) and equating the overlapping incoming and outgoing variables.

An important property of canonical trees is that each state S that is a
model of the characteristic formula Φ(t) of a canonical tree t (S ⊧SL Φ(t))
has a unique backbone u, that is isomorphic to t, i.e. dom(u) = dom(t). For
an example, consider a state S ∈ [[dll]] (Figure 7.1) encoded by two different
canonical trees (Figure 7.3).

hd
p

next prev
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n

next

prev

x0   y1

y0   x1

next

prev

y0   x1

p

next prev

next prev

next prev
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Figure 7.3: A state S ⊧SL dll(hd,p, tl,n) and two canonical tree encodings

Given a predicate Pi(u1, . . . ,u#(Pi)) defined by a local inductive system

P, we build the tree automaton AiP recognizing the canonical trees that
encode the set of states [[Pi]], as follows. For each rule in the system, we
create a tile whose incoming and outgoing ports xi are factorized as xfwi ⋅xbwi .
The backward part of the input port xbw−1 and the forward parts of the output

ports {xfwi }i≥0 are sorted according to the order of incoming selector edges
from the single points-to formula in the rule. The output ports {xi}i≥0 are
sorted within the tile according to the order of the selector edges pointing
to (xfwi )0 for each i ≥ 0. Finally, each predicate name Pj is associated with
a state qj , and for each inductive rule, the procedure creates a transition
rule in the TA. The final state is qi, corresponding to the predicate Pi. The
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size of AiP is linear in the size of the input inductive system P.
However, there are instances of the entailment problem that cannot be

directly solved by language inclusion between tree automata defined above,
due to the following polymorphic representation problem: the same set of
states can be defined by two different inductive predicates, and the tree
automata mirroring their definitions will report that the entailment does
not hold. This happens because the tile alphabets of the two automata are
different. For example, doubly-linked lists can also be defined in reverse:

dllrev(hd,n, tl,p) ≡ hd↦ (p,n) ∧ hd = tl ∨ ∃x . tl↦ (x,n) ∗ dllrev(hd, tl, x,p)

The solution to this problem comes from the following observation. If a
state S has local edges w.r.t. two different backbones t1 and t2, then we can
obtain t2 from t1 by picking a position p ∈ dom(t1) and making it the root
of t2, while maintaining in t2 all edges from t1 (Fig. 7.2).

Definition 19. Given two trees t1, t2 ∶ N∗ ⇀fin Σ and a bijective mapping
r ∶ dom(t1) → dom(t2), we say that t2 is an r-rotation of t1, denoted t1 ∼r t2,
iff ∀p ∈ dom(t1)∀d ∈ D+(t1)∶p.d ∈ dom(t1) ⇒ ∃e ∈ D(t2) . r(p.d) = r(p).e.

t1 t2

ε

0 1

00
01

ε

0
1

2

20

r

We write t1 ∼ t2 if there exists
a bijective mapping r ∶ dom(t1) →
dom(t2) such that t1 ∼r t2. An ex-
ample of a rotation r of a tree t1 to
a tree t2 such that r(ε) = 2, r(0) = ε,
r(1) = 20, r(00) = 0, and r(01) = 1 is
shown in Fig. 7.2.

Next, we define rotation on canonical trees. This definition is a refine-
ment of Definition 19. Namely, the change in the structure of the tree is
mirrored by a change in the tile alphabet labeling the tree in order to pre-
serve the state which is represented by the canonical tree.

Definition 20. Given two canonical trees t, u ∶ N∗ ⇀fin T c and a bijective
mapping r ∶ dom(t) → dom(u), we say that u is a canonical rotation of
t, denoted t ∼cr u, if and only if t ∼r u and there exists a substitution σp ∶
V ar ⇀fin V ar for each p ∈ dom(t) such that form(t(p))[σp] ≡ form(u(r(p)))
and, for all 0 ≤ i < #t(p), there exists j ∈ D(u) such that r(p.i) = r(p).j and:

portfwi (t(p))[σp] ≡ if j ≥ 0 then portfwj (u(r(p))) else portbw−1(u(r(p)))
portbwi (t(p))[σp] ≡ if j ≥ 0 then portbwj (u(r(p))) else portfw−1 (u(r(p)))

We write t ∼c u if there exists a mapping r such that t ∼cr u. For instance,
the two canonical trees in Figure 7.3 are related by a canonical rotation
(depicted in red).
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The following lemma is the key for proving completeness of our entail-
ment checking for local inductive systems: if a (local) state is a model of
the characteristic formulae of two different canonical trees, then these trees
must be related by canonical rotation.

Lemma 9. Let t ∶ N∗ ⇀fin T be a canonical tree and S = ⟨s, h⟩ be a state
such that S ⊧ Φ(t). Then, for any canonical tree u ∶ N∗ ⇀fin T , we have
S ⊧ Φ(u) iff t ∼c u.

Given a TA A = ⟨Q,T ,∆, F ⟩ recognizing a set of canonical trees, we build
a TA Arot such that L(Arot) = {u ∣ ∃t ∈ L(A) . u ∼c t}. We define Arot as a
union ⋃ρ∈∆Aρ, where Aρ is a TA that depends on the choice of a particular
transition rule ρ of A. The time needed to compute each Aρ is, moreover,
linear in the size of A. It follows that the time needed to compute Arot is
quadratic in the size of A, thus its size is quadratic in the size of A, as well.

The idea behind the construction of Aρ = ⟨Qρ,Σ,∆ρ,{qfρ}⟩ can be un-
derstood by considering a tree t ∈ L(A), a run π ∶ dom(t) → Q, and a
position p ∈ dom(t), which is labeled with the right hand side of the rule
ρ = T (q1, . . . , qk) Ð→ q of A. Then L(Aρ) will contain the rotated tree u,
i.e. t ∼cr u, where the significant position p is mapped into the root of u
by the rotation function r, i.e. r(p) = ε. To this end, we introduce a new
rule Tnew(q0, . . . , q

rev, . . . , qk) Ð→ qfρ where the tile Tnew mirrors the change
in the structure of T at position p, and qrev ∈ Qρ is a fresh state corre-
sponding to q. The construction of Aρ continues recursively, by considering
every rule of A that has q on the left hand side: U(q′1, . . . , q, . . . , q′`) Ð→ s.
This rule is changed by swapping the roles of q and s and producing a rule
Unew(q′1, . . . , srev, . . . q′`) Ð→ qrev where Unew mirrors the change in the struc-
ture of U . Intuitively, the states {qrev ∣ q ∈ Q} mark the unique path from
the root of u to r(ε) ∈ dom(u). The recursion stops when either (i) s is a fi-
nal state of A, (ii) the tile U does not specify a forward edge in the direction
marked by q, or (iii) all states of A have been visited.

We have thus reduced an entailment problem Pi ⊧SL Pj in a local induc-

tive system P to the tree language inclusion problem L(AiP) ⊆ L(AjP)rot.
Because both TA can be built in time polynomial in the size of P and,
moreover, the language inclusion problem for TA is Exptime-complete, the
entailment problem is in Exptime. We obtain a matching lower bound by
reduction from the universality problem for TA, which is, again, Exptime-
complete.

Theorem 25. The entailment problem is Exptime-complete for SLloc.

Proof. See [IRV14b, Theorem 3].
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7.3 Discussion and Open Problems

The decidability of entailments for the SLbtw fragment is currently the most
general result for SL with inductive definitions. Moreover, the restriction of
SLbtw to local inductive systems provides a practical and complete algorithm
for deciding entailments, which has been implemented in a prototype tool
(Slide [IRV]). This tool has been compared to other inductive solvers for
SL during SL-COMP’14 [SC14], an event collocated with the competition of
Satisfiability Modulo Theories (SMT’14).

The comparison with other inductive provers (Sleek [NC08], Cyclist
[Gor], Spen [ELS+]) outlined several strengths and weaknesses of automata-
based methods. On the positive side, the tree automata encoding using
rotations provides a complete method that can decide entailments such
as dll(hd,n, tl,p) ⊧SL dllrev(hd,n, tl,p), which are beyond the capabilities of
other solvers. On the negative side, the automata encoding is very poor in
dealing with disequalities between variables (needed, for instance, to define
acyclic lists) or with extensions of SL that allow reasoning about the data
in the cells. Such extensions require the development of new inclusion tech-
niques for automata over infinite alphabets, or, more generally, automata
extended with variables ranging over infinite domains. To this end, an ini-
tial approach was to develop a counterexample-driven abstraction refinement
semi-algorithm for the inclusion of counter machines [IRV14a]. Extending
this procedure to tree automata with integer variables is considered as future
work.

Another direction for future work is analyzing the relation between cyclic
induction proofs and antichain-based language inclusion of tree automata.
On one hand, proof search is promising in providing sound and efficient
decision procedures. On the other hand, automata-based methods provide
complete decision procedures. A closer analysis of the relation between
inductive proof search and language inclusion between automata can be the
key to obtaining both fast and complete proof systems.



Chapter 8

Conclusions and Perspectives

This thesis presents several contributions to program verification, spanning
the period between 2006 and 2016. The main ingredients of program verifi-
cation are logics and automata theory, in a broad sense. The contributions
presented in this thesis belong to both the areas of logic and (extended)
automata theory, highlighting several connections between them.

Regarding logic, we found novel decidable fragments of first-order arith-
metic, interpreted over integers [BI05, BIL06, BIL09] (Chapter 3) and de-
veloped specific logics for reasoning about data structures, commonly found
in programs, such as arrays with integer values [HIV08b, HIV08a] (Chapter
6, Section 6.3) or dynamically allocated mutable data structures [IRS13,
IRV14b] (Chapter 7).

Concerning automata models, we studied decision problems (reachabil-
ity and termination) for several classes of counter machines, i.e. automata
extended with integer variables [BIL06, BIL09, BGI09, BIK10, BIK14b,
BIK13] (Chapter 4). We found that, despite the expressive power of the
model, the decision problems of restricted classes, such as the one defined
by flatness (absence of nested cycles in the control structure) have rather
good complexity bounds (polynomial or Np-complete) in many non-trivial
cases. This result motivates the use of flat counter machines to defining
underapproximations of programs, in order to devise efficient bug-finding
semi-algorithms [KIB09].

Furthermore, we studied recursive counter machines [GIK13, GIK12,
GI15a] (Chapter 5). We nailed down a parameter of the analysis, called the
index, such that, when fixing this parameter to a constant, the recursive
counter machine can be verified by looking at an equivalent, non-recursive,
counter machine. Moreover, when the set of interprocedurally valid paths
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belongs to a bounded pattern, the reachability problems are in Nexptime,
and become Np-complete, when the index is fixed. Defining bounded un-
derapproximations of the set of interprocedurally valid paths of a recursive
counter machine is a generalisation of the method of defining flat underap-
proximations for standard counter machines, leading to efficient bug-finding
semi-algorithms [KIB09].

Focusing on more realistic program models, we considered programs
with dynamic memory and linked recursive data structures, as lists, trees
and beyond [BBH+06, HIRV07, IR09, IR13] (Chapter 6). A first approach
to program verification consists in modeling programs with singly-linked
lists as counter machines. This translation leverages existing analyses for
counter machines, such as abstract interpretation with polyhedra [GM12],
interpolant-based predicate abstraction [McM06] or inference of ranking
functions for termination analysis [BMS05, CPR06]. The method is sound
and complete for programs with lists [BIP] and sound for programs with
trees, i.e. it can prove termination but cannot always detect non-termination.

Another interesting application of counter machines in program verifi-
cation is deciding the validity of entailments in universally quantified ar-
ray logics, by reduction to reachability problems of flat counter machines
[HIV08b, HIV08a] (Chapter 6, Section 6.3). Under several restrictions, the
translation of logical formulae into counter machines can be made induc-
tively on the structure of the formulae, as in the case of the classical trans-
lation of MSO formulae into finite automata [HIV08a]. In general, the non-
local constraints introduced by the interaction between several universally
quantified index variables make the translation more difficult [HIV08b]. Pro-
gram analysis using these logics involves defining non-trivial post-condition
calculi and invariant generation techniques [BHI+09].

The key for the scalability of program analyses is compositionality. For
programs with dynamic data structures and low-level pointer manipulations,
Separation Logic (SL) has become a mainstream framework for designing
modular analyses, based on the principle of local reasoning [IO01, Rey02].
However, the decidability and computation complexity of SL pose non-trivial
problems [CYO01]. In this respect, we identified a general decidable frag-
ment of SL [IRS13] and developed a practical SL solver [IRV], based on
reduction of entailment problems to language inclusion problems for tree
automata [IRV14b] (Chapter 7).

Future Work We plan to address most of the open problems mentioned in
this thesis, such as the complexity of reachability and termination problems
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for flat counter machines with finite monoid affine relations [Boi99, FL02b],
or extensions of the counter machine model to concurrent and branching
executions [DJLL13].

Furthermore, developing efficient language inclusion procedures for (tree)
automata extended with integer variables and transitions harnessed by arith-
metic constraints seems to be important in extending the capabilities of
inductive solvers for SL. In this respect, we plan of developing efficient
semi-algorithms based on simulations, antichains and counterexample-driven
abstraction refinement with interpolants [IRV14a].

In a different vein, defining language inclusion between tree automata
(possibly extended with integer variables) as proof search in a deductive
system could provide entailment provers with the ability of generating proof
certificates for valid entailments. This requires defining a formal relation
between antichain-based language inclusion algorithms [ACH+10] and de-
ductive systems based on cyclic proofs [Acz77].

Finally, we plan to address the verification of concurrent and distributed
programs with abstract data structures (containers) handled via high-level
logical specification contracts. These container libraries, encountered in
most modern programming languages, give software developers a way of
abstracting from low-level implementation details related to memory man-
agement, such as dynamic allocation and pointer handling. However, the
implementations of these libraries use optimized low-level data structures
and algorithms for heap memory management, e.g. skip lists, red-back trees,
or overlaid linked lists. To ensure correctness of software systems manip-
ulating complex data structures, two essential issues must be considered:
(1) the correctness of programs implementing applications, assuming high
level specifications of the methods provided by the external container li-
braries they use, and (2) the correctness of the implementations of such
libraries with respect to their abstract specifications, the fact that a specific
implementation of containers ensures the expected abstract behavior.
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Automatic verification of integer array programs. In CAV, vol-
ume 5643 of LNCS, pages 157–172, 2009.

[BHMV94] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic
and p-recognizable sets of integers. Bull. Belg. Math. Soc, 1:191–
238, 1994.

[BHRV06] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Ab-
stract Regular Tree Model Checking of Complex Dynamic Data
Structures, pages 52–70. Springer Berlin Heidelberg, 2006.

[BHZ08] R. Bagnara, P. M. Hill, and E. Zaffanella. An improved tight
closure algorithm for integer octagonal constraints. In Proc. of
VMCAI, volume 4905 of LNCS, pages 8–21. Springer Verlag,
2008.

[BI05] M. Bozga and R. Iosif. On decidability within the arithmetic of
addition and divisibility. In Foundations of Software Science and
Computational Structures, 8th International Conference, FOS-
SACS 2005, pages 425–439, 2005.

[BI07] M. Bozga and R. Iosif. On flat programs with lists. In Verifica-
tion, Model Checking, and Abstract Interpretation, 8th Interna-
tional Conference, VMCAI 2007, Nice, France, January 14-16,
2007, Proceedings, pages 122–136, 2007.

[BIK10] M. Bozga, R. Iosif, and F. Konečný. Fast acceleration of ulti-
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