
Introduction to Logic and Automata Theory

Radu Iosif

Verimag/CNRS (Grenoble, France)

Ensuring Correctness of Hw/Sw Systems

• Uses logic to specify correctness properties, e.g.:

– the program never crashes

– the program always terminates

– every request to the server is eventually answered

– the output of the tree balancing function is a tree, provided the input

is also a tree ...

• Given a logical specification, we can do either:

– VERIFICATION: prove that a given system satisfies the specification

– SYNTHESIS: build a system that satisfies the specification

Approaches to Verification

• THEOREM PROVING: reduce the verification problem to the satisfiability

of a logical formula (entailment) and invoke an off-the-shelf theorem

prover to solve the latter

– Floyd-Hoare checking of pre-, post-conditions and invariants

– Certification and Proof-Carrying Code

• MODEL CHECKING: enumerate the states of the system and check that

the transition system satisfies the property

– explicit-state model checking (SPIN)

– symbolic model checking (SMV)

• COMBINED METHODS:

– static analysis (ASTREE)

– predicate abstraction (SLAM, BLAST)

Approaches to Synthesis

• TREE AUTOMATA:

– starting point: logical specification

– build word automaton from logic formula

– transform into tree automaton

– decide emptiness and build system from witness tree

• CONTROL and GAME THEORY:

– starting point: incomplete/uncontrolled system with two types of

freedom (system/environment choice) and an objective

– the uncontrolled system is given as a game

– controller/strategy tell how to achieve objective

Logic and Automata Connection

Given an automaton A, we build a logical formula ϕA whose set of models is

exactly the language of the automaton.

Given a logical formula ϕ, we build an automaton Aϕ that recognizes the set

of all structures (models) in which ϕ holds.

Assuming that Aϕ belongs to a well-behaved class of automata, we can

tackle the following problems:

• SATISFIABILITY: ϕ has a model if and only if Aϕ is not empty

• MODEL CHECKING: a given structure is a model of ϕ if and only if it

belongs to the language of Aϕ

Overview: Word and Tree Logics

First Order Logic ⊂ Monadic Second Order Logic

finite words LTL, Star Free, Aperiodic Sets Finite Automata

infinite words LTL, Star Free, Aperiodic Sets Büchi, Rabin Automata

finite trees * Tree Automata

infinite trees * Rabin Automata, Games

Overview: Integer Logics

Presburger Arithmetic ⊂ 〈N,+, Vp〉

Semilinear Sets p-automata

(provided as additional material)

Preliminaries

Words

An alphabet is a finite non-empty set of symbols Σ = {a, b, c, . . .}.

A word of length n over Σ is a sequence w = a0a1 . . . an−1, where ai ∈ Σ, for

all 0 ≤ i < n. An infinite word is an infinite sequence of elements of Σ.

Equivalently, a word is a function w : {0, 1, . . . , n− 1} → Σ. The length n of

the word w is denoted by |w|. The empty word is denoted by ǫ, i.e. |ǫ| = 0.

An infinite word is a function w : N→ Σ.

Σ∗ (Σω) is the set of all finite (infinite) words over Σ, and Σ∞ = Σ∗ ∪ Σω.

We denote Σ+ = Σ∗ \ {ǫ}.

The concatenation of two words w and u is denoted as wu. Note that

w ∈ Σ∗, whereas u ∈ Σ∞. The prefix u of w is defined as u ≤ w iff there

exists v ∈ Σ∞ such that uv = w.

Trees

A prefix-closed set S ⊆ Σ∗ is such that for all w ∈ S and u ∈ Σ∗,

u ≤ w ⇒ u ∈ S.

A prefix-free set S ⊆ Σ∗ is such that for all u, v ∈ S, u 6= v ⇒ u 6≤ v and

v 6≤ u.

A tree over Σ is a partial function t : N∗ 7→ Σ such that dom(t) is a

prefix-closed set.

The children of a tree node w ∈ dom(t) are all nodes wn ∈ dom(t), such

that n ∈ N. A tree t is said to be finite-branching iff for all p ∈ dom(t), the

number of children of p is finite. A tree t is said to be finite if dom(t) is finite.

Trees (contd)

A path π is a set of nodes from dom(t), such that:

1. the root belongs to the path i.e., ǫ ∈ π,

2. for each node p ∈ π, exactly one of its children (if any) is on π.

3. for each node pn ∈ π, such that n ∈ N, we have p ∈ π.

Lemma 1 (König) A finitely branching tree is infinite if and only if it has

an infinite path.

Ranked Trees

A ranked alphabet 〈Σ,#〉 is a set of symbols together with a function

: Σ→ N. For f ∈ Σ, the value #(f) is said to be the arity of f .

A ranked tree t over Σ is a partial function t : N∗ 7→ Σ that satisfies the

following conditions:

• dom(t) is a prefix-closed subset of N∗, and

• for each p ∈ dom(t), if #(t(p)) > 0 then

{i | pi ∈ dom(t)} = {1, . . . ,#(t(p))}.

A symbol of arity zero is also called a constant. A finite tree over a ranked

alphabet is also called a term.

First Order Logic

Syntax

The alphabet of FOL consists of the following symbols:

• predicate symbols: p1, p2, . . . ,=

• function symbols: f1, f2, . . .

• constant symbols: c1, c2, . . .

• first-order variables: x, y, z, . . .

• connectives: ∨,∧,→,↔,¬,⊥,∀,∃

Syntax

The set of first-order terms is defined inductively:

• any constant symbol c is a term,

• any first-order variable x is a term,

• if t1, t2, . . . , tn are terms and f is a function symbol of arity n > 0, then

f(t1, t2, . . . , tn) is a term,

• nothing else is a term.

A term with no variable is said to be a ground term.

Syntax

The set of first-order formulae is defined inductively:

• ⊥ and ⊤ are formulae,

• if t1, t2, . . . , tn are terms and p is a predicate symbol of arity n > 0, then

p(t1, t2, . . . , tn) is a formula,

• if t1, t2 are terms, then t1 = t2 is a formula,

• if ϕ and ψ are formulae, then ϕ • ψ, ¬ϕ, ∀x . ϕ and ∃x . ϕ are formulae,

for • ∈ {∨,∧,→,↔},

• nothing else is a formula.

An atomic proposition is any formula p(t1, . . . , tn) or t1 = t2, where p is a

predicate symbol and t1, t2, . . . , tn are terms.

The language of logic FOL is the set of formulae, denoted as L(FOL).

FOL Formulae

x = y

∀x∀y . x = y ↔ y = x

∀x(∃y . p(x, y))→ q(x)

∀x . p(x)→ q(f(x))

∀x∃y . f(x) = y ∧ (∀z . f(z) = y → z = x)

FOL Formulae

The size of a formula is the number of subformulae it contains, in other

words, the number of nodes in the syntax tree representing the formula. The

size of ϕ is denoted as |ϕ|.

The variables within the scope of a quantifier are said to be bound. The

variables that are not bound are said to be free. We denote by FV (ϕ) the set

of free variables in ϕ. If FV (ϕ) = ∅ then ϕ is said to be a sentence.

Example 1 FV (∀x . x = y ∧ x = z → p(x)) = {y, z}✷

If x ∈ FV (ϕ), we denote by ϕ[x/t] the formula obtained from ϕ by

substituting x with the term t.

Semantics

A structure is a tuple m = 〈U, p̄1, p̄2, . . . , f̄1, f̄2, . . .〉, where:

• U is a (possible infinite) set called the universe,

• p̄i ⊆ U
#(pi), i = 1, 2, . . . are the predicates,

• f̄i : U
#(fi) → U , i = 1, 2, . . . are the functions,

The elements of the universe are called individuals, denoted by c̄1, c̄2,

NB: Every constant c from the alphabet of FOL has a corresponding

individual c̄, but not viceversa.

The symbol 0 has a corresponding number 0̄ ∈ N, and the function symbol s

has a corresponding function x 7→ x+ 1. The number 1̄ ∈ N is denoted as

s(0), the number 2̄ ∈ N as s(s(0)), etc.

Semantics

Let m = 〈U, p̄1, p̄2, . . . , f̄1, f̄2, . . .〉 be a structure.

The interpretation of variables is a function:

ι : {x, y, z, . . .} → U

The interpretation function is extended to terms t, denoted as ι(t) ∈ U :

ι(c) = c̄

ι(f(t1, . . . , tn)) = f̄(ι(t1), . . . , ι(tn))

Semantics

The meaning of a sentence ϕ in the structure m under the interpretation ι is

denoted as [[ϕ]]mι ∈ {true, false} :

[[⊥]]mι = false

[[p(t1, . . . , tn)]]
m

ι = true iff 〈ι(t1), . . . , ι(tn)〉 ∈ p̄

[[t1 = t2]]
m

ι = true iff ι(t1) = ι(t2)

[[¬ϕ]]mι = true iff [[ϕ]]mι = false

[[ϕ ∧ ψ]]mι = true iff [[ϕ]]mι = [[ψ]]mι = true

[[∃x . ϕ]]mι = true iff [[ϕ]]mι[x←u] = true for some u ∈ U

where ι[x← u](y) = ι(y) if x 6= y and ι[x← u](x) = u.

Semantics

Derived meanings:

[[ϕ ∨ ψ]]mι = [[¬(¬ϕ ∧ ¬ψ)]]mι

[[ϕ→ ψ]]mι = [[¬ϕ ∨ ψ]]mι

[[ϕ↔ ψ]]mι = [[(ϕ→ ψ) ∧ (ψ → ϕ)]]mι

[[∀x . ϕ]]mι = [[¬∃x . ¬ϕ]]mι

Decision Problems

If FV (ϕ) = ∅ we denote the meaning of ϕ in m by [[ϕ]]m (the choice of ι is

irrelevant)

If [[ϕ]]m = true we say that m is a model of ϕ, denoted as m |= ϕ.

If m |= ϕ for all structures m, we say that ϕ is valid, denoted as |= ϕ.

If ϕ has at least one model, we say that it is satisfiable.

Satisfiability: Given ϕ is it satisfiable?

Model Checking: Given m and ϕ, does m |= ϕ ?

Examples

Let ≤ be a binary predicate symbol, and m = 〈U, ≤̄〉 be a structure. m is a

partially ordered set if m |= ϕ1 ∧ ϕ2, where:

ϕ1 : ∀x∀y . x ≤ y ∧ y ≤ x↔ x = y

ϕ2 : ∀x∀y∀z . x ≤ y ∧ y ≤ z → x ≤ z

Notice that |= ϕ1 → ∀x . x ≤ x.

m is a linearly ordered set if m |= ϕ1 ∧ ϕ2 ∧ ϕ3, where:

ϕ3 : ∀x∀y . x ≤ y ∨ y ≤ x

Exercises

Exercise 1 Two problems P and Q are equivalent when a method for solving

P is also a method for solving Q, and viceversa. Show that satisfiability and

validity of first-order sentences are equivalent problems. ✷

Exercise 2 Prove the validity of the following sentences:

∀x∀y∀z . x = y ∧ y = z → x = z

(∃x . ϕ ∨ ψ)↔ ((∃x . ϕ) ∨ (∃x . ψ))

(∀x . ϕ ∧ ψ)↔ ((∀x . ϕ) ∧ (∀x . ψ))

(∃x . ϕ ∧ ψ)→ ((∃x . ϕ) ∧ (∃x . ψ))

¬(((∃x . ϕ) ∧ (∃x . ψ))→ (∃x . ϕ ∧ ψ))

((∀x . ϕ) ∨ (∀x . ψ))→ (∀x . ϕ ∨ ψ)

¬((∀x . ϕ ∨ ψ)→ ((∀x . ϕ) ∨ (∀x . ψ)))

Normal Forms

A formula ϕ ∈ L(FOL) is said to be quantifier-free iff it contains no

quantifiers.

A quantifier-free formula ϕ ∈ L(FOL) is said to be in negation normal form

(NNF) iff the only subformulae appearing under negation are atomic

propositions.

A formula ϕ ∈ L(FOL) is said to be in prenex normal form (PNF) iff

ϕ = Q1x1Q2x2 . . . Qnxn . ψ(x1, x2, . . . , xn)

where Qi ∈ {∃,∀} and ψ is a quantifier-free formula. Sometimes ψ is said to

be the matrix of ϕ.

Normal Forms

A quantifier-free formula ϕ ∈ L(FOL) is said to be in disjunctive normal

form (DNF) iff

ϕ =
∨

i

∧

j

λij

where λij are either atomic propositions or negations of atomic propositions.

A quantifier-free formula ϕ ∈ L(FOL) is said to be in conjunctive normal

form (CNF) iff

ϕ =
∧

i

∨

j

λij

where λij are either atomic propositions or negations of atomic propositions.

FOL on Finite Words

Let Σ = {a, b, . . .} be a finite alphabet and w : {0, 1, . . . , n− 1} → Σ be a

finite word, i.e. w = a0a1 . . . an−1 ∈ Σ∗.

The structure corresponding to w is mw = 〈dom(w), {p̄a}a∈Σ, ≤̄〉, where:

• dom(w) = {0, 1, . . . , n− 1},

• p̄a = {x ∈ dom(w) | w(x) = a},

• x≤̄y iff x ≤ y.

mabbaab = 〈{0, . . . , 5}, p̄a = {0, 3, 4}, p̄b = {1, 2, 5}, ≤̄〉

Exercises

Exercise 3 Write a FOL formula S(x, y) which is valid for all positions

x, y ∈ N such that y = x+ 1. ✷

Exercise 4 Write a FOL sentence whose models are all words with a on even

positions and b on odd positions. Next, (try to) write a FOL sentence whose

models are all words with a on even positions. ✷

Exercise 5 Write a FOL formula len(x) that is satisfied by all words of

length x. ✷

Exercise 6 Write a FOL sentence whose models are all finite words. ✷

FOL on Infinite Words

Let w : N→ Σ be an infinite word.

The structure corresponding to w is mw = 〈N, {p̄a}a∈Σ, ≤̄〉.

m(ab)ω = 〈N, p̄a = {2k | k ∈ N}, p̄b = {2k + 1 | k ∈ N}, ≤̄〉

FOL on Finite Trees

Let Σ = {f, g, . . .} be an alphabet and t : N∗ 7→ Σ be a finite tree over Σ.

The structure corresponding to t is mt = 〈dom(t), {p̄f}f∈Σ,�, {sn}n∈N〉,

where:

• p̄f = {p ∈ dom(t) | t(p) = f},

• � is the prefix order on N
∗,

• sn(p) =

pn, if pn ∈ dom(t)

p, otherwise
for all n ∈ N, is the n-th successor.

Examples

mf(f(g,g),g) = 〈{ǫ, 0, 1, 00, 01, 10, 11}, p̄f = {ǫ, 0, 1}, p̄g =

{00, 01, 10, 11}, ≤̄, {s0, s1}〉, where:

• si(p) = pi, for all p ∈ {ǫ, 0, 1} and i ∈ {0, 1},

• s0(00) = s1(00) = 00, s0(01) = s1(01) = 01, s0(10) = s1(10) = 10 and

s0(11) = s1(11) = 11.

The lexicographic order on {0, 1}∗ is defined as follows:

x �lex y
def

= x � y ∨ ∃z . s0(z) � x ∧ s1(z) � y

Exercise 7 A red-black tree is a tree in which all nodes are either red or

black, such that the root is black, and each red node has only black children.

Write a FOL sentence whose models are all red-black trees. ✷

FOL on Infinite Trees

Let t : N∗ 7→ Σ be an infinite tree over Σ.

The structure corresponding to t is mt = 〈N
∗, {p̄f}f∈Σ,�, {sn}n∈N〉, where:

• p̄f = {p ∈ N
∗ | t(p) = f},

• � is the prefix order on N
∗,

• sn(p) = pn, for all n ∈ N, is the n-th successor.

Exercise 8 Given a (possibly infinite) set T = {t1, t2, . . .} of finite or infinite

trees, of finite or infinite branching degrees, represent each tree ti ∈ T as an

infinite binary tree t̄i : {0, 1}
∗ → Σ. ✷

Monadic Second Order Logic

Syntax

The alphabet of MSOL consists of:

• all first-order symbols

• set variables: X,Y,Z, . . .

The set of MSOL terms consists of all first-order terms and set variables. The

set of MSOL formulae consists of:

• all first-order formulae, i.e. L(FOL) ⊆ L(MSOL),

• if t is a term and X is a set variable, then X(t) is a formula,

• if ϕ and ψ are formulae, then ϕ • ψ, ¬ϕ, ∀x . ϕ, ∃x . ϕ, ∀X . ϕ and

∃X . ϕ are formulae, for • ∈ {∨,∧,→,↔}.

X(t) is sometimes written t ∈ X.

Examples

Universal set:

∀x . X(x)

X ⊆ Y :

∀x . X(x)→ Y (x)

X 6= Y :

∃x . (X(x) ∧ ¬Y (x)) ∨ (¬X(x) ∧ Y (x))

X = ∅:

∀x . ¬X(x)

Singleton set:

∀Y . ((∀x . Y (x)→ X(x)) ∧ ∃x . X(x) ∧ ¬Y (x))→ ∀x . ¬Y (x)

Semantics

Let m = 〈U, p̄1, p̄2, . . . , f̄1, f̄2, . . .〉 be a structure.

The interpretation of variables is a function:

ι : {x, y, z, . . .} ∪ {X,Y,Z, . . .} → U ∪ 2U

such that:

• ι(x) ∈ U for each individual variable x

• ι(X) ∈ 2U for each set variable X

[[∃X . ϕ]]mι = true iff [[ϕ]]mι[X←S] = true for some S ⊆ U

MSOL Example

Example 2 The MSOL formula that characterizes all partitions 〈X,Y 〉 of Z:

partition(X,Y,Z) : (∀x∀y . X(x)∧Y (y)→ ¬x = y) ∧ (∀x . Z(x)↔ X(x)∨Y (x))

✷

MSOL on Words: (W)S1S

Let Σ = {a, b, . . .} be a finite alphabet. The alphabet of the sequential

calculus is composed of:

• the function symbol s denotes the successor,

• the set constants {pa | a ∈ Σ}; pa denotes the set of positions of a

• the first and second order variables and connectives.

(W)eak indicates that quantification is over finite sets only.

Example 3 Q: Let mabbaab = 〈{0, . . . , 5}, p̄a = {0, 3, 4}, p̄b = {1, 2, 5}, s̄〉 be

a finite word, where s̄(n) = n+ 1, for n = 0, . . . , 4 and s̄(5) = 5. ✷

Examples

The order x ≤ y on positions is defined as:

• closed(X) : ∀x . X(x)→ X(s(x))

• x ≤ y : ∀X . X(x) ∧ closed(X)→ X(y)

The set of positions of a word is defined by pos(X) : ∀x . X(x).

Examples

The first position is: zero(x) : ∀y . x ≤ y

The set of even positions is defined by

even(X) : ∃z . zero(z) ∧X(z) ∧

∃Y ∃Z . pos(Z) ∧ partition(X,Y,Z) ∧

∀x∀y . X(x) ∧ ¬s(x) = x→ Y (s(x)) ∧

∀x∀y . Y (x) ∧ ¬s(x) = x→ X(s(x))

The set of all words having a’s on even positions is the set of models of the

sentence: ∃X . even(X) ∧ ∀x . X(x)→ pa(x)

Exercise 9 Write a S1S formula whose models are exactly all infinite words

starting with an even number of 0’s followed by an infinite number of 1’s. ✷

MSOL on Trees: (W)SkS

Let Σ = {a, b, . . .} be a tree alphabet. The alphabet of (W)SkS is:

• the function symbols {si | i = 1, . . . , k}, where si(x) denotes the i-th

successor of x; if we allow {si | i ∈ N}, the logic is called (W)SωS,

• the predicate symbols {pa | a ∈ Σ}; pa denotes the set of positions of a

• the first and second order variables and connectives.

In FOL on trees we had ≤ (prefix) instead of si. Why ?

Examples

Let us consider binary trees, i.e. the alphabet of S2S.

• The formula closed(X) : ∀x . X(x)→ X(s0(x)) ∧X(s1(x)) denotes

the fact that X is a downward-closed set.

• The prefix ordering on tree positions is defined by

x ≤ y : ∀X . closed(X) ∧X(x)→ X(y).

• The root of a tree is defined by root(x) : ∀y . x ≤ y.

Exercise

Exercise 10 Define the set of binary trees t : {0, 1}∗ → {a, b} such that

t(p) = a if p is of even length. ✷

Exercise 11 Write a S2S formula path(X) that defines the set of all paths in

a binary tree. ✷

Exercise 12 Write a S2S sentence whose models are all finite trees. ✷

