Introduction to Logic and Automata Theory

Radu losif
Verimag/CNRS (Grenoble, France)

Ensuring Correctness of Hw/Sw Systems

- Uses logic to specify correctness properties, e.g.:
- the program never crashes
- the program always terminates
- every request to the server is eventually answered
- the output of the tree balancing function is a tree, provided the input is also a tree ...
- Given a logical specification, we can do either:
- VERIFICATION: prove that a given system satisfies the specification
- SYNTHESIS: build a system that satisfies the specification

Approaches to Verification

- THEOREM PROVING: reduce the verification problem to the satisfiability of a logical formula (entailment) and invoke an off-the-shelf theorem prover to solve the latter
- Floyd-Hoare checking of pre-, post-conditions and invariants
- Certification and Proof-Carrying Code
- MODEL CHECKING: enumerate the states of the system and check that the transition system satisfies the property
- explicit-state model checking (SPIN)
- symbolic model checking (SMV)
- COMBINED METHODS:
- static analysis (ASTREE)
- predicate abstraction (SLAM, BLAST)

Approaches to Synthesis

- TREE AUTOMATA:
- starting point: logical specification
- build word automaton from logic formula
- transform into tree automaton
- decide emptiness and build system from witness tree
- CONTROL and GAME THEORY:
- starting point: incomplete/uncontrolled system with two types of freedom (system/environment choice) and an objective
- the uncontrolled system is given as a game
- controller/strategy tell how to achieve objective

Logic and Automata Connection

Given an automaton A, we build a logical formula φ_{A} whose set of models is exactly the language of the automaton.

Given a logical formula φ, we build an automaton A_{φ} that recognizes the set of all structures (models) in which φ holds.

Assuming that A_{φ} belongs to a well-behaved class of automata, we can tackle the following problems:

- SATISFIABILITY: φ has a model if and only if A_{φ} is not empty
- MODEL CHECKING: a given structure is a model of φ if and only if it belongs to the language of A_{φ}

Overview: Word and Tree Logics

$$
\text { First Order Logic } \quad \subset \text { Monadic Second Order Logic }
$$

	First Order Logic	\subset	Monadic Second Order Logic
finite words	LTL, Star Free, Aperiodic Sets	Finite Automata	
infinite words	LTL, Star Free, Aperiodic Sets	Büchi, Rabin Automata	
finite trees	$*$	Tree Automata	
infinite trees	$*$	Rabin Automata, Games	

Presburger Arithmetic $\subset\left\langle\mathbb{N},+, V_{p}\right\rangle$

Semilinear Sets p-automata

Preliminaries

Words

An alphabet is a finite non-empty set of symbols $\Sigma=\{a, b, c, \ldots\}$.

A word of length n over Σ is a sequence $w=a_{0} a_{1} \ldots a_{n-1}$, where $a_{i} \in \Sigma$, for all $0 \leq i<n$. An infinite word is an infinite sequence of elements of Σ.

Equivalently, a word is a function $w:\{0,1, \ldots, n-1\} \rightarrow \Sigma$. The length n of the word w is denoted by $|w|$. The empty word is denoted by ϵ, i.e. $|\epsilon|=0$.
$\Sigma^{*}\left(\Sigma^{\omega}\right)$ is the set of all finite (infinite) words over Σ, and $\Sigma^{\infty}=\Sigma^{*} \cup \Sigma^{\omega}$. We denote $\Sigma^{+}=\Sigma^{*} \backslash\{\epsilon\}$.

The concatenation of two words w and u is denoted as $w u$. The prefix u of w is defined as $u \leq w$ iff there exists $v \in \Sigma^{*}$ such that $u v=w$.

Trees

A prefix-closed set $S \subseteq \Sigma^{*}$ is such that for all $w \in S$ and $u \in \Sigma^{*}$, $u \leq w \Rightarrow u \in S$.

A prefix-free set $S \subseteq \Sigma^{*}$ is such that for all $u, v \in S, u \neq v \Rightarrow u \not \leq v$ and $v \not \leq u$.

A tree over Σ is a partial function $t: \mathbb{N}^{*} \mapsto \Sigma$ such that $\operatorname{dom}(t)$ is a prefix-closed set.

A tree t is said to be finite-branching iff for all $p \in \operatorname{dom}(t)$, the number of children of p is finite. A tree t is said to be finite if $\operatorname{dom}(t)$ is finite.

Lemma 1 (König) A finitely branching tree is infinite iff it has an infinite path.

Ranked Trees

A ranked alphabet $\langle\Sigma, \#\rangle$ is a set of symbols together with a function $\#: \Sigma \rightarrow \mathbb{N}$. For $f \in \Sigma$, the value $\#(f)$ is said to be the arity of f.

A ranked tree t over Σ is a partial function $t: \mathbb{N}^{*} \mapsto \Sigma$ that satisfies the following conditions:

- $\operatorname{dom}(t)$ is a finite prefix-closed subset of \mathbb{N}^{*}, and
- for each $p \in \operatorname{dom}(t)$, if $\#(t(p))=n>0$ then
$\{i \mid p i \in \operatorname{dom}(t)\}=\{1, \ldots, n\}$.

A symbol of arity zero is also called a constant. A finite tree over a ranked alphabet is also called a term.

First Order Logic

Syntax

The alphabet of FOL consists of the following symbols:

- predicate symbols: $p_{1}, p_{2}, \ldots,=$
- function symbols: f_{1}, f_{2}, \ldots
- constant symbols: c_{1}, c_{2}, \ldots
- first-order variables: x, y, z, \ldots
- connectives: $\vee, \wedge, \rightarrow, \leftrightarrow, \neg, \perp, \forall, \exists$

Syntax

The set of first-order terms is defined inductively:

- any constant symbol c is a term,
- any first-order variable x is a term,
- if $t_{1}, t_{2}, \ldots, t_{n}$ are terms and f is a function symbol of arity $n>0$, then $f\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a term,
- nothing else is a term.

A term with no variable is said to be a ground term. An atomic proposition is any proposition of the form $p\left(t_{1}, \ldots, p_{n}\right)$ or $t_{1}=t_{2}$, where $t_{1}, t_{2}, \ldots, t_{n}$ are terms.

Syntax

The set of first-order formulae is defined inductively:

- \perp and T are formulae,
- if $t_{1}, t_{2}, \ldots, t_{n}$ are terms and p is a predicate symbol of arity $n>0$, then $p\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ is a formula,
- if t_{1}, t_{2} are terms, then $t_{1}=t_{2}$ is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi, \neg \varphi, \forall x . \varphi$ and $\exists x . \varphi$ are formulae, for $\bullet \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$,
- nothing else is a formula.

The language of logic FOL is the set of formulae, denoted as $\mathcal{L}(F O L)$.

FOL Formulae

$$
x=y
$$

$$
\forall x \forall y . x=y \leftrightarrow y=x
$$

$$
\exists x(\forall y \cdot p(x, y)) \rightarrow q(x)
$$

$$
\forall x \cdot p(x) \rightarrow q(f(x))
$$

$$
\forall x \exists y \cdot f(x)=y \wedge(\forall z \cdot f(z)=y \rightarrow z=x)
$$

FOL Formulae

The size of a formula is the number of subformulae it contains, in other words, the number of nodes in the syntax tree representing the formula. The size of φ is denoted as $|\varphi|$.

The variables within the scope of a quantifier are said to be bound. The variables that are not bound are said to be free. We denote by $F V(\varphi)$ the set of free variables in φ. If $F V(\varphi)=\emptyset$ then φ is said to be a sentence.

Example $1 F V(\forall x . x=y \wedge x=z \rightarrow p(x))=\{y, z\} \square$

If $x \in F V(\varphi)$, we denote by $\varphi[t / x]$ the formula obtained from φ by substituting x with the term t.

Semantics

A structure is a tuple $\mathfrak{m}=\left\langle U, \overline{p_{1}}, \overline{p_{2}}, \ldots, \bar{f}_{1}, \overline{f_{2}}, \ldots\right\rangle$, where:

- U is a (possible infinite) set called the universe,
- $\bar{p}_{i} \subseteq U^{\#\left(p_{i}\right)}, i=1,2, \ldots$ are the predicates,
- $\bar{f}_{i}: U^{\#\left(f_{i}\right)} \rightarrow U, i=1,2, \ldots$ are the functions,

The elements of the universe are called individuals, denoted by $\overline{c_{1}}, \overline{c_{2}}, \ldots$.

NB: Every constant c from the alphabet of FOL has a corresponding individual \bar{c}, but not viceversa.

The symbol 0 has a corresponding number $\overline{0} \in \mathbb{N}$, and the function symbol s has a corresponding function $x \mapsto x+1$. The number $\overline{1} \in \mathbb{N}$ is denoted as $s(0)$, the number $\overline{2} \in \mathbb{N}$ as $s(s(0))$, etc.

Semantics

Let $\mathfrak{m}=\left\langle U, \overline{p_{1}}, \overline{p_{2}}, \ldots, \bar{f}_{1}, \bar{f}_{2}, \ldots\right\rangle$ be a structure.

The interpretation of variables is a function:

$$
\iota:\{x, y, z, \ldots\} \rightarrow U
$$

The interpretation function is extended to terms t, denoted as $\iota(t) \in U$:

$$
\begin{array}{ccc}
\iota(c) & = & \bar{c} \\
\iota\left(f\left(t_{1}, \ldots, t_{n}\right)\right) & = & \bar{f}\left(\iota\left(t_{1}\right), \ldots, \iota\left(t_{n}\right)\right)
\end{array}
$$

Semantics

The meaning of a sentence φ in the structure \mathfrak{m} under the interpretation ι is denoted as $\llbracket \varphi \rrbracket_{\iota}^{\mathfrak{m}} \in\{$ true, false $\}$:

$$
\begin{array}{clc}
\llbracket \perp \rrbracket_{\iota}^{\mathfrak{m}} & =\text { false } \\
\llbracket p\left(t_{1}, \ldots, t_{n}\right) \rrbracket_{\iota}^{\mathfrak{m}} & =\text { true } \quad \text { iff } & \left\langle\iota\left(t_{1}\right), \ldots, \iota\left(t_{n}\right)\right\rangle \in \bar{p} \\
\llbracket t_{1}=t_{2} \rrbracket_{\iota}^{\mathfrak{m}} & =\text { true } \quad \text { iff } & \iota\left(t_{1}\right)=\iota\left(t_{2}\right) \\
\llbracket \neg \varphi \rrbracket_{\iota}^{\mathfrak{m}} & =\text { true iff } \quad \llbracket \varphi \rrbracket_{\iota}^{\mathfrak{m}}=\text { false } \\
\llbracket \varphi \wedge \psi \rrbracket_{\iota}^{\mathfrak{m}} & =\text { true } \quad \text { iff } \quad \llbracket \varphi \rrbracket_{\iota}^{\mathfrak{m}}=\llbracket \psi \rrbracket_{\iota}^{\mathfrak{m}}=\text { true } \\
\llbracket \exists x \cdot \varphi \rrbracket_{\iota}^{\mathfrak{m}} & =\text { true } \quad \text { iff } \quad \llbracket \varphi \rrbracket_{\iota[x \leftarrow u]}^{\mathfrak{m}}=\text { true } \quad \text { for some } u \in U
\end{array}
$$

where $\iota[x \leftarrow u](y)=\iota(y)$ if $x \neq y$ and $\iota[x \leftarrow u](x)=u$.

Semantics

Derived meanings:

$$
\begin{array}{rlr}
\llbracket \varphi \vee \psi \rrbracket_{\iota}^{\mathfrak{m}} & = & \llbracket \neg(\neg \varphi \wedge \neg \psi) \rrbracket_{\iota}^{\mathfrak{m}} \\
\llbracket \varphi \rightarrow \psi \rrbracket_{\iota}^{\mathfrak{m}} & = & \llbracket \neg \varphi \vee \psi \rrbracket_{\iota}^{\mathfrak{m}} \\
\llbracket \varphi \leftrightarrow \psi \rrbracket_{\iota}^{\mathfrak{m}} & =\llbracket(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi) \rrbracket_{\iota}^{\mathfrak{m}} \\
\llbracket \forall x \cdot \varphi \rrbracket_{\iota}^{\mathfrak{m}} & = & \llbracket \neg \exists x \cdot \neg \varphi \rrbracket_{\iota}^{\mathbb{m}^{\mathfrak{m}}}
\end{array}
$$

Decision Problems

If $F V(\varphi)=\emptyset$ we denote the meaning of φ in \mathfrak{m} by $\llbracket \varphi \rrbracket^{\mathfrak{m}}$ (the choice of ι is irrelevant)

If $\llbracket \varphi \rrbracket^{\mathfrak{m}}=$ true we say that \mathfrak{m} is a model of φ, denoted as $\mathfrak{m} \models \varphi$.

If $\mathfrak{m} \models \varphi$ for all structures \mathfrak{m}, we say that φ is valid, denoted as $\models \varphi$.

If φ has at least one model, we say that it is satisfiable.

$$
\text { Satisfiability: Given } \varphi \text { is it satisfiable? }
$$

Model Checking: Given \mathfrak{m} and φ, does $\mathfrak{m} \models \varphi$?

Examples

Let \leq be a binary predicate symbol, and $\mathfrak{m}=\langle U, \overline{\leq}\rangle$ be a structure. \mathfrak{m} is a partially ordered set if $\mathfrak{m} \models \varphi_{1} \wedge \varphi_{2}$, where:

$$
\begin{array}{r}
\varphi_{1}: \forall x \forall y . x \leq y \wedge y \leq x \leftrightarrow x=y \\
\varphi_{2}: \forall x \forall y \forall z . x \leq y \wedge y \leq z \rightarrow x \leq z
\end{array}
$$

Notice that $\models \varphi_{1} \rightarrow \forall x . x \leq x$.
\mathfrak{m} is a linearly ordered set if $\mathfrak{m} \vDash \varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$, where:

$$
\varphi_{3}: \forall x \forall y . x \leq y \vee y \leq x
$$

Exercises

Exercise 1 Two problems P and Q are equivalent when a method for solving P is also a method for solving Q, and viceversa. Show that satisfiability and validity of first-order sentences are equivalent problems.

Exercise 2 Prove the validity of the following sentences:

$$
\begin{array}{r}
\forall x \forall y \forall z \cdot x=y \wedge y=z \rightarrow x=z \\
(\exists x \cdot \varphi \vee \psi) \leftrightarrow((\exists x \cdot \varphi) \vee(\exists x \cdot \psi)) \\
(\forall x \cdot \varphi \wedge \psi) \leftrightarrow((\forall x \cdot \varphi) \wedge(\forall x \cdot \psi)) \\
(\exists x \cdot \varphi \wedge \psi) \rightarrow((\exists x \cdot \varphi) \wedge(\exists x \cdot \psi)) \\
\neg(((\exists x \cdot \varphi) \wedge(\exists x \cdot \psi)) \rightarrow(\exists x \cdot \varphi \wedge \psi)) \\
((\forall x \cdot \varphi) \vee(\forall x \cdot \psi)) \rightarrow(\forall x \cdot \varphi \vee \psi) \\
\neg((\forall x \cdot \varphi \vee \psi) \rightarrow((\forall x \cdot \varphi) \vee(\forall x \cdot \psi)))
\end{array}
$$

Normal Forms

A formula $\varphi \in \mathcal{L}(F O L)$ is said to be quantifier-free iff it contains no quantifiers.

A quantifier-free formula $\varphi \in \mathcal{L}(F O L)$ is said to be in negation normal form (NNF) iff the only subformulae appearing under negation are atomic propositions.

A formula $\varphi \in \mathcal{L}(F O L)$ is said to be in prenex normal form (PNF) iff

$$
\varphi=Q_{1} x_{1} Q_{2} x_{2} \ldots Q_{n} x_{n} \cdot \psi\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where $Q_{i} \in\{\exists, \forall\}$ and ψ is a quantifier-free formula. Sometimes ψ is said to be the matrix of φ.

Normal Forms

A quantifier-free formula $\varphi \in \mathcal{L}(F O L)$ is said to be in disjunctive normal form (DNF) iff

$$
\varphi=\bigvee_{i} \bigwedge_{j} \lambda_{i j}
$$

where $\lambda_{i j}$ are either atomic propositions or negations of atomic propositions.

A quantifier-free formula $\varphi \in \mathcal{L}(F O L)$ is said to be in conjunctive normal form (CNF) iff

$$
\varphi=\bigwedge_{i} \bigvee_{j} \lambda_{i j}
$$

where $\lambda_{i j}$ are either atomic propositions or negations of atomic propositions.

FOL on Finite Words

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet and $w:\{0,1, \ldots, n-1\} \rightarrow \Sigma$ be a finite word, i.e. $w=a_{0} a_{1} \ldots a_{n-1} \in \Sigma^{*}$.

The structure corresponding to w is $\mathfrak{m}_{w}=\left\langle\operatorname{dom}(w),\left\{\overline{p_{a}}\right\}_{a \in \Sigma}, \overline{\leq}\right\rangle$, where:

- $\operatorname{dom}(w)=\{0,1, \ldots, n-1\}$,
- $\overline{p_{a}}=\{x \in \operatorname{dom}(w) \mid w(x)=a\}$,
- $x \leq y$ iff $x \leq y$.

$$
\mathfrak{m}_{a b b a a b}=\left\langle\{0, \ldots, 5\}, \overline{p_{a}}=\{0,3,4\}, \overline{p_{b}}=\{1,2,5\}, \overline{\leq}\right\rangle
$$

Exercises

Exercise 3 Write a FOL formula $S(x, y)$ which is valid for all positions $x, y \in \mathbb{N}$ such that $y=x+1 . \square$

Exercise 4 Write a FOL sentence whose models are all words with a on even positions and b on odd positions. Next, (try to) write a FOL sentence whose models are all words with a on even positions.

Exercise 5 Write a FOL formula len (x) that is satisfied by all words of length x.

Exercise 6 Write a FOL sentence whose models are all finite words.

FOL on Infinite Words

Let $w: \mathbb{N} \rightarrow \Sigma$ be an infinite word.

The structure corresponding to w is $\mathfrak{m}_{w}=\left\langle\mathbb{N},\left\{\overline{p_{a}}\right\}_{a \in \Sigma}, \overline{\leq}\right\rangle$

$$
\mathfrak{m}_{(a b)^{\omega}}=\left\langle\mathbb{N}, \overline{p_{a}}=\{2 k \mid k \in \mathbb{N}\}, \overline{p_{b}}=\{2 k+1 \mid k \in \mathbb{N}\}, \overline{\leq}\right\rangle
$$

FOL on Finite Trees

Let $\Sigma=\{f, g, \ldots\}$ be an alphabet and $t: \mathbb{N}^{*} \mapsto \Sigma$ be a finite tree over Σ.

The structure corresponding to t is $\mathfrak{m}_{t}=\left\langle\operatorname{dom}(t),\left\{\overline{p_{f}}\right\}_{f \in \Sigma}, \preceq,\left\{s_{n}\right\}_{n \in \mathbb{N}}\right\rangle$, where:

- $\overline{p_{f}}=\{p \in \operatorname{dom}(t) \mid t(p)=f\}$,
- \preceq is the prefix order on \mathbb{N}^{*},
- $s_{n}(p)=p n$ for any $n \in \mathbb{N}$, is the n-th successor function.

$$
\mathfrak{m}_{f(f(g, g), g)}=\left\langle\{\epsilon, 0,1,00,01\}, \overline{p_{f}}=\{\epsilon, 0\}, \overline{p_{g}}=\{00,01,1\}, \overline{\leq},\left\{s_{n}\right\}_{n \in \mathbb{N}}\right\rangle
$$

Examples

The lexicographic order on $\{0,1\}^{*}$ is defined as follows:

$$
x \preceq_{\text {lex }} y: x \preceq y \vee \exists z . s_{0}(z) \preceq x \wedge s_{1}(z) \preceq y
$$

Exercise 7 A red-black tree is a tree in which all nodes are either red or black, such that the root is black, and each red node has only black children. Write a FOL sentence whose models are all red-black trees.

FOL on Infinite Trees

Let $t: \mathbb{N}^{*} \mapsto \Sigma$ be an infinite tree over Σ.

The structure corresponding to t is $\mathfrak{m}_{t}=\left\langle\mathbb{N}^{*},\left\{\overline{p_{f}}\right\}_{f \in \Sigma}, \preceq,\left\{s_{n}\right\}_{n \in \mathbb{N}}\right\rangle$.

Exercise 8 Given a (possibly infinite) set $\mathcal{T}=\left\{t_{1}, t_{2}, \ldots\right\}$ of finite or infinite trees, of finite or infinite branching degrees, represent each tree $t_{i} \in \mathcal{T}$ as an infinite binary tree $\bar{t}_{i}:\{0,1\}^{*} \rightarrow \Sigma$.

Monadic Second Order Logic

Syntax

The alphabet of MSOL consists of:

- all first-order symbols
- set variables: X, Y, Z, \ldots

The set of MSOL terms consists of all first-order terms and set variables. The set of MSOL formulae consists of:

- all first-order formulae, i.e. $\mathcal{L}(F O L) \subseteq \mathcal{L}(M S O L)$,
- if t is a term and X is a set variable, then $X(t)$ is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi, \neg \varphi, \forall x . \varphi, \exists x . \varphi, \forall X . \varphi$ and $\exists X . \varphi$ are formulae, for $\bullet \in\{\vee, \wedge, \rightarrow, \leftrightarrow\}$.
$X(t)$ is sometimes written $t \in X$.

Examples

Universal set:

$$
\forall x . X(x)
$$

$X \subseteq Y:$

$$
\forall x . X(x) \rightarrow Y(x)
$$

$X \neq Y$:

$$
\exists x \cdot(X(x) \wedge \neg Y(x)) \vee(\neg X(x) \wedge Y(x))
$$

$X=\emptyset:$

$$
\forall x . \neg X(x)
$$

Singleton set:

$$
\forall Y .((\forall x . Y(x) \rightarrow X(x)) \wedge \exists x . X(x) \wedge \neg Y(x)) \rightarrow \forall x . \neg Y(x)
$$

Semantics

Let $\mathfrak{m}=\left\langle U, \overline{p_{1}}, \overline{p_{2}}, \ldots, \overline{f_{1}}, \overline{f_{2}}, \ldots\right\rangle$ be a structure.

The interpretation of variables is a function:

$$
\iota:\{x, y, z, \ldots\} \cup\{X, Y, Z, \ldots\} \rightarrow U \cup 2^{U}
$$

such that:

- $\iota(x) \in U$ for each individual variable x
- $\iota(X) \in 2^{U}$ for each set variable X

$$
\left.\llbracket \exists X \cdot \varphi \rrbracket_{\iota}^{\mathfrak{m}}=\text { true iff } \llbracket \varphi\right]_{\iota[X \leftarrow S]}^{\mathfrak{m}}=\text { true for some } S \subseteq U
$$

MSOL Example

Example 2 The MSOL formula that characterizes all partitions $\langle X, Y\rangle$ of Z : partition $(X, Y, Z):(\forall x \forall y . X(x) \wedge Y(y) \rightarrow \neg x=y) \wedge(\forall x . Z(x) \leftrightarrow X(x) \vee Y(x))$

MSOL on Words: (W)S1S

Let $\Sigma=\{a, b, \ldots\}$ be a finite alphabet. The alphabet of the sequential calculus is composed of:

- the function symbol s denotes the successor,
- the set constants $\left\{p_{a} \mid a \in \Sigma\right\} ; p_{a}$ denotes the set of positions of a
- the first and second order variables and connectives.
(W)eak indicates that quantification is over finite sets only.

$$
\begin{aligned}
& \text { Q: Let } \mathfrak{m}_{\text {abbaab }}=\left\langle\{0, \ldots, 5\}, \overline{p_{a}}=\{0,3,4\}, \overline{p_{b}}=\{1,2,5\}, \bar{s}\right\rangle \text { be a } \\
& \text { finite word. How much is } \bar{s}(5) \text { ? }
\end{aligned}
$$

Examples

The order $x \leq y$ on positions is defined as:

- $\operatorname{closed}(X): \forall x . X(x) \rightarrow X(s(x))$
- $x \leq y: \forall X . X(x) \wedge \operatorname{closed}(X) \rightarrow X(y)$

The set of positions of a word is defined by $\operatorname{pos}(X): \forall x . X(x)$.

Examples

The first position is:

$$
z \operatorname{ero}(x): \forall y \cdot x \leq y
$$

The set of even positions is defined by

$$
\begin{aligned}
\operatorname{even}(X): & \exists z \cdot z \operatorname{ero}(z) \wedge \exists Y, Z \cdot \operatorname{pos}(Z) \wedge \operatorname{partition}(X, Y, Z) \wedge \\
& \forall x, y \cdot X(x) \wedge s(x)=y \rightarrow Y(y) \wedge \\
& \forall x, y \cdot Y(x) \wedge s(x)=y \rightarrow Y(x) \wedge X(z)
\end{aligned}
$$

The set of all words having a 's on even positions is the set of models of the sentence:

$$
\exists X . \operatorname{even}(X) \wedge \forall x . X(x) \rightarrow p_{a}(x)
$$

Exercise

Exercise 9 Write a S1S formula whose models are exactly all infinite words starting with an even number of 0 's followed by an infinite number of 1 's.

MSOL on Trees: (W)S ω S

Let $\Sigma=\{a, b, \ldots\}$ be a tree alphabet. The alphabet of (W)S ω S is:

- the function symbols $\left\{s_{i} \mid i \in \mathbb{N}\right\} ; s_{i}(x)$ denotes the i-th successor of x
- the set constants $\left\{p_{a} \mid a \in \Sigma\right\} ; p_{a}$ denotes the set of positions of a
- the first and second order variables and connectives.

In FOL on trees we had \leq (prefix) instead of s_{i}. Why ?

Examples

Let us consider binary trees, i.e. the alphabet of S2S.

- The formula $\operatorname{closed}(X): \forall x . X(x) \rightarrow X\left(s_{0}(x)\right) \wedge X\left(s_{1}(x)\right)$ denotes the fact that X is a downward-closed set.
- The prefix ordering on tree positions is defined by $x \leq y: \forall X . \operatorname{closed}(X) \wedge X(x) \rightarrow X(y)$.
- The root of a tree is defined by $\operatorname{root}(x): \forall y . x \leq y$.

Exercise

Exercise 10 Define the set of binary trees $t:\{0,1\}^{*} \rightarrow\{a, b\}$ such that $t(p)=a$ if p is of even length and $t(p)=b$ if p is of odd length.

Exercise 11 Write a $S \omega S$ formula path (X) that defines the set of all paths in a binary tree.

Exercise 12 Write a $S \omega S$ sentence whose models are all finite trees.

