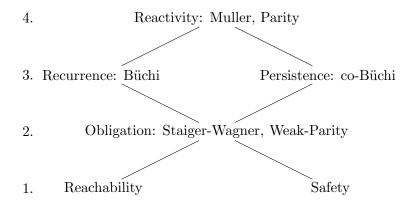
Obligation and Weak-Parity Games

Barbara Jobstmann

Cadence Design Systems Ecole Polytechnique Fédérale de Lausanne

Grenoble, December 2018

Hierarchy



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

We consider games where the winning condition for Player 0 (on the play) is

- ▶ a Boolean combination of reachability conditions
- ▶ equivalently: a condition on the set Occ

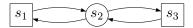
Standard form: Staiger-Wagner winning condition, using

 $F = \{F_1, \ldots, F_k\}$

Player 0 wins play ρ iff $Occ(\rho) \in F$. We call these games obligation games (or Staiger-Wagner games).

Example

$$S = \{s_1, s_2, s_3\} F = \{\{s_1, s_2, s_3\}\}$$



(日) (四) (문) (문) (문)

No winning strategy is positional.

There is a finite-state winning strategy.

Weak Parity Games

Method for solving Staiger-Wagner games:

- 1. Solve weak parity games.
- 2. Reduce Staiger-Wagner games to weak parity games.

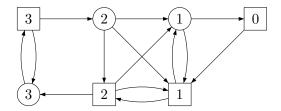
A weak parity game is a pair (G, p), where

•
$$G = (S, S_0, E)$$
 is a game graph and

p: S → {0,...,k} is a priority function mapping every state in S to a number in {0,...,k}.

A play ρ is winning for Player 0 iff the minimum priority occurring in ρ is even: $\min_{s \in Occ(\rho)} p(s)$ is even

Example



For a weak parity game one can compute the winning regions W_0 , W_1 and also construct corresponding positional winning strategies.

Proof.

Let $G = (S, S_0, E)$ be a game graph, $p : S \to \{0, \dots, k\}$ a priority function. Let $P_i = \{s \in S \mid p(s) = i\}.$

First steps if $P_0 \neq \emptyset$: We first compute $A_0 = \text{Attr}_0(P_0)$, clearly from here Player 0 can win.

In the rest game, we compute $A_1 = \text{Attr}_1(P_1 \setminus A_0)$ from here Player 1 can win.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

General Construction

Aim: Compute $A_0, A_1, \ldots A_k$ Let G_i be the game graph restricted to $S \setminus (A_0 \cup \ldots A_{i-1})$. Attr $_0^{G_i}(M)$ is the 0-attractor of M in the subgraph induced by G_i

$$\begin{array}{ll} A_0 & := \operatorname{Attr}_0(P_0) \\ A_1 & := \operatorname{Attr}_1^{G_1}(P_1 \setminus A_0) \\ \text{for } i > 1 : \\ A_i & := \begin{cases} \operatorname{Attr}_0^{G_i}(P_i \setminus (A_0 \cup \ldots \cup A_{i-1})) & \text{if } i \text{ is even} \\ \operatorname{Attr}_1^{G_i}(P_i \setminus (A_0 \cup \ldots \cup A_{i-1})) & \text{if } i \text{ is odd} \end{cases} \end{array}$$

Correctness

Correctness Claim:

$$W_0 = \bigcup_{i \text{ even}} A_i \text{ and } W_1 = \bigcup_{i \text{ odd}} A_i$$

and the union of the corresponding attractor strategies are positional winning strategies for the two players on their respective winning regions.

Prove by induction on $j = 0, \ldots, k$ the following:

$$\bigcup_{i=0..j,i \text{ even}} A_i \subseteq W_0 \text{ and } \bigcup_{i=1..j,i \text{ odd}} A_i \subseteq W_1$$

Base:

- $i=0: A_0 = \operatorname{Attr}_0(P_0) \subseteq W_0$
- i=1: $A_1 = \operatorname{Attr}_1(P_1 \setminus A_0) \subseteq W_1$

Induction step:

- ▶ i even: Consider play ρ starting A_i that complies to attractor strategy.
 - Case 1: ρ eventually leaves A_i to some A_j (from a Player-1 state), which j < i and even, then Player 0 wins by induction hypothesis.
 - Case 2: ρ visits P_i , then we need to show that ρ visits only states with $p(s) \ge i$. Consider a state s that visits P_i , then
 - if $s \in S_0$, then not all edges lead to states with lower priority, otherwise $s \in A_j$ for some j < i. Contradiction.

Correctness (cont.)

- \blacktriangleright Case 2 (cont.):
 - if $s \in S_1$, then all edges lead to states with priority $\geq i$. Any edge to a lower priority must lead to A_j with even j (Case 1). If there were edges to states s' with priority j < i and j odd, then s' would already be in A_j . Contradiction.

(日) (四) (코) (코) (코) (코)

▶ i odd: switch players

Obligation/Staiger-Wagner to Weak-Parity Games

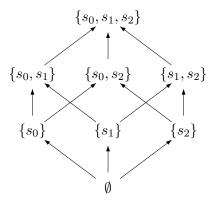
▶ How to translate a Staiger-Wagner automaton to Weak-Parity automaton?

(日) (四) (분) (분) (분) 분

- ▶ Idea: record visited states during a run
- Record set: $R \subseteq S$
- ▶ Question: How to give priorities?

Record Sets and Priorities

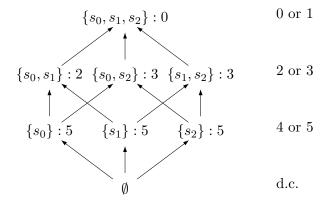
Assume automaton with states $\{s_0, s_1, s_2\}$. Consider possible record sets:



Assume the following run $s_1, s_0, s_1, s_0, s_2, \dots$ and the acceptance condition $F = \{\{s_0, s_1\}, \{s_0, s_1, s_2\}\}$. How to assign priorities?

Record Sets and Priorities

 $F = \{\{s_0, s_1\}, \{s_0, s_1, s_2\}\}$. How would you assign priorities?



<ロト (四) (注) (注) () ()

From Staiger-Wagner to Weak Parity Automata

Given a deterministic Staiger-Wagner automaton A = (S, I, T, F), we can construct an equivalent weak parity automaton A' = (S', I', T', p) as follows:

$$\begin{array}{ll} S' & := S \times 2^S \\ I' & := (I, \{I\}) \\ T'((s, R), a) & := (T(s, a), R \cup \{T(s, a)\} \\ p((s, R)) & := 2 \cdot |S| - \begin{cases} 2 \cdot |R| & \text{if } R \in F \\ 2 \cdot |R| - 1 & \text{if } R \notin F \end{cases} \end{array}$$

Idea of Game Reduction

We want to solve Staiger-Wagner games. We use a reduction to weak parity games (and the positional winning strategies of weak parity games).

Reduction will transform a game (G, ϕ) into a game (G', ϕ') such that usually

- G' is (usually) larger than G
- ϕ' is simpler than ϕ (so the solution of (G', ϕ') is simpler than that of (G, ϕ))

▶ from a solution of (G', ϕ') we can construct a solution of (G, ϕ) . Concrete application: Transform Staiger-Wagner game into a weak parity game over a larger graph (from S proceed to $S \times 2^S$)

Game Reduction

Let $G = (S, S_0, E)$ and $G' = (S', S'_0, E')$ be game graphs with winning conditions ϕ and ϕ' , respectively.

 (G, ϕ) is reducible to (G', ϕ') if:

1. $S' = S \times M$ for a finite set M and $S'_0 = S_0 \times M$

- 2. Each play $\rho = s_0 s_1 \dots$ over G is translated into a play $\rho' = s'_0 s'_1 \dots$ over G' by
 - a function $f: S \to S \times M$ (the beginning of ρ').
 - ▶ forall states (m, s) ∈ S × M in G' and all states s' ∈ S in G, if there exists an edge (s, s') ∈ E, then there is a unique m' with ((m, s), (m', s')) ∈ E'

- ▶ for all edges $((m, s), (m', s')) \in E'$ in G', there is an edges $(s, s') \in E$ in G
- 3. For all plays ρ and ρ' according to 2.: $\rho \in \phi$ iff $\rho' \in \phi'$

Suppose (G, ϕ) is reducible to (G', ϕ') with extension set M, initial function g, and G and G' defined as before. Then, if Player 0 wins in (G', ϕ') from g(s) with a memoryless winning strategy, then Player 0 wins in (G, ϕ) from s with a finite-state strategy.

Idea: Given a memoryless winning strategy $f: S'_0 \to S'$ from g(s) for Player 0 in (G', ϕ') , we can construct a strategy automaton $A = (M, m_0, \delta, \lambda)$ for Player 0 in (G, ϕ) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Given a Staiger-Wagner game (G, ϕ) , one can compute the winning regions of Player 0 and 1 and corresponding finite state strategies. Proof.

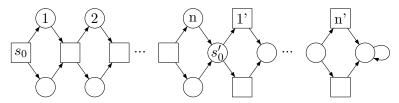
We can apply game reduction with (G', ϕ') as follows:

$$\begin{array}{ll} G' & := (S', S'_0, E') \\ S' & := 2^S \times S \\ ((R, s), (R', s')) \in E') & \text{iff } (s, s') \in E, R' = R \cup \{s'\} \\ g(s) & = (\{s\}, s) \\ p((R, s)) & := 2 \cdot |S| - \begin{cases} 2 \cdot |R| & \text{if } R \in \phi \\ 2 \cdot |R| - 1 & \text{if } R \notin \phi \end{cases} \end{array}$$

JAG.

There is a family of Staiger-Wagner games over game graphs G_1, G_2, G_3, \ldots which grow linearly in n such that

- ▶ Player 0 wins from a certain initial vertex of G_n
- ▶ any finite-state strategy for Player 0 needs at least 2^n states



Winning condition:

 $\phi = \{ \rho \mid \forall i = 1 \dots n : i \in \operatorname{Occ}(\rho) \leftrightarrow i' \in \operatorname{Occ}(\rho) \}$

Claim:

Over G_n there is an automaton winning strategy for Player 0 from vertex s_0 with a memory of size 2^n . (Remember the visited vertices *i*, for the appropriate choice from vertex s'_0 onwards.) Each automaton winning strategy for Player 0 from s_0 in G_n has a

memory of 2^n many states.

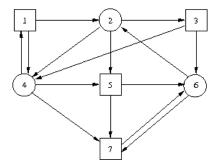
Proof.

Assume $|\text{states}| < 2^n$ is sufficient.

Then two play prefixes $u \neq v$ exist leading to the same memory states at s'_0 . The rest r of the play is then the same after u and v. One of the two player ur, vr is lost by Player 0. Contradiction.

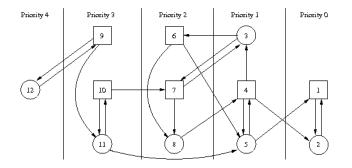
Exercise

- 1. Consider the game graph shown below. Let the winning condition for Player 0 be $Occ(\rho) = \{1, 2, 3, 4, 5, 6, 7\}.$
 - 1. Find the winning region for Player 0 and describe a winning strategy
 - 2. Show that there is no positional winning strategy for Player 0.



(日) (四) (분) (분) (분) 분

2. Compute the winning regions and the corresponding positional winning strategies for Player 0 and 1 in this weak-parity game.



(日) (四) (분) (분) (분) 분

Exercise

A winning strategy is called *uniform* if it is a winning strategy from every winning state in the game. Let (G, p) be a weak parity game and let W₀ be the winning region of Player 0. For all s ∈ W₀ let f_s be a positional winning strategy from s for Player 0. Construct a uniform winning strategy f from the strategies f_s meaning that for every s ∈ W₀ there is a t ∈ W₀, s.t. f(s) = f_t(s).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で