Obligation and Weak-Parity Games

Barbara Jobstmann

Cadence Design Systems
Ecole Polytechnique Fédérale de Lausanne

Grenoble, December 2018

Hierarchy

4.

3. Recurrence: Büchi Persistence: co-Büchi
2. Obligation: Staiger-Wagner, Weak-Parity

1. Reachability

Obligation Games

We consider games where the winning condition for Player 0 （on the play）is
－a Boolean combination of reachability conditions
－equivalently：a condition on the set Occ
Standard form：Staiger－Wagner winning condition，using
$F=\left\{F_{1}, \ldots, F_{k}\right\}$
Player 0 wins play ρ iff $\operatorname{Occ}(\rho) \in F$ ．We call these games obligation games（or Staiger－Wagner games）．

Example

$S=\left\{s_{1}, s_{2}, s_{3}\right\} F=\left\{\left\{s_{1}, s_{2}, s_{3}\right\}\right\}$

No winning strategy is positional．
There is a finite－state winning strategy．

Weak Parity Games

Method for solving Staiger-Wagner games:

1. Solve weak parity games.
2. Reduce Staiger-Wagner games to weak parity games.

A weak parity game is a pair (G, p), where

- $G=\left(S, S_{0}, E\right)$ is a game graph and
- $p: S \rightarrow\{0, \ldots, k\}$ is a priority function mapping every state in S to a number in $\{0, \ldots, k\}$.

A play ρ is winning for Player 0 iff the minimum priority occurring in ρ is even: $\min _{s \in \operatorname{Occ}(\rho)} p(s)$ is even

Example

Weak Parity Games

Theorem

For a weak parity game one can compute the winning regions W_{0}, W_{1} and also construct corresponding positional winning strategies.

Proof.
Let $G=\left(S, S_{0}, E\right)$ be a game graph, $p: S \rightarrow\{0, \ldots, k\}$ a priority function. Let $P_{i}=\{s \in S \mid p(s)=i\}$.

First steps if $P_{0} \neq \emptyset$: We first compute $A_{0}=\operatorname{Attr}_{0}\left(P_{0}\right)$, clearly from here Player 0 can win.

In the rest game, we compute $A_{1}=\operatorname{Attr}_{1}\left(P_{1} \backslash A_{0}\right)$ from here Player 1 can win.

General Construction

Aim: Compute $A_{0}, A_{1}, \ldots A_{k}$
Let G_{i} be the game graph restricted to $S \backslash\left(A_{0} \cup \ldots A_{i-1}\right)$. $\operatorname{Attr}_{0}^{G_{i}}(M)$ is the 0 -attractor of M in the subgraph induced by G_{i}

$$
\begin{array}{ll}
A_{0} & :=\operatorname{Attr}_{0}\left(P_{0}\right) \\
A_{1} & :=\operatorname{Attr}_{1}^{G_{1}}\left(P_{1} \backslash A_{0}\right) \\
\text { for } i>1: & := \begin{cases}\operatorname{Attr}_{0}^{G_{i}}\left(P_{i} \backslash\left(A_{0} \cup . . \cup A_{i-1}\right)\right) & \text { if } i \text { is even } \\
\operatorname{Attr}_{1}^{G_{i}}\left(P_{i} \backslash\left(A_{0} \cup . . \cup A_{i-1)}\right)\right. & \text { if } i \text { is odd }\end{cases}
\end{array}
$$

Correctness

Correctness Claim:

$$
W_{0}=\bigcup_{i \text { even }} A_{i} \text { and } W_{1}=\bigcup_{i \text { odd }} A_{i}
$$

and the union of the corresponding attractor strategies are positional winning strategies for the two players on their respective winning regions.

Prove by induction on $j=0, \ldots, k$ the following:

$$
\bigcup_{0 . . j, i \text { even }} A_{i} \subseteq W_{0} \text { and } \bigcup_{i=1 . . j, i \text { odd }} A_{i} \subseteq W_{1}
$$

Correctness (cont.)

Base:

- $\mathrm{i}=0: A_{0}=\operatorname{Attr}_{0}\left(P_{0}\right) \subseteq W_{0}$
- $\mathrm{i}=1: A_{1}=\operatorname{Attr}_{1}\left(P_{1} \backslash A_{0}\right) \subseteq W_{1}$

Induction step:

- i even: Consider play ρ starting A_{i} that complies to attractor strategy.
- Case 1: ρ eventually leaves A_{i} to some A_{j} (from a Player-1 state), which $j<i$ and even, then Player 0 wins by induction hypothesis.
- Case 2: ρ visits P_{i}, then we need to show that ρ visits only states with $p(s) \geq i$. Consider a state s that visits P_{i}, then
- if $s \in S_{0}$, then not all edges lead to states with lower priority, otherwise $s \in A_{j}$ for some $j<i$. Contradiction.

Correctness (cont.)

- Case 2 (cont.):
- if $s \in S_{1}$, then all edges lead to states with priority $\geq i$. Any edge to a lower priority must lead to A_{j} with even j (Case 1). If there were edges to states s^{\prime} with priority $j<i$ and j odd, then s^{\prime} would already be in A_{j}. Contradiction.
- i odd: switch players

Obligation／Staiger－Wagner to Weak－Parity Games

－How to translate a Staiger－Wagner automaton to Weak－Parity automaton？
－Idea：record visited states during a run
－Record set：$R \subseteq S$
－Question：How to give priorities？

$\underline{\text { Record Sets and Priorities }}$

Assume automaton with states $\left\{s_{0}, s_{1}, s_{2}\right\}$.
Consider possible record sets:

Assume the following run $s_{1}, s_{0}, s_{1}, s_{0}, s_{2}, \ldots$ and the acceptance condition $F=\left\{\left\{s_{0}, s_{1}\right\},\left\{s_{0}, s_{1}, s_{2}\right\}\right\}$. How to assign priorities?

$\underline{\text { Record Sets and Priorities }}$

$$
F=\left\{\left\{s_{0}, s_{1}\right\},\left\{s_{0}, s_{1}, s_{2}\right\}\right\} . \text { How would you assign priorities? }
$$

From Staiger-Wagner to Weak Parity Automata

Given a deterministic Staiger-Wagner automaton $A=(S, I, T, F)$, we can construct an equivalent weak parity automaton $A^{\prime}=\left(S^{\prime}, I^{\prime}, T^{\prime}, p\right)$ as follows:

$$
\begin{array}{ll}
S^{\prime} & :=S \times 2^{S} \\
I^{\prime} & :=(I,\{I\}) \\
T^{\prime}((s, R), a) & :=(T(s, a), R \cup\{T(s, a)\} \\
p((s, R)) & :=2 \cdot|S|- \begin{cases}2 \cdot|R| & \text { if } R \in F \\
2 \cdot|R|-1 & \text { if } R \notin F\end{cases}
\end{array}
$$

Idea of Game Reduction

We want to solve Staiger-Wagner games. We use a reduction to weak parity games (and the positional winning strategies of weak parity games).
Reduction will transform a game (G, ϕ) into a game $\left(G^{\prime}, \phi^{\prime}\right)$ such that usually

- G^{\prime} is (usually) larger than G
- ϕ^{\prime} is simpler than ϕ (so the solution of $\left(G^{\prime}, \phi^{\prime}\right)$ is simpler than that of $(G, \phi))$
- from a solution of $\left(G^{\prime}, \phi^{\prime}\right)$ we can construct a solution of (G, ϕ).

Concrete application: Transform Staiger-Wagner game into a weak parity game over a larger graph (from S proceed to $S \times 2^{S}$)

Game Reduction

Let $G=\left(S, S_{0}, E\right)$ and $G^{\prime}=\left(S^{\prime}, S_{0}^{\prime}, E^{\prime}\right)$ be game graphs with winning conditions ϕ and ϕ^{\prime}, respectively.
(G, ϕ) is reducible to $\left(G^{\prime}, \phi^{\prime}\right)$ if:

1. $S^{\prime}=S \times M$ for a finite set M and $S_{0}^{\prime}=S_{0} \times M$
2. Each play $\rho=s_{0} s_{1} \ldots$ over G is translated into a play $\rho^{\prime}=s_{0}^{\prime} s_{1}^{\prime} \ldots$ over G^{\prime} by

- a function $f: S \rightarrow S \times M$ (the beginning of ρ^{\prime}).
- forall states $(m, s) \in S \times M$ in G^{\prime} and all states $s^{\prime} \in S$ in G, if there exists an edge $\left(s, s^{\prime}\right) \in E$, then there is a unique m^{\prime} with $\left((m, s),\left(m^{\prime}, s^{\prime}\right)\right) \in E^{\prime}$
- forall edges $\left((m, s),\left(m^{\prime}, s^{\prime}\right)\right) \in E^{\prime}$ in G^{\prime}, there is an edges $\left(s, s^{\prime}\right) \in E$ in G

3. For all plays ρ and ρ^{\prime} according to 2.: $\rho \in \phi$ iff $\rho^{\prime} \in \phi^{\prime}$

Application of Game Reduction

Theorem
Suppose (G, ϕ) is reducible to $\left(G^{\prime}, \phi^{\prime}\right)$ with extension set M, initial function g, and G and G^{\prime} defined as before. Then, if Player 0 wins in $\left(G^{\prime}, \phi^{\prime}\right)$ from $g(s)$ with a memoryless winning strategy, then Player 0 wins in (G, ϕ) from s with a finite-state strategy.

Idea: Given a memoryless winning strategy $f: S_{0}^{\prime} \rightarrow S^{\prime}$ from $g(s)$ for Player 0 in $\left(G^{\prime}, \phi^{\prime}\right)$, we can construct a strategy automaton $A=\left(M, m_{0}, \delta, \lambda\right)$ for Player 0 in (G, ϕ).

Obligation/Staiger-Wagner Games

Theorem

Given a Staiger-Wagner game (G, ϕ), one can compute the winning regions of Player 0 and 1 and corresponding finite state strategies.

Proof.
We can apply game reduction with $\left(G^{\prime}, \phi^{\prime}\right)$ as follows:

$$
\begin{array}{ll}
G^{\prime} & :=\left(S^{\prime}, S_{0}^{\prime}, E^{\prime}\right) \\
S^{\prime} & :=2^{S} \times S \\
\left.\left((R, s),\left(R^{\prime}, s^{\prime}\right)\right) \in E^{\prime}\right) & \text { iff }\left(s, s^{\prime}\right) \in E, R^{\prime}=R \cup\left\{s^{\prime}\right\} \\
g(s) & =(\{s\}, s) \\
p((R, s)) & :=2 \cdot|S|- \begin{cases}2 \cdot|R| & \text { if } P \in \phi \\
2 \cdot|R|-1 & \text { if } P \notin \phi\end{cases}
\end{array}
$$

Exponential-Size Memory

Theorem

There is a family of Staiger-Wagner games over game graphs $G_{1}, G_{2}, G_{3}, \ldots$ which grow linearly in n such that

- Player 0 wins from a certain initial vertex of G_{n}
- any finite-state strategy for Player 0 needs at least 2^{n} states

Winning condition:

$$
\phi=\left\{\rho \mid \forall i=1 \ldots n: i \in \operatorname{Occ}(\rho) \leftrightarrow i^{\prime} \in \operatorname{Occ}(\rho)\right\}
$$

Exponential Memory (cont.)

Claim:

Over G_{n} there is an automaton winning strategy for Player 0 from vertex s_{0} with a memory of size 2^{n}. (Remember the visited vertices i, for the appropriate choice from vertex s_{0}^{\prime} onwards.)

Each automaton winning strategy for Player 0 from s_{0} in G_{n} has a memory of 2^{n} many states.

Proof.
Assume \mid states $\mid<2^{n}$ is sufficient.
Then two play prefixes $u \neq v$ exist leading to the same memory states at s_{0}^{\prime}. The rest r of the play is then the same after u and v.

One of the two player $u r, v r$ is lost by Player 0. Contradiction.

Exercise

1．Consider the game graph shown below．Let the winning condition for Player 0 be $\operatorname{Occ}(\rho)=\{1,2,3,4,5,6,7\}$ ．

1．Find the winning region for Player 0 and describe a winning strategy
2．Show that there is no positional winning strategy for Player 0 ．

Exercise

2. Compute the winning regions and the corresponding positional winning strategies for Player 0 and 1 in this weak-parity game.

Exercise

3. A winning strategy is called uniform if it is a winning strategy from every winning state in the game. Let (G, p) be a weak parity game and let W_{0} be the winning region of Player 0 . For all $s \in W_{0}$ let f_{s} be a positional winning strategy from s for Player
0 . Construct a uniform winning strategy f from the strategies f_{s} meaning that for every $s \in W_{0}$ there is a $t \in W_{0}$, s.t. $f(s)=f_{t}(s)$.
