
Automata-based Termination Proofs

Radu Iosif1 and Adam Rogalewicz2

VERIMAG, CNRS, 2 av. de Vignate, F-38610 Gières, e-mail:iosif@imag.fr
FIT, BUT, Božetěchova 2, CZ-61266 Brno, e-mail:rogalew@fit.vutbr.cz

Abstract. This paper proposes a framework for detecting termination of pro-
grams handling infinite and complex data domains, such as pointer structures. In
this framework, the user has to specify a finite number of well-founded relations
on the data domain manipulated by these programs. Our tool then builds an ini-
tial abstraction of the program, which is checked for existence of potential infinite
runs, by testing emptiness of its intersection with a predefined Büchi automaton.
If the intersection is non-empty, a lasso-shaped counterexample is found. This
counterexample is checked for spuriousness by a domain-specific procedure, and
in case it is found to be spurious, the abstraction is refined, again by intersection
with the complement of the Büchi automaton representing the lasso. We have in-
stantiated the framework for programs handling tree-like data structures, which
allowed us to prove termination of programs such as the depth-first tree traversal,
the Deutsch-Schorr-Waite tree traversal, or the linking leaves algorithm.

1 Introduction
Proving termination is an important challenge for the existing software verification
tools, requiring specific analysis techniques [18, 6, 21]. The basic principle underlying
these methods is proving that, in every infinite computation of the program, a certain
measure, pertaining to a well-founded domain, decreases infinitely often.

We propose here a new termination analysis, based on the following principles:
1. We consider programs working on infinite data domains 〈D,"1, . . . ,"n〉 equipped

with an arbitrary number of well-founded partial orders.
2. If ⇒ ⊆ D×D is any transformation induced by a program statement, and "i, 1 ≤

i ≤ n is any partial order on D, i.e. we assume that the problem ⇒ ∩ "i
?
= /0 is

decidable algorithmically.
3. An abstraction of the program is built automatically and checked for the existence

of potential non-terminating execution paths. If such a path exists, then an infinite
path of the form σλω (called lasso) is exhibited.

4. Due to the over-approximation involved in the construction of the abstraction, the
lasso found may be spurious i.e. it may not correspond to a real execution of the
program. In this case we use domain-specific procedures to detect spuriousness,
and, if the lasso is found to be spurious, the abstraction is refined by eliminating it.
The framework described here needs to be instantiated for particular classes of pro-

grams, by providing the following ingredients:
– well-founded relations "1, . . . ,"n on the working domain D. (In principle, their

choice is naturally determined by the working domain.)
– a decision procedure for the problems ⇒ ∩ "i

?
= /0, 1 ≤ i ≤ n, where ⇒ is any

transition relation induced by a program statement.

– a decision procedure for the spuriousness problem: given a lasso σλω, where σ and
λ are finite sequences of program statements, does there exists an infinite execution
of the program along the path σλω?
The main reason for which we currently ask the user to provide the relations is

that our technique is geared towards data domains which cannot be encoded by a fi-
nite number of descriptors, such as tree-structured domains, and more complex pointer
structures. Well-founded relations for classical such domains (e.g. terms over a ranked
alphabet) are provided in the literature. Moreover, we are not aware of efficient tech-
niques for automatic discovery of well-founded relations on such domains, which is an
interesting topic for future research.

Providing suitable representations for the well-founded relations, as well as for the
program transitions enables the framework to compute an initial abstraction of the pro-
gram. The initial abstraction is an automaton which has the same control states as the
program, and each edge in the control flow graph of the program is covered by one or
more transitions labeled with relational symbols.

The abstraction is next checked for the existence of potentially non-terminating ex-
ecutions. This check uses the information provided by the well-founded relations, and
excludes all lassos for which there exists a strictly decreasing well-founded relation
)i, 1 ≤ i≤ n that holds between the entry and exit of the loop body. This step amounts
to checking non-emptiness of the intersection between the abstraction and a predefined
Büchi automaton. If the intersection is empty, the original program terminates, other-
wise a lasso-shaped counterexample of the form σλω is exhibited.

Deciding spuriousness of lassos is also a domain-dependent problem. For integer
domains, techniques exist in cases where the transition relation of the loop is a dif-
ference bound matrix (DBM) [5] or an affine transformation with the finite monoid
property [13]. For tree-structured data domains, we have shown decidability of spuri-
ousness, in cases where the loop does not modify the structure of trees [14].

If a lasso is found to be spurious, the program model is refined by excluding the
lasso from the abstraction automaton. In our framework based on Büchi Automata, this
amounts to intersecting the abstraction automaton with the complement of the Büchi
Automaton representing the lasso. Since a lasso is trivially a Weak Deterministic Büchi
Automaton (WDBA), complementation increases the size of the automaton by at most
one state, and is done in constant time. This refinement scheme can be extended to
exclude entire families of spurious lassos, also described by WDBA.

We have instantiated the framework to the verification of programs handling trees
and more complex data structures with a tree-like backbone, e.g. doubly-linked lists,
trees with parent pointers, or trees with linked leaves. We provide two families of well-
founded relations on trees, (i) a lexicographical ordering on positions of program vari-
ables and (ii) a subset relation on nodes labeled with a given data element (from a
finite domain). Program statements as well as the well-founded relations are encoded
using tree automata [8], which provide an effective method for checking emptiness of
intersections between relations. A prototype tool has been implemented on top of the
ARTMC [4] invariant generator for programs with dynamic linked data structures. Ex-
perimental results include push-button termination proofs for the Deutsch-Schorr-Waite
tree traversal, deleting nodes in red-black trees, as well as for the Linking Leaves pro-
cedures. Most of these programs could not be verified by existing approaches.

1 x := root;
2 while (x.left != null) &&

(x.left.right != null)
3 x := x.left.right;
4 while (x != null)
5 x := x.up;

(a)

4

5

21>

3

〈2,=x〉

〈1,!"x〉

〈2,=x〉

〈1,>x〉

〈3,!"x〉
〈5,>x〉

〈4,=x〉

(b)

4

5

21>

3

〈2,=x〉

〈1,!"x〉

〈2,=x〉

〈1,>x〉

〈3,!"x〉
〈5,>x〉

〈4,=x〉

(c)
Fig. 1.

Related Work. Efficient techniques have been developed in the past for proving ter-
mination of programs with integer variables [18, 6]. This remains probably the most
extensively explored class of programs, concerning termination.

Recently, techniques for programs with singly-linked lists have been developed in
[2, 12, 16]. These techniques rely on tracking numeric information related to the sizes
of the list segments. An extension of this method to tackle programs handling trees
has been given in our previous work [14]. Unlike the works on singly-linked lists from
[2, 12], where refinement (of the counter model) is typically not needed, in [14] we
considered a basic form of counterexample-driven refinement.

Abstraction refinement for termination has been first considered in [9], where the
refinement consists in discovering and adding new well-founded relations to the set
of relations used by the analysis. Since techniques for the discovery of well-founded
relations (based on e.g., spurious program loops) are available only for integer domains,
it is not clear for the time being whether the algorithm proposed in [9] can be also
applied to programs handling pointer structures.

Several ideas in this paper can be also found elsewhere. Namely, (1) using Büchi
automata to encode the non-termination condition of the program was introduced by
[21], and (2) proving termination for programs handling tree-like data structures was
also considered in [14]. On one hand, the size-change termination approach from [21]
does not typically come with a refinement procedure. On the other hand, the method
presented here is more general and its refinement schema is more efficient then the one
presented in [14]. In particular, the Red-Black Delete example (presented in Section 4)
could not be shown to terminate using the refinement method from [14].

Automated checking of termination of programs manipulating trees has been also
considered in [17], where the Deutsch-Schorr-Waite tree traversal algorithm was proved
to terminate using a manually created progress monitor. In our approach, this example
could be verified using the common well-founded relations on trees.

2 The Termination Analysis Framework

We first explain the approach informally, with the aid of an example. Let us consider the
program in Fig. 1 (a), working on a binary tree data structure, in which each node has
two pointers to its left- and right-sons and one pointer up to its parent. We assume
that leaves have null left and right pointers, and the root has a null up pointer.

The first loop (lines 2,3) terminates because the variable x is bound to reach a node
with x.left = null (or x.left.right = null), since the tree is finite and no new
nodes are created. The second loop (lines 4,5) terminates because no matter where x
points to in the beginning, by going up, it will reach the root and then become null.

Let us suppose that the only well-founded ordering considered is the following: for
any two trees t1 and t2, we have t1 ≥x t2 if and only if the position of x in t2 is a prefix
of the position of x in t1. Then we build the abstraction of the program given in Fig. 1
(b), where =x holds if both ≤x and ≥x hold, and !"x stands for +≥x.

The states in the abstract model correspond to line numbers in the original program,
and every state is considered to be accepting, initially. Checking non-termination of
the abstract model amounts to checking the existence of an infinite run that does not
have a suffix of the form (=∗

x>x)ω, for otherwise, the well-foundedness of ≥x would
prevent this execution from occurring in reality. Checking non-termination is done by
checking emptiness of the intersection between the abstraction and the complement
of the Büchi automaton recognizing the language (〈 ,=x〉∗〈 ,>x〉)ω (cf. Fig. 2). For
technical reasons that will become clear in the sequel we label the edges of the au-
tomaton with the identifier of the source states, which correspond to program lines. In
our case, the intersection is not empty, counterexamples being 〈1,>x〉(〈2,=x〉〈3,!"x〉)ω

and 〈1,!"x〉(〈2,=x〉〈3,!"x〉)ω, which both correspond to the infinite execution of the
first loop, i.e. lines 1(23)ω.

This execution is found to be spurious by a specialized procedure that checks whether
a given program lasso can be fired infinitely often. For this purpose, the method given
in [14] could be used here. The refinement of the abstraction consists in eliminating the
infinite path 1(23)ω from the model. This is done by intersecting the model with the
automaton that recognizes the complement of the language {〈1,≥x〉,〈1,!"x〉}(〈2,=x
〉〈3,!"x〉)ω, which corresponds to the program path 1(23)ω. The result of this intersec-
tion is shown Fig. 1 (c). Notice that, in this case, the refinement does not increase the
size of the abstraction. Since now, only 4 and 5 are accepting states, another intersec-
tion with the automaton in Fig. 2 will establish that the refined abstraction does not have
further non-terminating executions, proving thus termination of the original program.

2.1 Büchi Automata
This section introduces the necessary notions related to the theory of Büchi automata.
Let Σ= {a,b, . . .} be a finite alphabet. We denote by Σ∗ the set of finite words over Σ,
and by Σω we denote the set of all infinite words over Σ. For an infinite word w ∈ Σω,
let inf(w) be the set of symbols occurring infinitely often on w. If u,v ∈ Σ∗ are finite
words, uvω denotes the infinite word uvvv

A Büchi automaton (BA) over Σ is a tuple A= 〈S, I,→,F〉, where: S is a finite set of
states, I ⊆ S is a set of initial states, →⊆ S×Σ×S is a transition relation – we denote
(s,a,s′) ∈ −→ by s a

−→ s′, and F ⊆ S is a set of final states.
A run of A over an infinite word a0a1a2 . . . ∈ Σω is an infinite sequence of states

s0s1s2 . . . such that s0 ∈ I and for all i ≥ 0 we have si
ai−→ si+1. A run π of A is said to

be accepting iff inf(π)∩F += /0. An infinite word w is accepted by a Büchi automaton
A iff A has an accepting run on w. The language of A, denoted by L(A), is the set of all
words accepted by A.

It is well-known that Büchi-recognizable languages are closed under union, inter-
section and complement. For two Büchi automata A and B, let A⊗B be the automaton
recognizing the language L(A)∩L(B). If ||A|| denotes the number of states (size) of A,
it can be shown that ||A⊗B||≤ 3 · ||A|| · ||B||.

A Büchi automaton A = 〈S, I,→,F〉 is said to be complete if for every s ∈ S and
a∈ Σ there exists s′ ∈ S such that s a

−→ s′. A is said to be deterministic (DBA) if I is a sin-

gleton, and for each s∈ S and a∈ Σ, there exists at most one state s′ ∈ S such that s a
−→ s′.

A is moreover said to be weak if, for each strongly connected componentC ⊆ S, either
C⊆ F orC∩F = /0. It is well-known that complete weak deterministic Büchi automata
can be complemented by simply reverting accepting and non-accepting states. Then,
for any Weak Deterministic Büchi automaton (WDBA), we have that ||A|| ≤ ||A||+ 1,
where A is the automaton accepting the language Σω \L(A)—i.e. the complement of A.

2.2 Programs and Abstractions
In this section we introduce a model for programs handling data from a possibly infinite
domain D, and define program abstractions as Büchi automata. Let I be a finite set of
instructions over a data domain 〈D,"1, . . . ,"n〉, where "i⊆ D×D is a partial order,
for 1 ≤ i ≤ n. An instruction i ∈ I is a pair 〈g,a〉 where g ⊆ D is called the guard and
a :D→D is called the action. An unspecified guard is assumed to be the entire domain.

A program over I is a graph P= 〈I,L, l0,⇒〉, where L is the set of control locations,
l0 ∈ L is the initial location, and ⇒⊆ L×I×L is the edge relation denoted as l g:a

=⇒ l′.
We assume furthermore, that there is at most one instruction in between any two control
locations, i.e. if l g1:a1=⇒ l′ and l g2:a2=⇒ l′ then g1 = g2 and a1 = a2.

A program configuration is a pair 〈l,d〉 ∈ L×D, where l is a control location and d
is a data value. An execution is a (possibly infinite) sequence of program configurations
〈l0,d0〉,〈l1,d1〉, 〈l2,d2〉, . . . starting with the initial program location l0 and some con-
figuration d0 ∈D such that, for all i≥ 0 there exists an edge li

g:a
=⇒ li+1 in the program,

such that di ∈ g and di+1 = a(di).
Let D0 ⊆ D be a set of initial data values. Then a configuration 〈l,d〉 is said to be

reachable if there exists d0 ∈ D0, and the program has an execution from 〈l0,d0〉 to
〈l,d〉. An invariant of the program (with respect to the set D0) is a function ι : L→ 2D
such that, for each l ∈ L, if 〈l,d〉 is reachable, then d ∈ ι(l).

Given a programP= 〈I,L, l0,⇒〉 working over a domain 〈D,"1, . . . ,"n〉 we define
the alphabetΣ(P,D) = L×{>,!",=}n. For a tuple ρ∈ {>,!",=}n, we define [ρ]∈D×D
as : d [〈r1, . . . ,rn〉] d′ if and only if, for all 1 ≤ i≤ n: (i) d)i d′ iff ri is >, (ii) d +2i d′
iff ri is !", and (iii) d ≈i d′ iff ri is =.
Definition 1. Let P = 〈I,L, l0,⇒〉 be a program, and 〈D,"1, . . . ,"n〉 be a domain.
A Büchi automaton A= 〈S, I,→,F〉 over Σ(P,D) is said to be an abstraction of P if and
only if, for every infinite execution of P : 〈l0,d0〉〈l1,d1〉〈l2,d2〉 . . ., there exists an infinite
word 〈l0,ρ0〉〈l1,ρ1〉〈l2,ρ2〉 . . . ∈ L(A) such that di [ρi] di+1,for all i≥ 0.

Consequently, if P has a non-terminating execution, then its abstraction A will be
non-empty. However, for reasons related to the complexity of the universal termination
problem, one cannot in general build an abstraction of a program that will be empty if
and only if the program terminates.

2.3 Building Abstractions Automatically
A first question is how to build abstractions of programs effectively. We propose a
method that performs under the assumption that program instructions, as well as the

relations of the working domain can be symbolically represented by structures that are
closed under projection, intersection and complement, and which, moreover, have a
decidable emptiness problem.

Given a program P= 〈I,L, l0,⇒〉 working over the domain 〈D,"1, . . . ,"n〉, and an
invariant ι : L→ 2D, with respect to a set of initial data valuesD0, the initial abstraction
is the Büchi automaton AιP = 〈L,{l0},−→,L〉, where, for all l, l′ ∈ L and ρ∈ {>,!",=}n,
we have :

l
〈l,ρ〉
−−→ l′ ⇐⇒ l g:a

=⇒ l′ and pr1(R〈g,a〉 ∩ [ρ]) ∩ ι(l) += /0 (1)
where R〈g,a〉 = {(d,d′)∈D | d ∈ g, d′ = a(d)} and, for a relation R⊆D×D, we denote
by pr1(R) = {x | ∃y ∈ D . 〈x,y〉 ∈ R}.

Intuitively, a transition between l and l′ is labeled with a tuple of relational symbols
ρ if and only if there exists a program instruction between l and l′ and a pair of reachable
configurations 〈l,d〉,〈l′,d′〉 ∈ L×D such that d[ρ]d′ and the program can move from
〈l,d〉 to 〈l′,d′〉 by executing the instruction 〈g,a〉. The intuition is that every transition
relation induced by the program is “covered” by all partial orderings that have a non-
empty intersection with it. For reasons related to abstraction refinement, that will be
made clear in the following, the transition in the Büchi automaton AιP is also labeled
with the source program location l. As an example, Fig. 1 (b) gives the initial abstraction
for the program in Fig. 1 (a).

The program invariant ι(l) from (1) is needed in order to limit the coverage only
to the relations involving configurations reachable at line l. In principle, we can com-
pute a very coarse initial abstraction by considering that ι(l) = D at each program line.
However, using stronger invariants enables us to compute more precise program ab-
stractions. The following lemma proves that the initial abstraction respects Def. 1. For
space reasons, all proofs have been deferred to technical report [22].

Lemma 1. Given a program P working over the domain 〈D,"1, . . . ,"n〉, D0 ⊆ D an
initial set, and ι : L → 2D an invariant with respect to the initial set D0, the Büchi
automaton AιP is an abstraction of P.

2.4 Checking Termination on Program Abstractions
In light of Def. 1, if a Büchi automaton A is an abstraction of a program P, then each
accepting run of A reveals a potentially infinite execution of P. However, the set of ac-
cepting runs of a Büchi automaton is, in general not enumerable, therefore an effective
termination analysis cannot attempt to check whether each run of A corresponds to a
real computation of P. We propose an effective technique, based on the following:

Hypothesis 1 The given domain is 〈D,"1, . . . ,"n〉 for a fixed n > 0, and the partial
orders "i are well-founded, for all i= 1, . . . ,n.

Consequently, any infinite word 〈l0,ρ0〉〈l1,ρ1〉〈l2,ρ2〉 . . . ∈ L(A) from which we
can extract a sequence (ρ0)i(ρ1)i(ρ2)i . . . ∈ (=∗>)ω, for some 1 ≤ i ≤ n, cannot cor-
respond to a real execution of the program, in the sense of Definition 1. Therefore, we
must consider only the words for which, for all 1 ≤ i≤ n, either:
1. there exists K ∈ N such that, (ρk)i is =, for all k ≥ K, or
2. for infinitely many k ∈ N, (ρk)i is !".

The condition above can be encoded by a Büchi automaton defined as follows. Con-
sider that Σ(P,D) = L×{>,!",=}n is fixed. Let Si = {〈l,(r1, . . . ,rn)〉 ∈ Σ(P,D) | ri is !"}
and Ei = {〈l,(r1, . . . ,rn)〉 ∈ Σ(P,D) | ri is =}, for 1 ≤ i ≤ n. With this notation, let Bi
be the Büchi automaton recognizing the ω-regular language Σ∗(SiΣ∗)ω ∪Σ∗Eωi . This
automaton is depicted in Fig. 2. Since the above condition holds for all 1 ≤ i ≤ n, we
need to compute B=

Nn
i=1Bi.

Si

Ei

Ei
Σ

Σ

s0
i

s2
is1

i

Fig. 2.

If A is an abstraction of P and L(A⊗B) = L(A) ∩
L(B) = /0, we can infer that P has no infinite runs. Otherwise,
it is possible to exhibit a lasso-shaped non-termination wit-
ness of the form σλω ∈ L(A⊗B), where σ,λ ∈ Σ∗ are finite
words labeling finite paths in A⊗B. The following lemma
proves the existence of lasso-shaped counterexamples.
Lemma 2. Given a well-founded domain 〈D,"1, . . . ,"n〉, A
and B=

Nn
i=1Bi Büchi automata over the alphabet Σ(P,D), if

L(A⊗B) += /0 then σλω ∈ L(A⊗B) for some σ,λ ∈ Σ∗(P,D),
where |σ|, |λ|≤ ||A|| · (n+ 1) ·2n.

Despite the exponential bound on the size of the counterexamples, in practice it is
possible to use efficient algorithms for finding lassos in Büchi automata on-the-fly, such
as for instance the Nested Depth First Search algorithm [11].

2.5 Counterexample-based Abstraction Refinement
If a Büchi automatonA is an abstraction of a programP= 〈I,L, l0,⇒〉 (cf. Def. 1),D0 ∈
D is a set of initial values, andσλω ∈L(A) is a lasso, whereσ= 〈l0,ρ0〉 . . . 〈l|σ|−1,ρ|σ|−1〉
and λ = 〈l|σ|,ρ|σ|〉 . . . 〈l|σ|+|λ|−1,ρ|σ|+|λ|−1〉, the spuriousness problem asks whether P
has an execution along the infinite path (l0 . . . l|σ|−1)(l|σ| . . . l|σ|+|λ|−1)

ω starting with
some value d0 ∈ D0. Notice that each pair of control locations corresponds to ex-
actly one program instruction, therefore the sequence of instructions corresponding to
the infinite unfolding of the lasso is uniquely identified by the sequences of locations
l0, . . . , l|σ|−1 and l|σ|, . . . , l|σ|+|λ|−1.

Algorithms for solving the spuriousness problem exist, depending on the structure
of the domain D and on the semantics of the program instructions. Details regarding
spuriousness problems for integer and tree-manipulating lassos can be found in [14].

Given a lasso σλω ∈ L(A), the refinement builds another abstraction A′ of P such
that σλω +∈ L(A′). Having established that the program path (l0 . . . l|σ|−1)(l|σ| . . .
l|σ|+|λ|−1)

ω, corresponding to σλω, cannot be executed for any value from the initial
set, allows us to refine by excluding potentially more spurious witnesses, than just σλω.
LetC be the Büchi automaton recognizing the language LσLωλ , where:

Lσ = {〈l0,ρ0〉 . . . 〈l|σ|−1,ρ|σ|−1〉 | ρi ∈ {>,!",=}n, 0 ≤ i< |σ|}

Lλ = {〈l|σ|,ρ0〉 . . . 〈l|σ|+|λ|−1,ρ|λ|−1〉 | ρi ∈ {>,!",=}n, 0 ≤ i< |λ|}

Then A′ = A⊗C, where C is the complement of C, is the refinement of A that
excludes the lasso σλω, and all other lassos corresponding to the program path
(l0 . . . l|σ|−1)(l|σ| . . . l|σ|+|λ|−1)

ω.
On the down side, complementation of Büchi automata is, in general, a costly op-

eration: the size of the complement is bounded by 2O(n logn), where n is the size of

the automaton, and this is also a lower bound [20]. However, the particular struc-
ture of the automata considered here comes to rescue. It can be seen that LσLωλ can
be recognized by a WDBA, hence complementation is done in constant time, and
||A′||≤ 3 · (|σ|+ |λ|+ 1) · ||A||.
Lemma 3. Let A be a Büchi automaton that is an abstraction of a program P, and
σλω ∈ L(A) be a spurious counterexample. Then the Büchi automaton recognizing the
language L(A)\Lσ ·Lωλ is an abstraction of P.

This refinement technique, based on the closure of ω-regular languages, can be
generalized to exclude an entire family of counterexamples, described as an ω-regular
language, all at once. In the following we provide such a refinement heuristics. The
interested reader is pointed to [22] for another refinement heuristic.
Infeasible Elementary Loop Refinement We suppose that there exists an upper bound
B> 0 on the number of times λ can be iterated, starting with any data value from ι(l|σ|).
The existence of such a bound can be discovered by e.g. a symbolic execution of the
loop. In case such a bound exists, the language Σ∗(P,D) ·L

B
λ ·Σ

ω
(P,D) is easily shown to be

recognizable by a WDBA C, and the Büchi automaton A⊗C is an abstraction of P,
which excludes the spurious trace σλω, as shown by the following Lemma:
Lemma 4. Given a program P = 〈I,L, l0,⇒〉, ι : L → 2D and invariant of P, A an
abstraction of P, and λ ∈ Σ∗(P,D) a lasso starting and ending with # ∈ L. If there exists
B> 0 such that λB is infeasible, for any d ∈ ι(#), then the Büchi automaton recognizing
the language L(A)\Σ∗(P,D) ·L

B
λ ·Σ

ω
(P,D) is an abstraction of P.

This heuristic was used to prove termination of the Red-black delete algorithm,
reported in Section 4. Interestingly, this algorithm could not be proved to terminate
using standard refinement (cf. Lemma 3).

3 Proving Termination of Programs with Trees
In this section we instantiate our termination verification framework for programs ma-
nipulating tree-like data structures. We consider sequential, non-recursive C-like pro-
grams working over tree-shaped data structures with a finite set of pointer variables
PVar. Each node in a tree contains a data value field, ranging over a finite setData and
three selector fields, denoted left, right, and up. For x,y ∈ PVar and d ∈ Data, we
consider the programs over the set of instructions IT composed of the following :
– guards : x== null, x== y, x.data==d, and boolean combinations of the above,
– actions : x= null, x= y, x= y.{left|right|up}, x.data= d, x.{left|right}=
new and x.{left|right} = null.
This set of instructions covers a large class of practical tree-manipulating proce-

dures. For instance, Fig. 3 shows a depth-first tree traversal procedure, commonly used
in real-life programs. In particular, here PVar= {x} and Data= {marked,unmarked}.

In order to use our framework for analyzing termination of programs with trees,
we need to provide (1) well-founded partial orderings on the tree domain, (2) symbolic
encodings for the partial orderings as well as for the program semantics and (3) a deci-
sion procedure for the spuriousness problem. The last point was tackled in our previous
work [14], for lassos without destructive updates (i.e. instructions x.left|right :=
new|null). Recently, we have developed a spuriousness detection method that works
also these destructive updates [15].

3.1 Trees and Tree Automata

0 x := root;
1 while (x!=null)
2 if (x.left!=null) and

(x.left.data!=mark)
3 x:=x.left;
4 else if (x.right!=null) and

(x.right.data!=mark)
5 x:=x.right;

else
6 x.data:=marked;
7 x:=x.up;

Fig. 3. Depth-first tree traversal

For a partial mapping f : A→ B we denote f (x) =
⊥ the fact that f is undefined at some point x ∈
A. The domain of f is denoted dom(f) = {x ∈
A | f (x) += ⊥}.

Given a finite set of colors C , we define the bi-
nary alphabet ΣC = C ∪{!}, where the arity func-
tion is #(c) = 2 and #(!) = 0. Π denotes the set of
tree positions {0,1}∗. Let ε ∈ Π denote the empty
sequence, and p.q denote the concatenation of se-
quences p,q∈Π. p≤pre q denotes the fact that p is
a prefix of q and p ≤lex q is used to denote the fact
that p is less than q in the lexicographical order. We
denote by p 8pre q the fact that either p ≤pre q, or
p ≥pre q. A tree t over C is a partial mapping t : Π→ ΣC such that dom(t) is a finite
prefix-closed subset of Π, and for each p ∈ dom(t):
– if #(t(p)) = 0, then t(p.0) = t(p.1) = ⊥,
– otherwise, if #(t(p)) = 2, then p.0, p.1 ∈ dom(t).

When writing t(p) = ⊥, we mean that t is undefined at position p. We denote by T (C)
the set of all trees over the alphabet ΣC .

A pair of trees (t1,t2) ∈ T (C1)×T (C2) can be encoded by a tree over the alphabet
(C1 ∪{!,⊥})× (C2 ∪{!,⊥}), where #(〈⊥,⊥〉) = 0, #(〈α,⊥〉) = #(〈⊥,α〉) = #(α) if
α += ⊥, and #(〈α1,α2〉) = max(#(α1),#(α2)). The projection functions are defined as
usual i.e., for all p∈ dom(t) we have pr1(t)(p)= c1 if t(p)= 〈c1,c2〉 and pr2(t)(p) = c2
if t(p) = 〈c1,c2〉. Finally, let T (C1 ×C2) = {t | pr1(t) ∈ T (C1) and pr2(t) ∈ T (C2)}.

A tree automaton [8] over an alphabet ΣC is a tuple A= (Q,F,Δ) where Q is a set
of states, F ⊆ Q is a set of final states, and Δ is a set of transition rules of the form:
(i) ! → q or (ii) c(q1,q2) → q, c ∈ C .

A run of A over a tree t : Π→ ΣC is a mapping π : dom(t) → Q such that for each
position p ∈ dom(t), where q= π(p), we have:
– if #(t(p)) = 0 (i.e., if t(p) = !), then ! → q ∈ Δ,
– otherwise, if #(t(p)) = 2 and qi = π(p.i) for i ∈ {0,1}, then t(p)(q0,q1) → q ∈ Δ.

A run π is said to be accepting if and only if π(ε) ∈ F . The language of A, denoted as
L(A), is the set of all trees over which A has an accepting run. A set of trees T ⊆ T (C)
(a tree relation R⊆ T (C1 ×C2)) is said to be rational if there exists a tree automaton A
such that L(A) = T (respectively, L(A) = R).

For two relations R′ ⊆ T (C ×C ′) and R′′ ⊆ T (C ′ ×C ′′) we define the composition
R′ ◦R′′ = {〈pr1(t ′), pr2(t ′′)〉 | t ′ ∈ R′, t ′′ ∈ R′′, pr2(t ′) = pr1(t ′′)}. It is well-known that
rational tree languages are closed under union, intersection, complement and projection.

3.2 Abstracting Programs with Trees into Büchi Automata
A memory configuration is a binary tree with nodes labeled by elements of the set
C = Data× 2PVar∪ {!} i.e., a node is either null (!) or it contains a data value and
a set of pointer variables pointing to it (〈d,V 〉 ∈ D× 2PVar). Each pointer variable can

1

23 [x.left!=NULL and
x.left.data!=mark]

4

5

[x.right!=NULL and
x.right.data!=mark]

6[x.right==NULL or
x.right.data==mark]

7

0

[x.left==NULL or
x.left.data==mark]

[x==null]

[x!=null]

x = x.right x=x.up

x = x.left

x:=root

8

x.data=mark

1

23

4

5 6

7

0

=r
mark>x

r5,
=r

markx
r7,=r

markx
r0,

=r
mark1, x

r=

=r
mark1, x

r=
=r

mark2, r=x

=r
mark4, r=x

=r
mark4, r=x

=r
mark>x

r3,

=r
mark2, r=x

>mark
r=x

r6,

8

Fig. 4. The Depth-first tree traversal procedure and its initial abstraction

point to at most one tree node (if it is null, it does not appear in the tree). For a tree
t ∈ T (C) and a position p ∈ dom(t) such that t(p) = 〈d,V 〉, we denote δt(p) = d and
νt(p) = V . First we show that all program actions considered here can be encoded as
rational tree relations1.

Lemma 5. For any program instruction i= 〈g,a〉 ∈IT , the tree relation Ri = {〈t,t ′〉 | t ∈
g, t ′ = a(t)} is rational.

In order to abstract programs with trees as Büchi automata (cf. Def. 1), we must
introduce the well-founded partial orders on the working domain. Let DT = 〈T (C),
{"x,"r

x}x∈PVar,{"d,"r
d}d∈Data〉, where:

– t1 "x t2, for some x ∈ PVar iff there exists positions p1 ∈ dom(t1), p2 ∈ dom(t2)
such that x ∈ νt1(p1), x ∈ νt2(p2) and p1 ≤lex p2.

– t1 "r
x t2, for some x ∈ PVar iff (i) dom(t1)⊆ dom(t2), and (ii) there exists positions

p1 ∈ dom(t1), p2 ∈ dom(t2) such that x ∈ νt1(p1), x ∈ νt2(p2) and p1 ≥lex p2.
– t1 "d t2, for some d ∈ Data iff for any position p ∈ dom(t1) such that δt1(p) = d

we have p ∈ dom(t2) and δt2(p) = d.
– t1 "r

d t2, for some d ∈ Data iff (i) dom(t1) ⊆ dom(t2), and (ii) for any position
p ∈ dom(t2) such that δt2(p) = d we have p ∈ dom(t1) and δt1(p) = d.

It can easily be shown that all relations of the form "x, "r
x, "d and "r

d are well-
founded. Therefore the Hypothesis 1 is true for the working domain DT = 〈T (C),{"x
,"r

x}x∈PVar,{"d ,"r
d}d∈Data〉, and hence the whole termination analysis framework pre-

sented in the section 2 can be employed.

Lemma 6. The relations"x, "r
x, x ∈ PVar and "d,"r

d , d ∈ Data are rational.

The Büchi automaton representing the initial abstraction of the depth-first tree traver-
sal procedure is depicted in Fig. 4. To simplify the figure, we use only the orders "r

x
and "r

mark. Thanks to these orders, there is no potential infinite run in the abstraction.

Extensions In order to cover larger classes of programs, we extended our framework
in two ways. On one hand, we handle data structures more general than trees, using the
invariant generation method from [4]. Here we encode graphs as trees with extra edges.

1 The semantics of the program instructions considered is given in technical report [22].

The basic idea is that each structure has an underlying tree (called a backbone), which
stays unchanged during the whole computation. The set of extra edges is specified by
pointer descriptors, which are references to regular expressions to the set of directions
in the tree (left, right, left-up, right-up). We check termination using the existing rela-
tions "x, "r

x, x ∈ PVar and "d ,"r
d , d ∈Data on the backbone, as well as two new ones

"i:s and "r
i:s. Intuitively, t1 "i:s t2 if the set of positions of t1 whose i-th descriptor is set

to s is a subset of the set of positions of t2 with the same property.
A second extension is allowing tree left- and right-rotations as program statements.

Since rotations cannot be described by rational tree relations, we cannot check whether
"x,"r

x,"d and "r
d hold, simply by intersection. However we know that rotations do not

change the number of nodes in the tree, therefore we can label them a-posteriori with
=d ,=r

d , d ∈ Data, and !"x, !"rx, x ∈ PVar, since the relative positions of the variables
after the rotations are not known.

4 Implementation and Experimental Results
We have implemented a prototype tool that uses this framework to detect termination
of programs with trees and trees with extra edges. The tool was built as an extension of
the ARTMC [4] verifier for safety properties (null-pointer dereferences, memory leaks,
etc.). We applied our tool to several programs that manipulate:

Example Time Nre f s
DLL-insert 2s 0
DLL-delete 1s 0
DLL-reverse 2s 0
Depth-first search 17s 0
Linking leaves in trees 14s 0
Deutsch-Schorr-Waite 1m 24s 0
Linking Nodes 5m 47s 0
Red-black delete 4m 54s 2
Red-black insert 29s 0
Table 1. Experimental results

– doubly-linked lists: DLL-insert (DLL-
delete) which inserts (deletes) a node in
(from) a doubly-linked list, and DLL-
reverse which is the list reversal.

– trees: Depth-first search and Deutsch-
Schorr-Waite which are tree traversals,
Red-black delete (insert) which rebal-
ances a red-black tree after the deletion
(insertion) of a node.

– tree with extra edges: Linking leaves
(Linking nodes) which insert all leaves
(nodes) of a tree in a singly-linked list.

The results obtained on a Intel Core 2 PC with 2.4 GHz CPU and 2 GB RAM memory
are given in the table 1. The field time represents the time necessary to generate invari-
ants and build the initial abstraction. The field Nre f s represents number of refinements.
The only case in which refinement was needed is the Red-black delete example, which
was verified using the Infeasible Elementary Loop refinement heuristic (Section 2.5).

5 Conclusions
We proposed a new generic termination-analysis framework. In this framework, infinite
runs of a program are abstracted by Büchi automata. This abstraction is then inter-
sected with a predefined automaton representing potentially infinite runs. In case of
non-empty intersection, a counterexample is exhibited. We instantiated the framework
for programs manipulating tree-like data structures and we experimented with a pro-
totype implementation, on top of the ARTMC invariant generator. Test cases include a
number of classical algorithms that manipulate tree-like data structures.

Future work includes instantiation of the method for other classes of the programs.
Using the proposed method, we would like also to tackle the termination analysis for
concurrent programs. Moreover, we would like to investigate methods for automated
discovery of well-founded orderings on the complex data domains as trees and graphs.
Acknowledgement. This work was supported by the French project RNTL AVERILES,
the Czech Science Foundation (projects 102/07/0322, 201/09P531), and the Czech Min-
istry of Education by the project MSM 0021630528.

References
1. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn. Variance Analyses from

Invariance Analyses. In Proc. of POPL’07. ACM Press, 2007.
2. A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. Programs with Lists

are Counter Automata. In Proc. of CAV’06, volume 4144 of LNCS. Springer, 2006.
3. A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. Abstract Regular Tree Model

Checking. ENTCS, 149:37–48, 2006. A preliminary version was presented at Infinity’05.
4. A. Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar. Abstract Regular Tree Model Check-

ing of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS 4134. Springer, 2006.
5. M. Bozga, R. Iosif, and Y. Lakhnech. Flat Parametric Counter Automata. In Proc. of

ICALP’06, volume 4052 of LNCS. Springer, 2006.
6. A. R. Bradley, Z. Manna, and H. B. Sipma. Termination of Polynomial Programs. In Proc.

of VMCAI’2005, volume 3385 of LNCS. Springer, 2005.
7. M. Colón and H. Sipma. Synthesis of Linear Ranking Functions. In Proc of TACAS’01,

volume 2031 of LNCS. Springer, 2001.
8. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, M. Tommasi. Tree

Automata Techniques and Applications, 2005. URL: www.grappa.univ-lille3.fr/tata.
9. B. Cook, A. Podelski, and A. Rybalchenko. Abstraction Refinement for Termination. In

Proc. of SAS’05, volume 3672 of LNCS, 2005.
10. Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond Safety. In

Proc. of CAV 2006, volume 4144 of LNCS. Springer, 2006.
11. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory Efficient Algorithms

for the Verification of Temporal Properties. In Proc. of CAV’90, LNCS 531. Springer, 1991.
12. D. Distefano, Josh Berdine, Byron Cook, and P.W. O’Hearn. Automatic Termination Proofs

for Programs with Shape-shifting Heaps. In Proc. of CAV’06, LNCS 4144. Springer, 2006.
13. A. Finkel and J. Leroux. How to Compose Presburger-accelerations: Applications to Broad-

cast Protocols. In Proc. of FSTTCS’02, volume 2556 of LNCS. Springer, 2002.
14. P. Habermehl, R. Iosif, A. Rogalewicz, and T. Vojnar. Proving Termination of Tree Manipu-

lating Programs. In Proc. of ATVA’07, volume 4762 of LNCS. Springer, 2007.
15. R. Iosif and A. Rogalewicz. On the Spuriousness Problem for Tree Manipulating Lassos.

Technical Report TR-2008-12, Verimag, 2008.
16. S.K. Lahiri and S. Qadeer. Verifying Properties of Well-Founded Linked Lists. In Proc. of

POPL’06. ACM Press, 2006.
17. A. Loginov, T.W. Reps, and M. Sagiv. Automated Verification of the Deutsch-Schorr-Waite

Tree-Traversal Algorithm. In Proc. of SAS’06, volume 4134 of LNCS. Springer, 2006.
18. A. Podelski and A. Rybalchenko. Transition Invariants. In Proc. of LICS’04. IEEE, 2004.
19. A. Rybalchenko. The ARMC tool. URL: http://www.mpi-inf.mpg.de/˜rybal/armc/.
20. M. Y. Vardi. The Büchi Complementation Saga. In Proc. of STACS’07, volume 4393 of

LNCS. Springer, 2007.
21. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The Size-Change Principle for Program Ter-

mination. In Proc of POPL’01, ACM Press, 2001.
22. R. Iosif and A. Rogalewicz. Automata-based Termination Proofs. Technical Report TR-

2008-17, Verimag, 2008.

