
Coordinated by: Radu IOSIF Location: VERIMAG, Grenoble

Local Reasoning about Reconfigurable Component-based Systems

Radu IOSIF (VERIMAG, Grenoble)

mailto:Radu.Iosif@univ-grenoble-alpes.fr

1 Background

Nowadays computer systems are highly complex. Most of them are intrinsically distributed and dynamically
reconfigurable (Big Data, Internet of Things, Cloud Computing, Smart Cities), concurrent at both the physical
level of CPU cores and the logical level of threads, engaging in complex interactions not only between their
own hardware and software parts, but also with their networking environment. Moreover, we are expecting an
increase of several orders of magnitude in the size and complexity of such interdependent systems, on which
most aspects of today’s life depend. This raises important technical challenges, not entirely understood.

Designing and understanding such complex systems is only possible due to their modularity: a system
is hierarchically organized as an architecture of components, whose internal details are encapsulated within
simple well-defined interfaces. For instance, a program is datatype modular if its memory accesses are calls to
containers with algebraic data type interfaces (such as, e.g., stacks, queues, maps), whereas a concurrent system
is thread modular if it consists of replicas of few behavioral patterns, interacting via well-defined composition
operators. The modularity of a component-based computer system is instrumental in performing updates (re-
placing one or more components with newer versions having the same interfaces) and reconfigurations (chang-
ing the coordinating architecture by adding new components, removing obsolete versions or even changing the
topology of interactions, e.g. from a token ring to a star).

Because such complex systems control many aspects of human life (e.g. airline traffic, power grids, banking
and social networks), it is important to ensure their correctness à priori, by design, and also à posteriori, by
verification. For instance, a denial-of-service type of error caused by multiple computers trying to connect
to the same service at once resulted in a massive power blackout on Northeastern United States on August
14, 2003. Unfortunately, there are currently no modeling or verification methodologies that can guarantee an
acceptable level of confidence or ensure correctness after an update has been done. For instance, widely used
Architecture Description Languages (described by the ISO/IEC/IEEE 42010 standard, see [3] for a survey)
often have informal (English written) rules to describe coordination of processes according to their rôle, with
virtually no associated logical semantics or formal verification methodology.

The components of a modular system can be viewed, at a higher level of abstraction, as resources, that can
be either static or dynamic (a piece of data or a process), physical or logical (CPUs or threads), having simple
atomic (a memory cell) or more elaborated structure (such as a linked list or a pipeline). The main operation
on a resource domain is composition, understood as the product of a partial monoid; composition is usually
associative, has neutral element and it is very often commutative as well. However, because some resources are
incompatible for composition, the operation is only partially defined. Efficient reasoning about resources in a
computer system relies on two interdependent aspects:

(i) locality, which is the ability to describe the effect of an update only from the parts of the system’s config-
uration that are involved, while ignoring the ones unchanged, and

(ii) compositionality, which is the ability to join the results of local analyses into a global condition capturing
the correctness requirement for the entire system.

2 Distributed Systems with Reconfigurable Architectures

Building on top of the Behavior-Interaction-Priorities (BIP) framework [1], the Dynamic Reconfigurable BIP
(DR-BIP) [4] model considers that the degree of dynamism of a system can be understood as the interplay of
the dynamic changes in three independent aspects:

1. The ability of describing coordination of parametric systems, i.e. systems in which a finite but unbounded
number (unknown à priori) of replicated components interact, for instance m ≥ 1 producers and n ≥ 1
consumers.

1

Coordinated by: Radu IOSIF Location: VERIMAG, Grenoble

2. Adding and deleting components and managing their interactions, depending on dynamically changing
conditions. For instance, in a reconfigurable ring of n≥ 2 components, one needs to remove a component
after a failure and add the component after recovery. However, even changing the number of components
may cause concurrency errors. For instance in some particular architectures, the absence of deadlocks
may depend on whether the number of active components is even or odd.

3. The most challenging aspect is allowing services to seamlessly roam and continue their activities on
any available device or computer, also known as “fluid architectures” or “fluid software” [5]. Supporting
migration of components requires a disciplined management of dynamically changing coordination rules.
Thus, self-organizing systems use different motifs to adapt their behavior to meet a global property.

(c)

out

in

(b)

c2 c3c1 c4

Synchronization

Behaviors

Deployment

Map

∀i∀ j.Map(Deployment(i)) =Deployment(j)

−→ in(i)∧out(j)

(a)

in inoutout inout

inout

Figure 1: Architectural Motif in DR-BIP

In the DR-BIP [4] framework, a motif (Fig. 1a) is an elementary unit used to describe dynamic architec-
tures, that encapsulates:
• the behavior of a set of components, that are replicas of a small set of component types, usually repre-

sented as finite-state machines (Fig. 1b),
• the interaction rules defining the coordinating architecture (Fig. 1c shows the architecture induced by the

interaction rule from Fig. 1a)
• the reconfiguration rules dictating the allowed modifications to the configuration of a motif, i.e. creation,

deletion and migration of components.
A motif has two layers: the set of behaviors (active components) and the map (a graph modeling the

physical network) on which these components are deployed. A component is an instance of a finite-state
machine component type, whose actions are triggered by interaction ports (e.g. in and out in Fig. 1b). The
deployment is a partial function that assigns components with nodes in the map. The synchronization rules
define the interactions between the ports (e.g. the synchronization rule in Fig. 1a states that the out port of each
component interacts with the in port of the component adjacent to it in the map). For instance, because the map
in Fig. 1a is a ring and there is exactly one component deployed on each node of the map, the synchronization
rule describes a proper token-ring architecture (Fig. 1c). If a new component (Fig. 1a in red) is added to the set
of behaviors, the synchronization rule breaks the token-ring structure (Fig. 1c in red).

A notion of composable partial architectures and a resource logic for this domain has been recently intro-
duced in [2] by several members of Verimag. This work is a starting point for the development of an effective
method for the specification and verification of dynamically reconfigurable component-based systems.

3 Challenges and Goals

The main goal of this project is the development of a logic-based modeling and verification methodology for
systems consisting of active resources (e.g. processes, threads), as opposed to the more traditional view of
resources being just passively shared among actors (e.g. chunks of memory). In this new setting, resources may
dynamically engage in communication (interactions), migrate between the physical nodes of the network, take
ownership and/or have knowledge of other resources, etc. This requires defining

1. new semantic domains equipped with composition operators that capture the above mentioned aspects
of dynamically reconfigurable modular systems, whose definition is usually more complex than disjoint
union (aggregation) of resources, and

2

Coordinated by: Radu IOSIF Location: VERIMAG, Grenoble

2. new resource logics that allow to reason about the dynamic updates of the system in a compositional
way; since we consider very large scale systems (possibly spread over the internet) the only reasonable
approach to the design and verification is considering isolated modules independently of the environment
in which they evolve.

During this internship you are expected to actively contribute to the development of the theory and tool
support of the methodology, engage in research and participate to scientific seminars.

4 How to Apply

Send your CV and a transcript of your university grades to:

mailto:Radu.Iosif@univ-grenoble-alpes.fr

References

[1] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen, and J. Sifakis. Rigorous component-
based system design using the BIP framework. IEEE Software, 28(3):41–48, 2011.

[2] M. Bozga, R. Iosif, and J. Sifakis. Local reasoning about parametric and reconfigurable component-based
systems, 2019.

[3] J. S. Bradbury. Organizing definitions and formalisms for dynamic software architectures. Technical report,
In Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems Newport, 2004.

[4] R. El Ballouli, S. Bensalem, M. Bozga, and J. Sifakis. Programming dynamic reconfigurable systems. In
FACS’18, pages 118–136, 2018.

[5] A. Taivalsaari, T. Mikkonen, and K. Systä. Liquid software manifesto: The era of multiple device ownership
and its implications for software architecture. In Proceedings of the 2014 IEEE 38th Annual Computer
Software and Applications Conference, COMPSAC 14, page 338343, USA, 2014. IEEE.

3

