Introduction to Logic and Automata Theory

Radu Iosif
Verimag/CNRS (Grenoble, France)
Ensuring Correctness of Hw/Sw Systems

- Uses logic to specify correctness properties, e.g.:
 - the program never crashes
 - the program always terminates
 - every request to the server is eventually answered
 - the output of the tree balancing function is a tree, provided the input is also a tree ...

- Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - SYNTHESIS: build a system that satisfies the specification
Approaches to Verification

- **THEOREM PROVING**: reduce the verification problem to the satisfiability of a logical formula (entailment) and invoke an off-the-shelf theorem prover to solve the latter
 - Floyd-Hoare checking of pre-, post-conditions and invariants
 - Certification and Proof-Carrying Code

- **MODEL CHECKING**: enumerate the states of the system and check that the transition system satisfies the property
 - explicit-state model checking (SPIN)
 - symbolic model checking (SMV)

- **COMBINED METHODS**:
 - static analysis (ASTREE)
 - predicate abstraction (SLAM, BLAST)
Approaches to Synthesis

- **TREE AUTOMATA:**
 - starting point: logical specification
 - build word automaton from logic formula
 - transform into tree automaton
 - decide emptiness and build system from witness tree

- **CONTROL and GAME THEORY:**
 - starting point: incomplete/uncontrolled system with two types of freedom (system/environment choice) and an objective
 - the uncontrolled system is given as a game
 - controller/strategy tell how to achieve objective
Logic and Automata Connection

Given an automaton A, we build a logical formula φ_A whose set of models is exactly the language of the automaton.

Given a logical formula φ, we build an automaton A_φ that recognizes the set of all structures (models) in which φ holds.

Assuming that A_φ belongs to a well-behaved class of automata, we can tackle the following problems:

- **SATISFIABILITY**: φ has a model if and only if A_φ is not empty
- **MODEL CHECKING**: a given structure is a model of φ if and only if it belongs to the language of A_φ
Overview: Word and Tree Logics

<table>
<thead>
<tr>
<th></th>
<th>First Order Logic</th>
<th>Monadic Second Order Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite words</td>
<td>LTL, Star Free, Aperiodic Sets</td>
<td>Finite Automata</td>
</tr>
<tr>
<td>infinite words</td>
<td>LTL, Star Free, Aperiodic Sets</td>
<td>Büchi, Rabin Automata</td>
</tr>
<tr>
<td>finite trees</td>
<td>*</td>
<td>Tree Automata</td>
</tr>
<tr>
<td>infinite trees</td>
<td>*</td>
<td>Rabin Automata, Games</td>
</tr>
</tbody>
</table>
Overview: Integer Logics

Presburger Arithmetic ⊂ ⟨N, +, V_p⟩

Semilinear Sets p-automata

(provided as additional material)
Preliminaries
Words

An alphabet is a finite non-empty set of symbols $\Sigma = \{a, b, c, \ldots\}$.

A word of length n over Σ is a sequence $w = a_0a_1 \ldots a_{n-1}$, where $a_i \in \Sigma$, for all $0 \leq i < n$. An infinite word is an infinite sequence of elements of Σ.

Equivalently, a word is a function $w : \{0, 1, \ldots, n-1\} \rightarrow \Sigma$. The length n of the word w is denoted by $|w|$. The empty word is denoted by ϵ, i.e. $|\epsilon| = 0$.

An infinite word is a function $w : \mathbb{N} \rightarrow \Sigma$.

$\Sigma^* (\Sigma^\omega)$ is the set of all finite (infinite) words over Σ, and $\Sigma^\infty = \Sigma^* \cup \Sigma^\omega$.

We denote $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$.

The concatenation of two words w and u is denoted as wu. Note that $w \in \Sigma^*$, whereas $u \in \Sigma^\infty$. The prefix u of w is defined as $u \leq w$ iff there exists $v \in \Sigma^\infty$ such that $uv = w$.
Trees

A prefix-closed set $S \subseteq \Sigma^*$ is such that for all $w \in S$ and $u \in \Sigma^*$, $u \leq w \Rightarrow u \in S$.

A prefix-free set $S \subseteq \Sigma^*$ is such that for all $u, v \in S$, $u \neq v \Rightarrow u \nleq v$ and $v \nleq u$.

A tree over Σ is a partial function $t : \mathbb{N}^* \mapsto \Sigma$ such that $\text{dom}(t)$ is a prefix-closed set.

The children of a tree node $w \in \text{dom}(t)$ are all nodes $wn \in \text{dom}(t)$, such that $n \in \mathbb{N}$. A tree t is said to be finite-branching iff for all $p \in \text{dom}(t)$, the number of children of p is finite. A tree t is said to be finite if $\text{dom}(t)$ is finite.
A path π is a set of nodes from $\text{dom}(t)$, such that:

1. the root belongs to the path i.e., $\epsilon \in \pi$,

2. for each node $p \in \pi$, exactly one of its children (if any) is on π.

3. for each node $pn \in \pi$, such that $n \in \mathbb{N}$, we have $p \in \pi$.

Lemma 1 (König) A finitely branching tree is infinite if and only if it has an infinite path.
A **ranked alphabet** $\langle \Sigma, \# \rangle$ is a set of symbols together with a function $\# : \Sigma \rightarrow \mathbb{N}$. For $f \in \Sigma$, the value $\#(f)$ is said to be the *arity* of f.

A **ranked tree** t over Σ is a partial function $t : \mathbb{N}^* \mapsto \Sigma$ that satisfies the following conditions:

- $\text{dom}(t)$ is a prefix-closed subset of \mathbb{N}^*, and
- for each $p \in \text{dom}(t)$, if $\#(t(p)) > 0$ then $\{i \mid pi \in \text{dom}(t)\} = \{1, \ldots, \#(t(p))\}$.

A symbol of arity zero is also called a *constant*. A finite tree over a ranked alphabet is also called a *term*.
First Order Logic
The *alphabet* of FOL consists of the following symbols:

- **predicate symbols**: \(p_1, p_2, \ldots, = \)
- **function symbols**: \(f_1, f_2, \ldots \)
- **constant symbols**: \(c_1, c_2, \ldots \)
- **first-order variables**: \(x, y, z, \ldots \)
- **connectives**: \(\lor, \land, \rightarrow, \leftrightarrow, \neg, \bot, \forall, \exists \)
Syntax

The set of *first-order terms* is defined inductively:

- any constant symbol c is a term,
- any first-order variable x is a term,
- if t_1, t_2, \ldots, t_n are terms and f is a function symbol of arity $n > 0$, then $f(t_1, t_2, \ldots, t_n)$ is a term,
- nothing else is a term.

A term with no variable is said to be a *ground term*.
Syntax

The set of *first-order formulae* is defined inductively:

- \bot and \top are formulae,
- if t_1, t_2, \ldots, t_n are terms and p is a predicate symbol of arity $n > 0$, then $p(t_1, t_2, \ldots, t_n)$ is a formula,
- if t_1, t_2 are terms, then $t_1 = t_2$ is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x . \varphi$ and $\exists x . \varphi$ are formulae, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$,
- nothing else is a formula.

An *atomic proposition* is any formula $p(t_1, \ldots, t_n)$ or $t_1 = t_2$, where p is a predicate symbol and t_1, t_2, \ldots, t_n are terms.

The *language* of logic FOL is the set of formulae, denoted as $\mathcal{L}(FOL)$.
\[x = y \]

\[\forall x \forall y . \ x = y \iff y = x \]

\[\forall x (\exists y . \ p(x, y)) \rightarrow q(x) \]

\[\forall x . \ p(x) \rightarrow q(f(x)) \]

\[\forall x \exists y . \ f(x) = y \land (\forall z . \ f(z) = y \rightarrow z = x) \]
FOL Formulae

The **size** of a formula is the number of subformulae it contains, in other words, the number of nodes in the syntax tree representing the formula. The size of φ is denoted as $|\varphi|$.

The variables within the scope of a quantifier are said to be **bound**. The variables that are not bound are said to be **free**. We denote by $FV(\varphi)$ the set of free variables in φ. If $FV(\varphi) = \emptyset$ then φ is said to be a **sentence**.

Example 1 $FV(\forall x . x = y \land x = z \rightarrow p(x)) = \{y, z\}$

If $x \in FV(\varphi)$, we denote by $\varphi[x/t]$ the formula obtained from φ by substituting x with the term t.
Semantics

A *structure* is a tuple \(m = \langle U, \bar{p}_1, \bar{p}_2, \ldots, \bar{f}_1, \bar{f}_2, \ldots \rangle \), where:

- \(U \) is a (possible infinite) set called the *universe*,
- \(\bar{p}_i \subseteq U^{\#(p_i)} \), \(i = 1, 2, \ldots \) are the *predicates*,
- \(\bar{f}_i : U^{\#(f_i)} \to U \), \(i = 1, 2, \ldots \) are the *functions*.

The elements of the universe are called *individuals*, denoted by \(\bar{c}_1, \bar{c}_2, \ldots \).

NB: Every constant \(c \) from the alphabet of FOL has a corresponding individual \(\bar{c} \), but not vice versa.

The symbol \(0 \) has a corresponding number \(\bar{0} \in \mathbb{N} \), and the function symbol \(s \) has a corresponding function \(x \mapsto x + 1 \). The number \(\bar{1} \in \mathbb{N} \) is denoted as \(s(0) \), the number \(\bar{2} \in \mathbb{N} \) as \(s(s(0)) \), etc.
Semantics

Let \(m = \langle U, \bar{p}_1, \bar{p}_2, \ldots, \bar{f}_1, \bar{f}_2, \ldots \rangle \) be a *structure*.

The *interpretation* of variables is a function:

\[\iota : \{ x, y, z, \ldots \} \to U \]

The interpretation function is extended to terms \(t \), denoted as \(\iota(t) \in U \):

\[
\begin{align*}
\iota(c) &= \bar{c} \\
\iota(f(t_1, \ldots, t_n)) &= \bar{f}(\iota(t_1), \ldots, \iota(t_n))
\end{align*}
\]
Semantics

The meaning of a sentence φ in the structure m under the interpretation ι is denoted as $\llbracket \varphi \rrbracket^m_\iota \in \{\text{true, false}\}$:

\[
\begin{align*}
\llbracket \bot \rrbracket^m_\iota &= \text{false} \\
\llbracket p(t_1, \ldots, t_n) \rrbracket^m_\iota &= \text{true} \text{ iff } \langle \iota(t_1), \ldots, \iota(t_n) \rangle \in \bar{p} \\
\llbracket t_1 = t_2 \rrbracket^m_\iota &= \text{true} \text{ iff } \iota(t_1) = \iota(t_2) \\
\llbracket \neg \varphi \rrbracket^m_\iota &= \text{true} \text{ iff } \llbracket \varphi \rrbracket^m_\iota = \text{false} \\
\llbracket \varphi \land \psi \rrbracket^m_\iota &= \text{true} \text{ iff } \llbracket \varphi \rrbracket^m_\iota = \llbracket \psi \rrbracket^m_\iota = \text{true} \\
\llbracket \exists x . \varphi \rrbracket^m_\iota &= \text{true} \text{ iff } \llbracket \varphi \rrbracket^m_{\iota[x \leftarrow u]} = \text{true} \text{ for some } u \in U
\end{align*}
\]

where $\iota[x \leftarrow u](y) = \iota(y)$ if $x \neq y$ and $\iota[x \leftarrow u](x) = u$.
Semantics

Derived meanings:

\[
\begin{align*}
[\varphi \lor \psi]_m &= [\neg (\neg \varphi \land \neg \psi)]_m \\
[\varphi \rightarrow \psi]_m &= [\neg \varphi \lor \psi]_m \\
[\varphi \leftrightarrow \psi]_m &= [((\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi))]_m \\
[\forall x . \varphi]_m &= [\neg \exists x . \neg \varphi]_m
\end{align*}
\]
Decision Problems

If $FV(\varphi) = \emptyset$ we denote the meaning of φ in m by $[\varphi]^m$ (the choice of ι is irrelevant).

If $[\varphi]^m = \text{true}$ we say that m is a *model* of φ, denoted as $m \models \varphi$.

If $m \models \varphi$ for all structures m, we say that φ is *valid*, denoted as $\models \varphi$.

If φ has at least one model, we say that it is *satisfiable*.

Satisfiability: Given φ is it satisfiable?

Model Checking: Given m and φ, does $m \models \varphi$?
Examples

Let \leq be a binary predicate symbol, and $m = \langle U, \leq \rangle$ be a structure. m is a partially ordered set if $m \models \varphi_1 \land \varphi_2$, where:

\[
\varphi_1 : \forall x \forall y . \ x \leq y \land y \leq x \iff x = y
\]
\[
\varphi_2 : \forall x \forall y \forall z . \ x \leq y \land y \leq z \rightarrow x \leq z
\]

Notice that $\models \varphi_1 \rightarrow \forall x . \ x \leq x$.

m is a linearly ordered set if $m \models \varphi_1 \land \varphi_2 \land \varphi_3$, where:

\[
\varphi_3 : \forall x \forall y . \ x \leq y \lor y \leq x
\]
Exercises

Exercise 1 Two problems P and Q are equivalent when a method for solving P is also a method for solving Q, and vice versa. Show that satisfiability and validity of first-order sentences are equivalent problems. ☐

Exercise 2 Prove the validity of the following sentences:

$$
\forall x \forall y \forall z . \ x = y \land y = z \rightarrow x = z
$$

$$
(\exists x . \varphi \lor \psi) \leftrightarrow ((\exists x . \varphi) \lor (\exists x . \psi))
$$

$$
(\forall x . \varphi \land \psi) \leftrightarrow ((\forall x . \varphi) \land (\forall x . \psi))
$$

$$
(\exists x . \varphi \land \psi) \rightarrow ((\exists x . \varphi) \land (\exists x . \psi))
$$

$$
\neg (((\exists x . \varphi) \land (\exists x . \psi)) \rightarrow (\exists x . \varphi \land \psi))
$$

$$
((\forall x . \varphi) \lor (\forall x . \psi)) \rightarrow (\forall x . \varphi \lor \psi)
$$

$$
\neg ((\forall x . \varphi \lor \psi) \rightarrow ((\forall x . \varphi) \lor (\forall x . \psi)))
$$
Normal Forms

A formula $\varphi \in \mathcal{L}(\text{FOL})$ is said to be quantifier-free iff it contains no quantifiers.

A quantifier-free formula $\varphi \in \mathcal{L}(\text{FOL})$ is said to be in negation normal form (NNF) iff the only subformulae appearing under negation are atomic propositions.

A formula $\varphi \in \mathcal{L}(\text{FOL})$ is said to be in prenex normal form (PNF) iff

$$\varphi = Q_1 x_1 Q_2 x_2 \ldots Q_n x_n \cdot \psi(x_1, x_2, \ldots, x_n)$$

where $Q_i \in \{\exists, \forall\}$ and ψ is a quantifier-free formula. Sometimes ψ is said to be the matrix of φ.
Normal Forms

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in disjunctive normal form (DNF) iff

$$\varphi = \bigvee_i \bigwedge_j \lambda_{ij}$$

where λ_{ij} are either atomic propositions or negations of atomic propositions.

A quantifier-free formula $\varphi \in \mathcal{L}(FOL)$ is said to be in conjunctive normal form (CNF) iff

$$\varphi = \bigwedge_i \bigvee_j \lambda_{ij}$$

where λ_{ij} are either atomic propositions or negations of atomic propositions.
FOL on Finite Words

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet and $w : \{0, 1, \ldots, n - 1\} \rightarrow \Sigma$ be a finite word, i.e. $w = a_0 a_1 \ldots a_{n-1} \in \Sigma^*$.

The structure corresponding to w is $m_w = \langle \text{dom}(w), \{\bar{p}_a\}_{a \in \Sigma}, \preceq \rangle$, where:

- $\text{dom}(w) = \{0, 1, \ldots, n - 1\}$,
- $\bar{p}_a = \{x \in \text{dom}(w) \mid w(x) = a\}$,
- $x \preceq y$ iff $x \leq y$.

$m_{abbaab} = \langle \{0, \ldots, 5\}, \bar{p}_a = \{0, 3, 4\}, \bar{p}_b = \{1, 2, 5\}, \preceq \rangle$
Exercises

Exercise 3 Write a FOL formula $S(x, y)$ which is valid for all positions $x, y \in \mathbb{N}$ such that $y = x + 1$. □

Exercise 4 Write a FOL sentence whose models are all words with a on even positions and b on odd positions. Next, (try to) write a FOL sentence whose models are all words with a on even positions. □

Exercise 5 Write a FOL formula $\text{len}(x)$ that is satisfied by all words of length x. □

Exercise 6 Write a FOL sentence whose models are all finite words. □
FOL on Infinite Words

Let \(w : \mathbb{N} \to \Sigma \) be an infinite word.

The structure corresponding to \(w \) is \(m_w = \langle \mathbb{N}, \{ \bar{p}_a \}_{a \in \Sigma}, \leq \rangle \).

\[
m_{(ab)^\omega} = \langle \mathbb{N}, \bar{p}_a = \{ 2k \mid k \in \mathbb{N} \}, \bar{p}_b = \{ 2k + 1 \mid k \in \mathbb{N} \}, \leq \rangle
\]
FOL on Finite Trees

Let $\Sigma = \{f, g, \ldots\}$ be an alphabet and $t : \mathbb{N}^* \mapsto \Sigma$ be a finite tree over Σ.

The structure corresponding to t is $m_t = \langle \text{dom}(t), \{\bar{p}_f\}_{f \in \Sigma}, \preceq, \{s_n\}_{n \in \mathbb{N}} \rangle$, where:

- $\bar{p}_f = \{p \in \text{dom}(t) \mid t(p) = f\}$,
- \preceq is the prefix order on \mathbb{N}^*,
- $s_n(p) = \begin{cases} pn, & \text{if } pn \in \text{dom}(t) \\ p, & \text{otherwise} \end{cases}$ for all $n \in \mathbb{N}$, is the n-th successor.
Examples

\[m_{f(f(g,g),g)} = \langle \{ \epsilon, 0, 1, 00, 01, 10, 11 \}, \bar{p}_f = \{ \epsilon, 0, 1 \}, \bar{p}_g = \{ 00, 01, 10, 11 \}, \preceq, \{ s_0, s_1 \} \rangle, \]

where:

- \(s_i(p) = pi \), for all \(p \in \{ \epsilon, 0, 1 \} \) and \(i \in \{ 0, 1 \} \),
- \(s_0(00) = s_1(00) = 00, s_0(01) = s_1(01) = 01, s_0(10) = s_1(10) = 10 \) and \(s_0(11) = s_1(11) = 11 \).

The lexicographic order on \(\{0, 1\}^* \) is defined as follows:

\[x \leq_{lex} y \overset{\text{def}}{=} x \leq y \lor \exists z . \ s_0(z) \leq x \land s_1(z) \leq y \]

Exercise 7 A red-black tree is a tree in which all nodes are either red or black, such that the root is black, and each red node has only black children. Write a FOL sentence whose models are all red-black trees. □
FOL on Infinite Trees

Let \(t : \mathbb{N}^* \mapsto \Sigma \) be an infinite tree over \(\Sigma \).

The structure corresponding to \(t \) is \(m_t = \langle \mathbb{N}^*, \{ \bar{p}_f \}_{f \in \Sigma}, \preceq, \{ s_n \}_{n \in \mathbb{N}} \rangle \), where:

- \(\bar{p}_f = \{ p \in \mathbb{N}^* \mid t(p) = f \} \),
- \(\preceq \) is the prefix order on \(\mathbb{N}^* \),
- \(s_n(p) = pn \), for all \(n \in \mathbb{N} \), is the \(n \)-th successor.

Exercise 8 Given a (possibly infinite) set \(\mathcal{T} = \{ t_1, t_2, \ldots \} \) of finite or infinite trees, of finite or infinite branching degrees, represent each tree \(t_i \in \mathcal{T} \) as an infinite binary tree \(\bar{t}_i : \{0, 1\}^* \mapsto \Sigma \). \(\square \)
Monadic Second Order Logic
Syntax

The alphabet of MSOL consists of:

- all first-order symbols
- **set variables**: X, Y, Z, \ldots

The set of MSOL terms consists of all first-order terms and set variables. The set of MSOL formulae consists of:

- all first-order formulae, i.e. $\mathcal{L}(FOL) \subseteq \mathcal{L}(MSOL)$,
- if t is a term and X is a set variable, then $X(t)$ is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x . \varphi$, $\exists x . \varphi$, $\forall X . \varphi$ and $\exists X . \varphi$ are formulae, for $\bullet \in \{\lor, \land, \rightarrow, \leftrightarrow\}$.

$X(t)$ is sometimes written $t \in X$.
Examples

Universal set:

\[\forall x . X(x) \]

\(X \subseteq Y \):

\[\forall x . X(x) \rightarrow Y(x) \]

\(X \neq Y \):

\[\exists x . (X(x) \land \neg Y(x)) \lor (\neg X(x) \land Y(x)) \]

\(X = \emptyset \):

\[\forall x . \neg X(x) \]

Singleton set:

\[\forall Y . ((\forall x . Y(x) \rightarrow X(x)) \land \exists x . X(x) \land \neg Y(x)) \rightarrow \forall x . \neg Y(x) \]
Semantics

Let \(m = \langle U, \bar{p}_1, \bar{p}_2, \ldots, \bar{f}_1, \bar{f}_2, \ldots \rangle \) be a \textit{structure}.

The \textit{interpretation} of variables is a function:

\[
\iota : \{x, y, z, \ldots \} \cup \{X, Y, Z, \ldots \} \rightarrow U \cup 2^U
\]

such that:

- \(\iota(x) \in U \) for each individual variable \(x \)
- \(\iota(X) \in 2^U \) for each set variable \(X \)

\[
\left[\exists X . \varphi \right]^m_{\iota} = \text{true} \iff \left[\varphi \right]^{m}_{\iota[X \leftarrow S]} = \text{true} \quad \text{for some } S \subseteq U
\]
Example 2 The MSOL formula that characterizes all partitions \(\langle X, Y \rangle \) of \(Z \):

\[
\text{partition}(X, Y, Z) : (\forall x \forall y . X(x) \land Y(y) \rightarrow \neg x = y) \land (\forall x . Z(x) \leftrightarrow X(x) \lor Y(x))
\]
MSOL on Words: (W)S1S

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet. The alphabet of the sequential calculus is composed of:

- the function symbol s denotes the successor,
- the set constants $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a
- the first and second order variables and connectives.

(W)eak indicates that quantification is over finite sets only.

Example 3 Q: Let $m_{abbaab} = \langle \{0, \ldots, 5\}, p_a = \{0, 3, 4\}, p_b = \{1, 2, 5\}, \bar{s} \rangle$ be a finite word, where $\bar{s}(n) = n + 1$, for $n = 0, \ldots, 4$ and $\bar{s}(5) = 5$. □
Examples

The order $x \leq y$ on positions is defined as:

- $\text{closed}(X) : \forall x . X(x) \rightarrow X(s(x))$

- $x \leq y : \forall X . X(x) \land \text{closed}(X) \rightarrow X(y)$

The set of positions of a word is defined by $\text{pos}(X) : \forall x . X(x)$.
Examples

The first position is: \(\text{zero}(x) : \forall y . x \leq y \)

The set of even positions is defined by

\[
\text{even}(X) : \ \exists z . \ \text{zero}(z) \land X(z) \land \\
\exists Y \exists Z . \ \text{pos}(Z) \land \text{partition}(X, Y, Z) \land \\
\forall x \forall y . X(x) \land \neg s(x) = x \rightarrow Y(s(x)) \land \\
\forall x \forall y . Y(x) \land \neg s(x) = x \rightarrow X(s(x))
\]

The set of all words having \(a \)'s on even positions is the set of models of the sentence: \(\exists X . \ \text{even}(X) \land \forall x . X(x) \rightarrow p_a(x) \)

Exercise 9 Write a S1S formula whose models are exactly all infinite words starting with an even number of 0's followed by an infinite number of 1's. ◯
MSOL on Trees: (W)SkS

Let $\Sigma = \{a, b, \ldots\}$ be a tree alphabet. The alphabet of (W)SkS is:

- the function symbols $\{s_i \mid i = 1, \ldots, k\}$, where $s_i(x)$ denotes the i-th successor of x; if we allow $\{s_i \mid i \in \mathbb{N}\}$, the logic is called (W)SkωS,

- the predicate symbols $\{p_a \mid a \in \Sigma\}$; p_a denotes the set of positions of a

- the first and second order variables and connectives.

In FOL on trees we had \leq (prefix) instead of s_i. Why?
Examples

Let us consider binary trees, i.e. the alphabet of S2S.

- The formula $\text{closed}(X) : \forall x . X(x) \rightarrow X(s_0(x)) \land X(s_1(x))$ denotes the fact that X is a downward-closed set.

- The prefix ordering on tree positions is defined by $x \leq y : \forall X . \text{closed}(X) \land X(x) \rightarrow X(y)$.

- The root of a tree is defined by $\text{root}(x) : \forall y . x \leq y$.
Exercise

Exercise 10 Define the set of binary trees $t : \{0, 1\}^* \to \{a, b\}$ such that $t(p) = a$ if p is of even length. □

Exercise 11 Write a S2S formula $\text{path}(X)$ that defines the set of all paths in a binary tree. □

Exercise 12 Write a S2S sentence whose models are all finite trees. □