Ensuring Correctness of Hw/Sw Systems

- Uses logic to specify correctness properties, e.g.:
 - the program never crashes
 - the program always terminates
 - every request to the server is eventually answered
 - the output of the tree balancing function is a tree, provided the input is also a tree ...

- Given a logical specification, we can do either:
 - VERIFICATION: prove that a given system satisfies the specification
 - SYNTHESIS: build a system that satisfies the specification
Approaches to Verification

- **THEOREM PROVING**: reduce the verification problem to the satisfiability of a logical formula (entailment) and invoke an off-the-shelf theorem prover to solve the latter
 - Floyd-Hoare checking of pre-, post-conditions and invariants
 - Certification and Proof-Carrying Code

- **MODEL CHECKING**: enumerate the states of the system and check that the transition system satisfies the property
 - explicit-state model checking (SPIN)
 - symbolic model checking (SMV)

- **COMBINED METHODS**:
 - static analysis (ASTREE)
 - predicate abstraction (SLAM, BLAST)
Approaches to Synthesis

- **TREE AUTOMATA:**
 - starting point: logical specification
 - build word automaton from logic formula
 - transform into tree automaton
 - decide emptiness and build system from witness tree

- **CONTROL and GAME THEORY:**
 - starting point: incomplete/uncontrolled system with two types of freedom (system/environment choice) and an objective
 - the uncontrolled system is given as a game
 - controller/strategy tell how to achieve objective
Logic and Automata Connection

Given an automaton A, we build a logical formula φ_A whose set of models is exactly the language of the automaton.

Given a logical formula φ, we build an automaton A_φ that recognizes the set of all structures (models) in which φ holds.

Assuming that A_φ belongs to a well-behaved class of automata, we can tackle the following problems:

- **SATISFIABILITY**: φ has a model if and only if A_φ is not empty
- **MODEL CHECKING**: a given structure is a model of φ if and only if it belongs to the language of A_φ
Overview: Word and Tree Logics

<table>
<thead>
<tr>
<th></th>
<th>First Order Logic</th>
<th>Monadic Second Order Logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite words</td>
<td>LTL, Star Free, Aperiodic Sets</td>
<td>Finite Automata</td>
</tr>
<tr>
<td>infinite words</td>
<td>LTL, Star Free, Aperiodic Sets</td>
<td>Büchi, Rabin Automata</td>
</tr>
<tr>
<td>finite trees</td>
<td>*</td>
<td>Tree Automata</td>
</tr>
<tr>
<td>infinite trees</td>
<td>*</td>
<td>Rabin Automata, Games</td>
</tr>
</tbody>
</table>
Overview: Integer Logics

Presburger Arithmetic $\subseteq \langle \mathbb{N}, +, V_p \rangle$

Semilinear Sets p-automata
Preliminaries
Words

An *alphabet* is a **finite** non-empty set of symbols $\Sigma = \{a, b, c, \ldots\}$.

A *word* of length n over Σ is a sequence $w = a_0a_1\ldots a_{n-1}$, where $a_i \in \Sigma$, for all $0 \leq i < n$. An *infinite word* is an infinite sequence of elements of Σ.

Equivalently, a word is a function $w : \{0, 1, \ldots, n - 1\} \rightarrow \Sigma$. The length n of the word w is denoted by $|w|$. The *empty word* is denoted by ϵ, i.e. $|\epsilon| = 0$.

$\Sigma^* \ (\Sigma^\omega)$ is the set of all finite (infinite) words over Σ, and $\Sigma^\infty = \Sigma^* \cup \Sigma^\omega$. We denote $\Sigma^+ = \Sigma^* \setminus \{\epsilon\}$.

The *concatenation* of two words w and u is denoted as wu. The *prefix* u of w is defined as $u \leq w$ iff there exists $v \in \Sigma^*$ such that $uv = w$.
Trees

A **prefix-closed** set $S \subseteq \Sigma^*$ is such that for all $w \in S$ and $u \in \Sigma^*$, $u \leq w \Rightarrow u \in S$.

A **prefix-free** set $S \subseteq \Sigma^*$ is such that for all $u, v \in S$, $u \neq v \Rightarrow u \not\leq v$ and $v \not\leq u$.

A **tree** over Σ is a partial function $t : \mathbb{N}^* \mapsto \Sigma$ such that $\text{dom}(t)$ is a prefix-closed set.

A tree t is said to be **finite-branching** iff for all $p \in \text{dom}(t)$, the number of children of p is finite. A tree t is said to be **finite** if $\text{dom}(t)$ is finite.

Lemma 1 (König) A finitely branching tree is infinite iff it has an infinite path.
Ranked Trees

A ranked alphabet \langle \Sigma, \# \rangle is a set of symbols together with a function \# : \Sigma \rightarrow \mathbb{N}. For f \in \Sigma, the value \#(f) is said to be the arity of f.

A ranked tree t over \Sigma is a partial function t : \mathbb{N}^* \mapsto \Sigma that satisfies the following conditions:

- \textit{dom}(t) is a finite prefix-closed subset of \mathbb{N}^*, and
- for each p \in \textit{dom}(t), if \#(t(p)) = n > 0 then \{i \mid pi \in \textit{dom}(t)\} = \{1, \ldots, n\}.

A symbol of arity zero is also called a constant. A finite tree over a ranked alphabet is also called a term.
First Order Logic
Syntax

The *alphabet* of FOL consists of the following symbols:

- **predicate symbols**: $p_1, p_2, \ldots, =$
- **function symbols**: f_1, f_2, \ldots
- **constant symbols**: c_1, c_2, \ldots
- **first-order variables**: x, y, z, \ldots
- **connectives**: $\lor, \land, \rightarrow, \leftrightarrow, \neg, \bot, \forall, \exists$
Syntax

The set of *first-order terms* is defined inductively:

- any constant symbol c is a term,
- any first-order variable x is a term,
- if t_1, t_2, \ldots, t_n are terms and f is a function symbol of arity $n > 0$, then $f(t_1, t_2, \ldots, t_n)$ is a term,
- nothing else is a term.

A term with no variable is said to be a *ground term*. An *atomic proposition* is any proposition of the form $p(t_1, \ldots, p_n)$ or $t_1 = t_2$, where t_1, t_2, \ldots, t_n are terms.
Syntax

The set of *first-order formulae* is defined inductively:

- \(\bot \) and \(\top \) are formulae,
- if \(t_1, t_2, \ldots, t_n \) are terms and \(p \) is a predicate symbol of arity \(n > 0 \), then \(p(t_1, t_2, \ldots, t_n) \) is a formula,
- if \(t_1, t_2 \) are terms, then \(t_1 = t_2 \) is a formula,
- if \(\varphi \) and \(\psi \) are formulae, then \(\varphi \bullet \psi, \neg \varphi, \forall x . \varphi \) and \(\exists x . \varphi \) are formulae, for \(\bullet \in \{ \lor, \land, \rightarrow, \leftrightarrow \} \),
- nothing else is a formula.

The *language* of logic FOL is the set of formulae, denoted as \(\mathcal{L}(FOL) \).
FOL Formulae

\[x = y \]

\[\forall x \forall y . x = y \leftrightarrow y = x \]

\[\exists x (\forall y . p(x, y)) \rightarrow q(x) \]

\[\forall x . p(x) \rightarrow q(f(x)) \]

\[\forall x \exists y . f(x) = y \land (\forall z . f(z) = y \rightarrow z = x) \]
FOL Formulae

The **size** of a formula is the number of subformulae it contains, in other words, the number of nodes in the syntax tree representing the formula. The size of φ is denoted as $|\varphi|$.

The variables within the scope of a quantifier are said to be **bound**. The variables that are not bound are said to be **free**. We denote by $FV(\varphi)$ the set of free variables in φ. If $FV(\varphi) = \emptyset$ then φ is said to be a **sentence**.

Example 1
$FV(\forall x . x = y \land x = z \rightarrow p(x)) = \{y, z\}$

If $x \in FV(\varphi)$, we denote by $\varphi[t/x]$ the formula obtained from φ by substituting x with the term t.
Semantics

A *structure* is a tuple \(m = \langle U, p_1, p_2, \ldots, f_1, f_2, \ldots \rangle \), where:

- \(U \) is a (possible infinite) set called the *universe*,
- \(p_i \subseteq U^{\#(p_i)} \), \(i = 1, 2, \ldots \) are the *predicates*,
- \(f_i : U^{\#(f_i)} \to U \), \(i = 1, 2, \ldots \) are the *functions*,

The elements of the universe are called *individuals*, denoted by \(\bar{c}_1, \bar{c}_2, \ldots \).

NB: Every constant \(c \) from the alphabet of FOL has a corresponding individual \(\bar{c} \), but not vice versa.

The symbol 0 has a corresponding number \(\bar{0} \in \mathbb{N} \), and the function symbol \(s \) has a corresponding function \(x \mapsto x + 1 \). The number \(\bar{1} \in \mathbb{N} \) is denoted as \(s(0) \), the number \(\bar{2} \in \mathbb{N} \) as \(s(s(0)) \), etc.
Semantics

Let \(m = \langle U, \bar{p}_1, \bar{p}_2, \ldots, \bar{f}_1, \bar{f}_2, \ldots \rangle \) be a structure.

The interpretation of variables is a function:

\[
i : \{x, y, z, \ldots \} \to U
\]

The interpretation function is extended to terms \(t \), denoted as \(\iota(t) \in U \):

\[
\begin{align*}
i(c) &= \bar{c} \\
\iota(f(t_1, \ldots, t_n)) &= \bar{f}(\iota(t_1), \ldots, \iota(t_n))
\end{align*}
\]
Semantics

The meaning of a sentence φ in the structure m under the interpretation ι is denoted as $\llbracket \varphi \rrbracket^m_{\iota} \in \{\text{true, false}\}$:

\[\llbracket \bot \rrbracket^m_{\iota} = \text{false}\]
\[\llbracket p(t_1, \ldots, t_n) \rrbracket^m_{\iota} = \text{true} \quad \text{iff} \quad \langle \iota(t_1), \ldots, \iota(t_n) \rangle \in \bar{p}\]
\[\llbracket t_1 = t_2 \rrbracket^m_{\iota} = \text{true} \quad \text{iff} \quad \iota(t_1) = \iota(t_2)\]
\[\llbracket \neg \varphi \rrbracket^m_{\iota} = \text{true} \quad \text{iff} \quad \llbracket \varphi \rrbracket^m_{\iota} = \text{false}\]
\[\llbracket \varphi \land \psi \rrbracket^m_{\iota} = \text{true} \quad \text{iff} \quad \llbracket \varphi \rrbracket^m_{\iota} = \llbracket \psi \rrbracket^m_{\iota} = \text{true}\]
\[\llbracket \exists x . \varphi \rrbracket^m_{\iota} = \text{true} \quad \text{iff} \quad \llbracket \varphi \rrbracket^m_{\iota[x \leftarrow u]} = \text{true} \quad \text{for some } u \in U\]

where $\iota[x \leftarrow u](y) = \iota(y)$ if $x \neq y$ and $\iota[x \leftarrow u](x) = u$.
Semantics

Derived meanings:

\[
\begin{align*}
\llbracket \varphi \lor \psi \rrbracket_l^m &= \llbracket \lnot (\lnot \varphi \land \lnot \psi) \rrbracket_l^m \\
\llbracket \varphi \rightarrow \psi \rrbracket_l^m &= \llbracket \lnot \varphi \lor \psi \rrbracket_l^m \\
\llbracket \varphi \leftrightarrow \psi \rrbracket_l^m &= \llbracket (\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi) \rrbracket_l^m \\
\llbracket \forall x . \varphi \rrbracket_l^m &= \llbracket \lnot \exists x . \lnot \varphi \rrbracket_l^m
\end{align*}
\]
Decision Problems

If \(FV(\varphi) = \emptyset \) we denote the meaning of \(\varphi \) in \(m \) by \([\varphi]^m \) (the choice of \(\iota \) is irrelevant)

If \([\varphi]^m = \text{true} \) we say that \(m \) is a *model* of \(\varphi \), denoted as \(m \models \varphi \).

If \(m \models \varphi \) for all structures \(m \), we say that \(\varphi \) is *valid*, denoted as \(\models \varphi \).

If \(\varphi \) has at least one model, we say that it is *satisfiable*.

Satisfiability: Given \(\varphi \) is it satisfiable?

Model Checking: Given \(m \) and \(\varphi \), does \(m \models \varphi \) ?
Examples

Let \leq be a binary predicate symbol, and $m = \langle U, \leq \rangle$ be a structure. m is a partially ordered set if $m \models \varphi_1 \land \varphi_2$, where:

$$
\varphi_1 : \forall x \forall y . x \leq y \land y \leq x \iff x = y
$$

$$
\varphi_2 : \forall x \forall y \forall z . x \leq y \land y \leq z \rightarrow x \leq z
$$

Notice that $\models \varphi_1 \rightarrow \forall x . x \leq x$.

m is a linearly ordered set if $m \models \varphi_1 \land \varphi_2 \land \varphi_3$, where:

$$
\varphi_3 : \forall x \forall y . x \leq y \lor y \leq x
$$
Exercises

Exercise 1 Two problems P and Q are equivalent when a method for solving P is also a method for solving Q, and vice versa. Show that satisfiability and validity of first-order sentences are equivalent problems. □

Exercise 2 Prove the validity of the following sentences:

\[
\forall x \forall y \forall z . \ x = y \land y = z \rightarrow x = z
\]

\[
(\exists x . \varphi \lor \psi) \leftrightarrow ((\exists x . \varphi) \lor (\exists x . \psi))
\]

\[
(\forall x . \varphi \land \psi) \leftrightarrow ((\forall x . \varphi) \land (\forall x . \psi))
\]

\[
(\exists x . \varphi \land \psi) \rightarrow ((\exists x . \varphi) \land (\exists x . \psi))
\]

\[
\neg(((\exists x . \varphi) \land (\exists x . \psi)) \rightarrow (\exists x . \varphi \land \psi))
\]

\[
((\forall x . \varphi) \lor (\forall x . \psi)) \rightarrow (\forall x . \varphi \lor \psi)
\]

\[
\neg((\forall x . \varphi \lor \psi) \rightarrow ((\forall x . \varphi) \lor (\forall x . \psi)))
\]
Normal Forms

A formula \(\varphi \in \mathcal{L}(FOL) \) is said to be quantifier-free iff it contains no quantifiers.

A quantifier-free formula \(\varphi \in \mathcal{L}(FOL) \) is said to be in negation normal form (NNF) iff the only subformulae appearing under negation are atomic propositions.

A formula \(\varphi \in \mathcal{L}(FOL) \) is said to be in prenex normal form (PNF) iff

\[
\varphi = Q_1x_1Q_2x_2 \ldots Q_nx_n \cdot \psi(x_1, x_2, \ldots, x_n)
\]

where \(Q_i \in \{\exists, \forall\} \) and \(\psi \) is a quantifier-free formula. Sometimes \(\psi \) is said to be the matrix of \(\varphi \).
Normal Forms

A quantifier-free formula \(\varphi \in \mathcal{L}(FOL) \) is said to be in *disjunctive normal form* (DNF) iff

\[
\varphi = \bigvee \bigwedge_{i \atop j} \lambda_{ij}
\]

where \(\lambda_{ij} \) are either atomic propositions or negations of atomic propositions.

A quantifier-free formula \(\varphi \in \mathcal{L}(FOL) \) is said to be in *conjunctive normal form* (CNF) iff

\[
\varphi = \bigwedge \bigvee_{i \atop j} \lambda_{ij}
\]

where \(\lambda_{ij} \) are either atomic propositions or negations of atomic propositions.
FOL on Finite Words

Let $\Sigma = \{a, b, \ldots\}$ be a finite alphabet and $w : \{0, 1, \ldots, n - 1\} \rightarrow \Sigma$ be a finite word, i.e. $w = a_0 a_1 \ldots a_{n-1} \in \Sigma^*$.

The structure corresponding to w is $m_w = \langle \text{dom}(w), \{\bar{p}_a\}_{a \in \Sigma}, \leq \rangle$, where:

- $\text{dom}(w) = \{0, 1, \ldots, n - 1\}$,
- $\bar{p}_a = \{x \in \text{dom}(w) \mid w(x) = a\}$,
- $x \preceq y$ iff $x \leq y$.

$m_{abbaab} = \langle \{0, \ldots, 5\}, \bar{p}_a = \{0, 3, 4\}, \bar{p}_b = \{1, 2, 5\}, \preceq \rangle$
Exercises

Exercise 3 Write a FOL formula $S(x, y)$ which is valid for all positions $x, y \in \mathbb{N}$ such that $y = x + 1$. □

Exercise 4 Write a FOL sentence whose models are all words with a on even positions and b on odd positions. Next, (try to) write a FOL sentence whose models are all words with a on even positions. □

Exercise 5 Write a FOL formula $len(x)$ that is satisfied by all words of length x. □

Exercise 6 Write a FOL sentence whose models are all finite words. □
FOL on Infinite Words

Let \(w : \mathbb{N} \to \Sigma \) be an infinite word.

The structure corresponding to \(w \) is \(m_w = \langle \mathbb{N}, \{ \overline{p}_a \}_{a \in \Sigma}, \leq \rangle \).

\[
\begin{align*}
m_{(ab)\omega} &= \langle \mathbb{N}, \overline{p}_a = \{ 2k \mid k \in \mathbb{N} \}, \overline{p}_b = \{ 2k + 1 \mid k \in \mathbb{N} \}, \leq \rangle
\end{align*}
\]
FOL on Finite Trees

Let $\Sigma = \{f, g, \ldots\}$ be an alphabet and $t : \mathbb{N}^* \mapsto \Sigma$ be a finite tree over Σ.

The structure corresponding to t is $m_t = \langle \text{dom}(t), \{\overline{p}_f\}_{f \in \Sigma}, \preceq, \{s_n\}_{n \in \mathbb{N}} \rangle$, where:

- $\overline{p}_f = \{p \in \text{dom}(t) \mid t(p) = f\}$,
- \preceq is the prefix order on \mathbb{N}^*,
- $s_n(p) = pn$ for any $n \in \mathbb{N}$, is the n-th successor function.

$m_{f(f(g,g),g)} = \langle \{\epsilon, 0, 1, 00, 01\}, \overline{p}_f = \{\epsilon, 0\}, \overline{p}_g = \{00, 01, 1\}, \preceq, \{s_n\}_{n \in \mathbb{N}} \rangle.$
Examples

The *lexicographic* order on $\{0, 1\}^*$ is defined as follows:

$$x \leq_{lex} y : x \leq y \lor \exists z . s_0(z) \leq x \land s_1(z) \leq y$$

Exercise 7 A *red-black tree* is a tree in which all nodes are either red or black, such that the root is black, and each red node has only black children. Write a FOL sentence whose models are all red-black trees. □
FOL on Infinite Trees

Let \(t : \mathbb{N}^* \mapsto \Sigma \) be an infinite tree over \(\Sigma \).

The structure corresponding to \(t \) is \(m_t = \langle \mathbb{N}^*, \{ p_f \}_{f \in \Sigma}, \preceq, \{ s_n \}_{n \in \mathbb{N}} \rangle \).

Exercise 8 Given a (possibly infinite) set \(\mathcal{T} = \{ t_1, t_2, \ldots \} \) of finite or infinite trees, of finite or infinite branching degrees, represent each tree \(t_i \in \mathcal{T} \) as an infinite binary tree \(\bar{t}_i : \{0, 1\}^* \rightarrow \Sigma \). \(\square \)
Monadic Second Order Logic
Syntax

The alphabet of MSOL consists of:

- all first-order symbols
- set variables: X, Y, Z, \ldots

The set of MSOL terms consists of all first-order terms and set variables. The set of MSOL formulae consists of:

- all first-order formulae, i.e. $\mathcal{L}(FOL) \subseteq \mathcal{L}(MSOL)$,
- if t is a term and X is a set variable, then $X(t)$ is a formula,
- if φ and ψ are formulae, then $\varphi \bullet \psi$, $\neg \varphi$, $\forall x . \varphi$, $\exists x . \varphi$, $\forall X . \varphi$ and $\exists X . \varphi$ are formulae, for $\bullet \in \{\lor, \land, \to, \leftrightarrow\}$.

$X(t)$ is sometimes written $t \in X$.
Examples

Universal set:
\[\forall x . X(x) \]

\(X \subseteq Y:\)
\[\forall x . X(x) \rightarrow Y(x) \]

\(X \neq Y:\)
\[\exists x . (X(x) \land \neg Y(x)) \lor (\neg X(x) \land Y(x)) \]

\(X = \emptyset:\)
\[\forall x . \neg X(x) \]

Singleton set:
\[\forall Y . ((\forall x . Y(x) \rightarrow X(x)) \land \exists x . X(x) \land \neg Y(x)) \rightarrow \forall x . \neg Y(x) \]
Semantics

Let \(m = \langle U, \bar{p}_1, \bar{p}_2, \ldots, \bar{f}_1, \bar{f}_2, \ldots \rangle \) be a structure.

The interpretation of variables is a function:

\[
\iota : \{x, y, z, \ldots\} \cup \{X, Y, Z, \ldots\} \rightarrow U \cup 2^U
\]

such that:

- \(\iota(x) \in U \) for each individual variable \(x \)
- \(\iota(X) \in 2^U \) for each set variable \(X \)

\[
[\exists X \cdot \varphi]_\iota^m = \text{true} \iff [\varphi]_{\iota[X \leftarrow S]}^m = \text{true} \text{ for some } S \subseteq U
\]
Example 2 The MSOL formula that characterizes all partitions $\langle X, Y \rangle$ of Z:

$$
\text{partition}(X, Y, Z) : (\forall x\forall y. X(x) \land Y(y) \rightarrow \neg x = y) \land (\forall x. Z(x) \leftrightarrow X(x) \lor Y(x))
$$
Let \(\Sigma = \{a, b, \ldots\} \) be a finite alphabet. The alphabet of the sequential calculus is composed of:

- the function symbol \(s \) denotes the successor,
- the set constants \(\{p_a \mid a \in \Sigma\} \); \(p_a \) denotes the set of positions of \(a \)
- the first and second order variables and connectives.

(W)eak indicates that quantification is over finite sets only.

Q: Let \(m_{abbaab} = \langle\{0, \ldots, 5\}, \bar{p}_a = \{0, 3, 4\}, \bar{p}_b = \{1, 2, 5\}, \bar{s}\rangle \) be a finite word. How much is \(\bar{s}(5) \)?
Examples

The order $x \leq y$ on positions is defined as:

- $\text{closed}(X) : \forall x . X(x) \rightarrow X(s(x))$

- $x \leq y : \forall X . X(x) \land \text{closed}(X) \rightarrow X(y)$

The set of positions of a word is defined by $\text{pos}(X) : \forall x . X(x)$.
Examples

The first position is:

\[\text{zero}(x) : \forall y . x \leq y \]

The set of even positions is defined by

\[\text{even}(X) : \exists z . \text{zero}(z) \land \exists Y, Z . \text{pos}(Z) \land \text{partition}(X, Y, Z) \land \]
\[\forall x, y . X(x) \land s(x) = y \rightarrow Y(y) \land \]
\[\forall x, y . Y(x) \land s(x) = y \rightarrow Y(x) \land X(z) \]

The set of all words having \(a \)'s on even positions is the set of models of the sentence:

\[\exists X . \text{even}(X) \land \forall x . X(x) \rightarrow p_a(x) \]
Exercise

Exercise 9 Write a S1S formula whose models are exactly all infinite words starting with an even number of 0’s followed by an infinite number of 1’s. □
MSOL on Trees: (W)SωS

Let \(\Sigma = \{a, b, \ldots\} \) be a tree alphabet. The alphabet of (W)SωS is:

- the function symbols \(\{s_i \mid i \in \mathbb{N}\} \); \(s_i(x) \) denotes the \(i \)-th successor of \(x \)
- the set constants \(\{p_a \mid a \in \Sigma\} \); \(p_a \) denotes the set of positions of \(a \)
- the first and second order variables and connectives.

In FOL on trees we had \(\leq \) (prefix) instead of \(s_i \). Why?
Examples

Let us consider binary trees, i.e. the alphabet of S2S.

- The formula $\text{closed}(X) : \forall x . X(x) \rightarrow X(s_0(x)) \land X(s_1(x))$ denotes the fact that X is a downward-closed set.

- The prefix ordering on tree positions is defined by $x \leq y : \forall X . \text{closed}(X) \land X(x) \rightarrow X(y)$.

- The root of a tree is defined by $\text{root}(x) : \forall y . x \leq y$.
Exercise

Exercise 10 Define the set of binary trees $t : \{0, 1\}^* \rightarrow \{a, b\}$ such that $t(p) = a$ if p is of even length and $t(p) = b$ if p is of odd length. □

Exercise 11 Write a $\mathit{S\omega S}$ formula $\mathit{path}(X)$ that defines the set of all paths in a binary tree. □

Exercise 12 Write a $\mathit{S\omega S}$ sentence whose models are all finite trees. □