Reachability and Büchi Games

Barbara Jobstmann

Cadence Design Systems Ecole Polytechnique Fédérale de Lausanne

Grenoble, December 2018

Hierarchy

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Reachability and Safety Games

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Theorem

Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq S$, then the winning regions W_0 and W_1 of Player 0 and 1, respectively, are computable, and both players have corresponding memoryless winning strategies.

Proof.

Define

 $\operatorname{Attr}_{0}^{i}(F) := \{ s \in S \mid \text{ Player 0 can force a visit from } s \text{ to } F$ in less than $i \text{ moves} \}$

Force Visit in Next Step

Given a set of states, compute the set of states $\operatorname{ForceNext}_0(F)$ from which of Player 0 can force to visit F in the next step. I.e., for each state $s \in \operatorname{ForceNext}_0(F)$ Player 0 can fix a strategy s.t. all plays starting in s visit F in the first step.

ForceNext₀(F) = {
$$s \in S_0 \mid \exists s' \in S : (s,s') \in E \land s' \in F$$
}
{ $s \in S_1 \mid \forall s' \in S : (s,s') \in E \rightarrow s' \in F$ }

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

Computing the Attractor

Construction of $\operatorname{Attr}_0^i(F)$:

$$\operatorname{Attr}_{0}^{0}(F) = F$$

$$\operatorname{Attr}_{0}^{i+1}(F) = \operatorname{Attr}_{0}^{i}(F) \cup \operatorname{ForceNext}_{0}(\operatorname{Attr}_{0}^{i}(F))$$

$$Attr_0^0 = \{s_3, s_4\}$$

$$Attr_0^0 = \{s_3, s_4\} Attr_0^1 = \{s_0, s_3, s_4\}$$

$$Attr_0^0 = \{s_3, s_4\} Attr_0^1 = \{s_0, s_3, s_4\} Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

$$Attr_0^0 = \{s_3, s_4\}$$

$$Attr_0^1 = \{s_0, s_3, s_4\}$$

$$Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

$$Attr_0^3 = \{s_0, s_3, s_4, s_6, s_7\}$$

$$Attr_0^4 = \{s_0, s_3, s_4, s_5, s_6, s_7\}$$

$$Attr_0^0 = \{s_3, s_4\}$$

$$Attr_0^1 = \{s_0, s_3, s_4\}$$

$$Attr_0^2 = \{s_0, s_3, s_4, s_7\}$$

$$Attr_0^3 = \{s_0, s_3, s_4, s_6, s_7\}$$

$$Attr_0^4 = \{s_0, s_3, s_4, s_5, s_6, s_7\}$$

Computing the Attractor

Construction of $\operatorname{Attr}_0^i(F)$:

$$\operatorname{Attr}_{0}^{0}(F) = F$$

$$\operatorname{Attr}_{0}^{i+1}(F) = \operatorname{Attr}_{0}^{i}(F) \cup \operatorname{ForceNext}_{0}(\operatorname{Attr}_{0}^{i}(F))$$

Then $\operatorname{Attr}_0^0(F) \subseteq \operatorname{Attr}_0^1(F) \subseteq \operatorname{Attr}_0^2(F) \subseteq \ldots$ and since S is finite, there exists $k \leq |S|$ s.t. $\operatorname{Attr}_0^k(F) = \operatorname{Attr}_0^{k+1}(F)$. The 0-Attractor is defined as:

$$\operatorname{Attr}_0(F) := \bigcup_{i=0}^{|S|} \operatorname{Attr}_0^i(F)$$

(日) (四) (코) (코) (코)

Computing the Attractor

Construction of $\operatorname{Attr}_0^i(F)$:

$$\operatorname{Attr}_{0}^{0}(F) = F$$

$$\operatorname{Attr}_{0}^{i+1}(F) = \operatorname{Attr}_{0}^{i}(F) \cup \operatorname{ForceNext}_{0}(\operatorname{Attr}_{0}^{i}(F))$$

Then $\operatorname{Attr}_0^0(F) \subseteq \operatorname{Attr}_0^1(F) \subseteq \operatorname{Attr}_0^2(F) \subseteq \ldots$ and since S is finite, there exists $k \leq |S|$ s.t. $\operatorname{Attr}_0^k(F) = \operatorname{Attr}_0^{k+1}(F)$. The 0-Attractor is defined as:

$$\operatorname{Attr}_0(F) := \bigcup_{i=0}^{|S|} \operatorname{Attr}_0^i(F)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Claim: $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$

Duality Between Players

Assume we have a partition of the state space $S = P_0 \cup P_1$ (i.e., $P_0 \cap P_1 = \emptyset$) and we want to prove $W_0 = P_0$ and $W_1 = P_1$.

We want to prove $P_0 \supseteq W_0$, $P_0 \subseteq W_0$, $P_1 \supseteq W_1$, and $P_1 \subseteq W_1$.

Since we know that $W_0 \cap W_1 = \emptyset$ holds, it is sufficient to prove $P_0 \subseteq W_0$ and $P_1 \subseteq W_1$.

$$P_{0} \subseteq W_{0} \qquad P_{1} \subseteq W_{1}$$

$$S \setminus P_{0} \supseteq S \setminus W_{0} \qquad S \setminus P_{1} \supseteq S \setminus W_{1}$$

$$P_{1} \supseteq S \setminus W_{0} \supseteq W_{1} \qquad P_{0} \supseteq S \setminus W_{1} \supseteq W_{0}$$

$$P_{1} \supseteq W_{1} \qquad P_{0} \supseteq W_{0}$$

0-Attractor

To show $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$, we construct winning strategies for Player 0 and 1.

0-Attractor

To show $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$, we construct winning strategies for Player 0 and 1. Proof.

 $\operatorname{Attr}_0(F) \subseteq W_0$

We prove for every *i* and for every state $s \in \operatorname{Attr}_0^i(F)$ that Player 0 has a positional winning strategy to reach F in $\leq i$ steps.

• (Base)
$$s \in \operatorname{Attr}_0^0(F) = F$$

(Induction) s ∈ Attrⁱ⁺¹₀(F)
If s ∈ Attrⁱ₀(F), then we apply induction hypothesis.
Otherwise s ∈ ForceNext₀(Attrⁱ₀(F)) \ Attrⁱ₀(F) and Player 0 can force a visit to Attrⁱ₀(F) in one step and from there she needs at move i steps by induction hypothesis. So, F is reached after a finite number of moves.

<u>0-Attractor cont.</u>

Proof cont.

 $S \setminus \operatorname{Attr}_0(F) \subseteq W_1$

Assume $s \in S \setminus \text{Attr}_0(F)$, then $s \notin \text{ForceNext}_0(\text{Attr}_0(F))$ and we have two cases:

(a) s ∈ S₀ ∩ S \ Attr₀(F) ∀s' ∈ S: (s, s') ∈ E → s' ∉ Attr₀(F)
(b) s ∈ S₁ ∩ S \ Attr₀(F) ∃s' ∈ S: (s, s') ∈ E ∧ s' ∉ Attr₀(F)
In S \ Attr₀(F) Player 1 can choose edges according to (b) leading again to S \ Attr₀(F) and by (a) Player 0 cannot escape from S \ Attr₀(F). So, F will be avoided forever.

 $W_0 = \operatorname{Attr}_0(F)$ and $W_1 = S \setminus \operatorname{Attr}_0(F)$

Given a safety game (G, F) with $G = (S, S_0, E)$, i.e.,

$$\phi_S = \{ \rho \in S^\omega \mid \operatorname{Occ}(\rho) \subseteq F \},\$$

consider the reachability game $(G, S \setminus F)$, i.e.,

$$\phi_R = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \cap (S \setminus F) \neq \emptyset \}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Then,
$$S^{\omega} \setminus \phi_R = \{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \cap (S \setminus F) = \emptyset \}$$

= $\{ \rho \in S^{\omega} \mid \operatorname{Occ}(\rho) \subseteq F \}.$

Player 0 has a safety objective in (G, F).

Player 1 has a reachability objective in (G, F). So, W_0 in the safety game (G, F) corresponds to W_1 in the reachability game $(G, S \setminus F)$.

Summary

We know how to solve reachability and safety games by positional winning strategies.

The strategies are

- \blacktriangleright Player 0: Decrease distance to F
- ▶ Player 1: Stay outside of $Attr_0(F)$

In LTL, $\Diamond F$ = reachability and $\Box F$ = safety.

Next, $\Box \diamondsuit F = B$ üchi and $\diamondsuit \Box F = Co-B$ üchi.

Exercise

1. Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq Q$, give an algorithm that computes the 0-Attractor(F) in time O(|E|).

Exercise

1. Given a reachability game (G, F) with $G = (S, S_0, E)$ and $F \subseteq Q$, give an algorithm that computes the 0-Attractor(F) in time O(|E|).

Solution:

- 1. Preprocessing: Compute for every state $s \in S_1$ outdegree out(s)
- 2. Set n(s) := out(s) for each $s \in S_1$
- 3. To breadth-first search backwards from F with the following conventions:
 - ▶ mark all $s \in F$
 - mark $s \in S_0$ if reached from marked state
 - mark $s \in S_1$ if n(s) = 0, other set n(s) := n(s) 1.

The marked vertices are the ones of $\operatorname{Attr}_0(F)$.

Hierarchy

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Büchi and co-Büchi Games

<u>Büchi Game</u>

Given a Büchi game (G, F) over the game graph $G = (S, S_0, E)$ with the set $F \subseteq S$ of Büchi states, we aim to

- determine the winning regions of Player 0 and 1
- compute their respective winning strategies

Recall, Player 0 wins ρ iff she visits infinitely often states in F, i.e., $\phi = \{\rho \in S^{\omega} \mid \inf(\rho) \cap F \neq \emptyset\}.$

<u>Idea</u>

Compute for $i \ge 1$ the set Recur_0^i of accepting states $s \in F$ from which Player 0 can force at least *i* revisits to *F*. Then, we will show that

$$F \supseteq \operatorname{Recur}_0^1(F) \supseteq \operatorname{Recur}_0^2(F) \supseteq \dots$$

and we compute the winning region of Player 0 with

$$\operatorname{Recur}_0(F) := \bigcap_{i \le 1} \operatorname{Recur}_0^i(F)$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Again, since F is finite, there exists k such that $\operatorname{Recur}_0(F) = \operatorname{Recur}_0^k(F).$ Claim: $W_0 = \operatorname{Attr}_0(\operatorname{Recur}_0(F))$

<u>Idea</u>

Compute for $i \ge 1$ the set Recur_0^i of accepting states $s \in F$ from which Player 0 can force at least *i* revisits to *F*. Then, we will show that

$$F \supseteq \operatorname{Recur}_0^1(F) \supseteq \operatorname{Recur}_0^2(F) \supseteq \dots$$

and we compute the winning region of Player 0 with

$$\operatorname{Recur}_0(F) := \bigcap_{i \le 1} \operatorname{Recur}_0^i(F)$$

Again, since F is finite, there exists k such that $\operatorname{Recur}_0(F) = \operatorname{Recur}_0^k(F).$

Claim:
$$W_0 = \operatorname{Attr}_0(\operatorname{Recur}_0(F))$$

First, we define Recur_0 formally using a modified version of Attractor.

One-Step Attractor

We count revisits, so we need the set of states from which Player 0 can force a revisit to F, i.e., state from which she can force a visit in ≥ 1 steps.

We define a slightly modified attractor:

$$A_0^0 = \emptyset$$

$$A_0^{i+1} = A_0^i \cup \text{ForceNext}(A_0^i \cup F)$$

$$\text{Attr}_0^+(F) = \bigcup_{i \ge 0} A_0^i$$

 $\operatorname{Attr}_0^+(F)$ is the set of states from which Player 0 can force a revisit to F.

Visit versus Revisit

Recurrence Set

We define

$$\begin{aligned} \operatorname{Recur}_0^0(F) &:= F \\ \operatorname{Recur}_0^{i+1}(F) &:= F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F)) \\ \operatorname{Recur}_0(F) &:= \bigcap_{i \geq 0} \operatorname{Recur}_0^i(F) \end{aligned}$$

We show that there exists k such that $\operatorname{Recur}_0(F) := \bigcap_{i\geq 0}^k \operatorname{Recur}_0^i(F)$ by proving $\operatorname{Recur}_0^{i+1}(F) \subseteq \operatorname{Recur}_0^i(F)$ for all $i\geq 0$.

Proof.

- i = 0: $F \cap \operatorname{Attr}_0^+(F) \subseteq F$
- $\blacktriangleright i \to i+1:$

$$\begin{split} \operatorname{Recur}_0^{i+1}(F) &= F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F)) \subseteq F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^{i-1}(F)) \\ &= \operatorname{Recur}_0^i(F) \text{ since (i) } \operatorname{Recur}_0^i(F) \subseteq \operatorname{Recur}_0^{i-1}(F) \text{ by ind. hyp. and} \\ (\text{ii) } \operatorname{Attr}_0^+ \text{ is monotone.} \end{split}$$

Recurrence Set cont.

We show that all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$ are winning for Player 0, i.e., $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. We construct a memoryless winning strategy for Player 0 for all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$.

Proof.

We know that there exists k such that

 $\operatorname{Recur}_0^{k+1}(F)=\operatorname{Recur}_0^k(F)=F\cap\operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F)).$ So,

- ▶ for $s \in \operatorname{Recur}_0^k(F) \cap S_0$ Player 0 can choose an edges back to Attr⁺₀(Recur^k₀(F)) and
- ▶ for $s \in \operatorname{Recur}_0^k(F) \cap S_1$ all edges lead back to $\operatorname{Attr}_0^+(\operatorname{Recur}_0^k(F))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

For all states in $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \setminus \operatorname{Recur}_0(F)$, Player 0 can follow the attractor strategy to reach $\operatorname{Recur}_0(F)$.

<u>Recurrence Set cont.</u>

We show $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_1$.

Proof.

Show: Player 1 can force $\leq i$ visits to F from $s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^i(F))$ $i = 0: s \notin \operatorname{Attr}_0(F)$, so Player 1 can avoid visiting F at all. $i \to i + 1: s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F)).$

- ▶ $s \notin \operatorname{Attr}_0(\operatorname{Recur}_0^i(F))$, Player 1 plays according to ind. hypothese
- ► Otherwise, $s \in \operatorname{Attr}_0(\operatorname{Recur}_0^i(F)) \setminus \operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$ and Player 1 can avoid $\operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$. In particular, $s \notin \operatorname{Recur}_0^{i+1}(F) = F \cap \operatorname{Attr}_0^+(\operatorname{Recur}_0^i(F))$.
 - ▶ If $s \in \operatorname{Recur}_{0}^{i}$, then Player 1 can force to leave $\operatorname{Attr}_{0}^{+}(\operatorname{Recur}_{0}^{i}(F))$, otherwise $s \in \operatorname{Recur}_{0}^{i+1}(F)$. (So, by ind. hyp. at most i + 1 visits.)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへ⊙

• If $s \in \operatorname{Attr}_0(\operatorname{Recur}_0^i(F)) \setminus \operatorname{Recur}_0^i(F)$, avoid $\operatorname{Attr}_0(\operatorname{Recur}_0^{i+1}(F))$.

Recurrence Set cont.

Dac

Büchi games

We have shown that Player 0 has a (memoryless) winning strategy from every state in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. And, Player 1 has a (memoryless) winning strategy from every state in $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_1$. This implies the following theorem.

Theorem

Given a Büchi game $((S, S_0, E), F)$, the winning regions W_0 and W_1 are computable and form a partition, i.e., $W_0 \cup W_1 = S$. Both players have memoryless winning strategies.

Büchi games

We have shown that Player 0 has a (memoryless) winning strategy from every state in $\operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $\operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_0$. And, Player 1 has a (memoryless) winning strategy from every state in $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F))$, so $S \setminus \operatorname{Attr}_0(\operatorname{Recur}_0(F)) \subseteq W_1$. This implies the following theorem.

Theorem

Given a Büchi game $((S, S_0, E), F)$, the winning regions W_0 and W_1 are computable and form a partition, i.e., $W_0 \cup W_1 = S$. Both players have memoryless winning strategies.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

How expensive it the computation of W_0 and W_1 ?

Co-Büchi Games

Given a Co-Büchi Game $((S, S_0, E), F)$, i.e.,

$$\phi_C = \{ \rho \in S^\omega \mid \operatorname{Inf}(\rho) \subseteq F \}$$

consider the Büchi Game $((S, S_0, E), S \setminus F)$, i.e,

$$\phi_B = \{ \rho \in S^\omega \mid \operatorname{Inf}(\rho) \cap S \setminus F \neq \emptyset \}.$$

Then,
$$S^{\omega} \setminus \phi_B = \{ \rho \in S^{\omega} \mid \operatorname{Inf}(\rho) \cap (S \setminus F) = \emptyset \}$$

= $\{ \rho \in S^{\omega} \mid \operatorname{Inf}(\rho) \subseteq F \}.$

Player 0 has a co-Büchi objective in (G, F).

Player 1 has a Büchi objective in (G, F).

So, W_0 in the co-Büchi game (G, F) corresponds to W_1 in the Büchi game $(G, S \setminus F)$.

We know how to solve Büchi and Co-Büchi games by positional winning strategies.

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

In LTL,

- $\blacktriangleright \Diamond F = \text{reachability}$
- $\blacktriangleright \Box F = \text{safety}$
- $\blacktriangleright \Box \diamondsuit F = \text{Büchi}$
- $\triangleright \Diamond \Box F = \text{Co-Büchi}$

Exercise

2. Consider the game graph shown in below and the following winning conditions:

(a)
$$\operatorname{Occ}(\rho) \cap \{1\} \neq \emptyset$$
 and

(b)
$$Occ(\rho) \subseteq \{1, 2, 3, 4, 5, 6\}$$
 and

(c)
$$\operatorname{Inf}(\rho) \cap \{4,5\} \neq \emptyset$$
.

Compute the winning regions and corresponding winning strategies showing the intermediate steps (i.e., the Attractor and Recurrence sets) of the computation.

Exercise

- 3. Given a game graph $G = (S, S_0, T)$ and a set $F \subseteq S$. Let W_0 and W_1 be the winning regions of Player 0 and Player 1, respectively, in the Buchi game (G, F). Prove or disprove:
 - (a) The winning region of Player 0 in the safety game (G, W_0) is W_0 ,
 - (b) If f₀ is a winning strategy for Player 0 in the safety game for (G, W₀), then f₀ is also a winning strategy for Player 0 in the Buchi game for (G, F),
 - (c) the winning region of Player 1 in the guaranty game for (G, W_0) is W_1 , and
 - (d) if f₁ is a winning strategy for Player 1 in the guaranty game for (G, W₀), then f₁ is also a winning strategy for Player 1 in the Buchi game (G, F).