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1 Background

Separation Logic (SL) [12] is a logical framework for describing dynamically allocated mutable data structures
generated by programs that use pointers and low-level memory allocation primitives. The logics in this frame-
work are used by a number of academic (SPACE INVADER [2], SLEEK [9]), and industrial (INFER [3]) tools for
program verification. The main reason for choosing to work within the SL framework is that it allows to write
compositional proofs of programs, based on the principle of local reasoning:

To understand how a program works, it should be possible for reasoning and spec-
ification to be confined to the cells that the program actually accesses. The value of
any other cell will automatically remain unchanged [10].

The main ingredients of SL are (i) the separating conjunction ϕ ∗ψ, which asserts that ϕ and ψ hold for
separate portions of the heap, and (ii) its logical adjoint1, the magic wand ϕ−−∗ ψ, asserting that each disjoint
extension of the heap, with a model of ϕ, results in a model of ψ. Consider for instance, the heap consisting
of two memory cells, pointed to by the program variables x and y, such that x cell has an outgoing selector
field to the y cell, and viceversa. The heap can be split into two disjoint parts, each containing exactly one cell,
and described by an atomic proposition x 7→ y and y 7→ x, respectively. This heap is described by the formula
x 7→ y ∗ y 7→ x, which reads x points to y and separately y points to x.

When reasoning about programs that manipulate data structures, it is crucial to have the ability of describing
infinite sets of heaps, that are instances of recursively defined data structures, such as singly- or doubly-linked
lists, trees and such. This is achieved in SL by introducing inductive definitions. For instance, the inductive
definition below defines singly-linked list segments from head to tail:

ls(head, tail) ⇐ emp∧head= tail (r1)
ls(head, tail) ⇐ ∃x . head 7→ x∗ ls(x, tail) (r2)

The first case (r1) of the definition of the predicate ls is the base rule, i.e. the heap is empty (emp) and head
equals tail, while the second case (r2) is the inductive rule which corresponds to one unfolding of the definition.
The separating conjunction here states that the cell pointed to by head is disjoint from the rest of the heap,
which is a list segment from x to tail.

An important decision problem in SL concerns the validity of entailments φ |= ψ: given formulæ φ and ψ

does every heap that satisfies φ also satisfy ψ ? For instance, the entailment problem ls(x,y)∗ ls(y,z) |= ls(x,z)
asks whether the concatenation of two list segments is again a list segment.

The expressive power of SL comes with the inherent difficulty of automatically reasoning about the satis-
fiability of its formulae, as required by push-button program analysis tools. Indeed, SL becomes undecidable
in the presence of first-order quantification, even when the fragment uses only points-to predicates, without the
separating conjunction or the magic wand [4]. Undecidability occurs also when inductive definitions are used
on top of the existential fragment of SL [8].

2 Combining Separation Logic with Data Theories

The purpose of this internship is to study the combined theory of SL with inductive predicates and data, needed
to reason about the contents of data structures in the memory. For instance, we can consider a variant of the ls
predicate that specifies sorted list segments:

sls(head,d, tail) ⇐ emp∧head= tail (r1)
sls(head,d, tail) ⇐ ∃x∃e . head 7→ (d,x)∗ ls(x,e, tail)∗d < e (r2)

1We have ϕ∗ψ⇒ φ if and only if ϕ⇒ ψ−−∗ φ.
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Here the atomic proposition head 7→ (d,x) means that head is a pointer to a record whose first field is the data
value d and second field is a pointer to the tail x of the list segment. Note also that the data elements are
recursively required to increase strictly, by the atomic proposition d < e, belonging to the theory of data.

Reasoning about combined theories of separation and data is difficult mainly because the effect of adding
a data theory to existing decidable fragments of SL [7, 6] is not yet fully understood. Roughly speaking,
combining inductive reasoning with data requires invariant synthesis techniques that resemble the fixed point
computations used in program analysis [5].

During this internship you are expected to contribute to the study of this problem. Another line of work
is more practical and consists in integrating state-of-the-art decision procedures for SL (see e.g. [11, 6]) with
Satisfiability Modulo Theories (SMT) solvers, such as CVC4 [1].
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