Symmetry Reduction Criteria for Software
Model Checking *

Radu Iosif

Computer and Information Sciences Department,
318 Nichols Hall, Kansas State University
Manhattan, KS 66502, USA

iosif@cis.ksu.edu

Abstract. Symmetry reduction techniques exploit symmetries that oc-
cur during the execution of a system, in order to minimize its state space
for efficient verification of temporal logic properties. This paper presents
a framework for concisely defining and evaluating two symmetry reduc-
tions currently used in software model checking, involving heap objects
and, respectively, processes. An on-the-fly state space exploration algo-
rithm combining both techniques is also presented. Second, the relation
between symmetry and partial order reductions is investigated, showing
how one’s strengths can be used to compensate for the other’s weak-
nesses. The symmetry reductions presented here were implemented in
the dSPIN model checking tool. We performed a number of experiments
that show significant progress in reducing the cost of finite state software
verification.

1 Introduction

The increasing complexity in the design of concurrent software artifacts demands
new validation techniques. Model checking [4] is a widespread technique for
automated verification of concurrent systems that has been recently applied to
the verification of software. Unfortunately, the use of model checking tools [13]
is often limited by the size of the physical memory, due to the state explosion
problem. In order to deal with this problem, various reduction techniques have
been proposed in the literature. Among those, symmetry reductions [3], [8] and
partial-order reductions [10], [22] have gained substantial credibility over the past
decade. Both techniques are automatic and can be applied on-the-fly, during
model checking. The reduction achieved can be significant, in the best cases
exponential in the size of the state space.

Symmetry reductions exploit the structure of states in order to identify sym-
metries that occur during verification. The intuition behind these strategies is

* This work was supported in part by NSF under grant CCR-9703094, by the U.S.
Army Research Laboratory and the U.S. Army Research Office under agreement
number DAAD190110564, and from the Formal Verification of Integrated Modu-
lar Avionics Software cooperative agreement, NCC-1-399, sponsored by Honeywell
Technology Center and NASA Langley Research Center.

2 Radu Iosif

that the order in which state components (processes, objects) are stored in a
state does not influence the future behavior of the system. That is, the suc-
cessors of two symmetric states are also symmetric. Many criteria have been
proposed to decide whether two states are symmetric on-the-fly, without any in-
formation about the future states. They usually exploit the ordering of processes
[6], communication channels and the structure of temporal logic formulas used
to express correctness requirements [8]. Ideally, the reduced state space will have
only one state representing each symmetry equivalence class. Unfortunately, de-
tecting all symmetries usually requires very expensive computations, that may
make such reductions impractical.

Partial order reductions exploit the commutativity of concurrent transitions,
which result in the same state when executed in different orders. The decision
whether two transitions are independent, so that they can be safely swapped,
is usually made using compile-time static analysis. In practice, this information
is a conservative approximation of the real run-time independence. As in the
case of symmetry reductions, using more information about the system helps
detecting more independence, however it is computationally more expensive. It
has been shown [7] that symmetry and partial order reductions are orthogonal
strategies and can be used in combination to achieve better verification results.

The main contribution of this paper is applying both techniques to a partic-
ular class of software, namely dynamic programs, for which the number of state
components (processes, objects) is continuously modified as a result of their on-
going execution. This concept can be used to formalize the semantics of most
high-level object-oriented programs, such as the ones written in Java or C++.
We show how existing reduction techniques can be specialized to exploit the dy-
namic nature of software systems in order to achieve more effective verification
results.

The present paper is, to some extent, the continuation of our work reported
in [19]. There we presented a canonical symmetry reduction that applies only to
the heap of the program. Here we combine the heap symmetry reductions with
more traditional approaches, such as process symmetries [6]. We first define a
framework that allows us to express both reductions formally and compare their
efficiency, in terms of canonical properties. Then we describe an explicit-state
exploration algorithm that combines heap with process symmetry reduction on-
the-fly. Finally, we investigate further optimizations by relating heap symmetries
with partial order reductions. Preservation of temporal logic properties is dis-
cussed throughout the paper. A prototype implementation of the ideas described
in this paper has been done in dSPIN [17], an extension of SPIN [13], especially
designed for software model checking. We performed a number of experiments
on two non-trivial test cases in order to obtain a practical assessment of our
ideas.

1.1 Related Work

Among the first to use symmetries in model checking were Clarke, Filkorn and
Jha [3], Emerson and Sistla [8] and Ip and Dill [20]. These approaches consider

Symmetry Reduction Criteria for Software Model Checking 3

systems composed of a fixed number of active components (processors) [3], vari-
ables of a special symmetry-preserving data type (scalarset) [20] as well as sym-
metries of specifications [8]. Using sorting permutation to reduce the complexity
of representatives computations has been addressed by the work of Bosnacki and
Dams [6]. The problem of exploiting heap symmetries in software model checking
has been informally addressed by Visser and Lerda in [21]. To our knowledge,
they are the only other group that have addressed heap symmetries to date.
Their approach looks attractive due to its simplicity, but no formal evidence of
its canonical properties has yet been provided by the authors.

2 Preliminaries

In this section we present some background notions regarding symmetry. The
classical framework [3], [8] starts from the basic notion of group of automor-
phisms in order to define symmetry as an equivalence between states. Since
automorphisms preserve graph structure, it can be shown that the symmetry
induced by a group of automorphisms is a bisimulation in the sense of Milner
[12]. It is therefore possible to define a quotient structure in which each state is
a (representative of a) symmetry equivalence class. Model checking the reduced
structure preserves all properties that can be expressed using temporal logics
[4].

Unfortunately, applying this framework directly to software model checking
faces the difficulty of giving the automorphisms appropriate semantic definitions.
Indeed, when considering a program in which the number of state components
(such as objects or threads) may experience an unbounded growth along an
execution path, one cannot consider only one group of permutations as the group
of system automorphisms. Instead, we consider a (possibly infinite) family of such
groups and chose one at each step, by keeping track of the number of components
in every state.

Let G,, denote the set of all permutations on the set {1,...,n}. It is easy to
see that G, forms a group with function composition, inverse and the identity
mapping as neutral element. Formally, we represent program executions by an
(augmented) Kripke structure K = (S, R, L, ') over a set of atomic propositions
P and a set of actions X', where:

— S is a set of states,

— RC S x X x S is a transition relation,

— L:S — 2% is a function that labels states with sets of atomic propositions,

— N is a family of functions 7, : S — IN, where 7,(s) is the number of
components of type 7 occurring in state s.

In cases where the last (A) component is irrelevant for the discussion, we may
omit it. A transition (s,«,t) € R is also denoted by s 3 t. We consider that
permutations on numbers induce permutations on states. Let 7 € G, be a
permutation. We denote by 7, (s) the application of 7 only to the components
of type 7 in s, given that 1, (s) = n. More precisely, let S; ,, = {s € S | n,(s) =

4 Radu Iosif

n} be the set of all states whose number of 7-components is n. Any bijection
mr + S;n — S;p is a state permutation. In Section 3 we formally express 7,
in function of 7 for two types of state components: heap-allocated objects and
processes.

Definition 1. Let K = (S,R,L,N) be a structure. For some component type
T, a binary relation =, C S X S is a T-symmetry iff, for all s = t, the following
hold:

= L(s) = L(t),
= N7 (8) = n(t), for all ny € N,
— 7r(8) =t for some 7 € Gy_(4)-

Using basic group theory, it can be proved that =, is an equivalence relation.
The equivalence class, also known as the orbit, of a state s is denoted by [s].
Throughout this paper we omit 7 whenever it is implicit or irrelevant to the
discussion. The quotient structure w.r.t. a 7-symmetry is defined as follows:

Definition 2. Given a structure K = (S, R, L,N') and a symmetry relation =,
on S, the quotient structure for K w.r.t to =, is K/=_ = (S;, R, L;,N~), where:

- S, ={[s]- | s € S},

- R, = {([S]Taaa[t]‘r) | (Saaat) € R}a
L.([s];) = L(s), for all s € S,

- Uz([s]r) = nz(s)’ fOT all Nz € N

The states of a quotient structure are equivalence classes of states from the orig-
inal structure and a transition occurs between two equivalence classes whenever
a transition (labeled with the same action) occurs between states from the orig-
inal structure. It is clear, from the first two points of Definition (1), that L,
and N, are well defined for the quotient structure. Since the set S; is a (pos-
sibly non-trivial) partition of S, it is potentially more efficient to model check
a temporal logic formula on K,—=_instead of K, provided that they represent
equivalent computations. We use here the notion of bisimulation in the sense of
Milner [12] strengthened with equivalence w.r.t to the set of atomic propositions

P:

Definition 3. Let Ky = (S1, R1, L1) and Ky = (S2, Ra, L) be Kripke structures
over the set of actions X. A binary relation ~ C Sy x Sy is a bisimulation iff,
for all s1 = so and o € X, all the following hold:

— Li(s1) = La(s2),
-Vt eS. (sl,a,tl) ER =>3dty €Sy . (SQ,OA,tQ) € Ry and ty & to,
— Vi, €85 . (32,a,t2) €eRy, =3t €85 . (sl,a,tl) € Ry and t; = t».

If ~ is total on S7 and S, we say that K; and K> are bisimilar, and denote this
by K; ~ K. It is known fact that bisimilar states cannot be distinguished by
formulas of mu-calculus or any of its sub-logics, such as computation-tree logic
(CTL) or linear-time temporal logic (LTL) [4].

Symmetry Reduction Criteria for Software Model Checking 5

Using the symmetry framework in explicit-state model checking requires com-
putation of representatives for each equivalence class. Unfortunately, finding the
general solution to this problem is known to be as hard as proving graph iso-
morphism, for which no polynomial-time solution is known to exist [3]. Solu-
tions proposed in the literature either deal with incomplete equivalence classes
for which the orbit problem has polynomial solution [3] (i.e., the bounded orbit
problem), or use heuristic strategies [6], [19].

Definition 4. Given a structure K = (S, R, L) and a symmetry relation =,, a
function h : S — S is said to be a canonical representative for =, iff, for all
s,s' € S both the following hold:

— s =; h(s), and,
— s=;5 < h(s) =h(s).

Throughout this paper we use sorting heuristics, as the ones described in
[6], [19]. Below we introduce a formal definition that captures the idea of such
strategies.

Definition 5. Let K = (S,R,L,N) be a structure and £ : S x IN x IN —
{true, false} be a partial boolean mapping. Given a stalte s and component type
T, a permutation ©¢ € G, is said to be sorting for s iff for all 0 < i,j <
ne(s), wE(0) < 76(j) <= £(s,i,]) = true.

In the following, we refer to the & function as to the sorting criterion. The
reason why £ is allowed to be partial is a rather technical formality: we are not
interested in the values £(s,i,7) where 4 or j is greater than 7, (s). The intuition
behind sorting criteria and sorting permutations are better explained with an
example. Let v : {1,...,n} — IN be a (finite) vector whose elements are natural
numbers. Obviously, the vector is sorted when, for all 1 < i < j < n we have
v(i) < v(j) (= €&(v,14,4)). Otherwise, for some k < I the condition &(v, k, 1) is not
met. In this case, a permutation © € G,, exists such that the new vector v o is
sorted. Then we say that 7 is sorting for v w.r.t to the £ criterion.

The heuristics used in this paper follow the same pattern. Given a state s
and a sorting criterion ¢ we compute a sorting permutation 7¢ for s w.r.t. &.
The representative of the symmetry equivalence class [s], will be h(s) = 7&(s).
Necessary and sufficient conditions for the representative function to be canonical
in the sense of Definition (4) are given by the following theorem. Due to space
limitations, all proofs are omitted from this paper.

Theorem 1. Let K = (S,R,L,N) be a structure, =, C S x S be a symmetry
relation and & be a sorting criterion. Then the sorting permutations induced by &

are canonical representatives for =, iff, for each state s € S and 0 < 1i,j < n.(s),
i # 7, both the following hold:

— & remains invariant under permutations of s, i.e, V& € Gy _(5), £(8,%,7) =

E(mr(s), m(i), w(i)) and,

6 Radu Iosif

Store = Variable — Location Process = ProcCnt x Store
Heap = Location —» Store ProcPool = Procld — Process
StateHeap = Heap x Location State Proc = ProcPool x Procld

Fig. 1. Semantic domains

— & induces a strict total order on the set {0,...,n.(s) — 1} i.e., &(s,i,5) V
&(s, 7,0) = true and —&(s,i,7) V —€(s, §,i) = true.

The above result leverages the difficult task of proving strategies canonical.
It will be applied in Section 3 in order to compare two techniques, involving
the detection of state symmetries induced by permutations of heap objects and
processes. It will be also shown that the reduction strategy involving heap objects
is canonical, while the one involving processes is not.

3 Semantic Definitions of State Symmetries

In this section we are concerned with defining state symmetries i.e., symmetries
that can be discovered by inspecting the structure of the state. We present
a (partial) semantic definition of programs that modify the number of state
components (objects, processes) as part of their execution. This class of programs
is also referred to in the literature as dynamic programs [17]. For space reasons,
we are not going to enter here all the details of language definition. For more
details, the interested reader is referred to [16]. Instead, in the following we define
program configurations and give small-step operational semantic rules only for
some of the allocator statements.

3.1 Domains and Rules

Consider the semantic domains in Figure 1. The definition of Store is the classi-
cal one: a partial mapping between variables and values. For simplicity reasons
we assume that all variables will take memory reference values from the set
Location. A Heap consists of a partial mapping between memory locations and
stores. We may refer to the stores in the range of a heap as to objects. The second
component of a StateHeap is a location used to describe the implementation of
object allocator statements; it holds the last allocated location. A Process is a
pair consisting of a program counter and a store for local variables. Processes
are referred to by means of Procld values, and the ProcPool domain represents
a collection of active processes. Similarly, the second component of a StateProc
represents the last allocated Procld. We conclude our description of the semantic
domains with the following assumptions:

1. there exists a strict total ordering <, C Variable x Variable.

Symmetry Reduction Criteria for Software Model Checking 7

2. there exists a strict total ordering <; C Procldt x Procld, where Procldt =
ProcIdJ {T} and T is less than every element of Procld.

3. there exists a strict total ordering <. C ProcCnt x ProcCnt and a function
next : ProcCnt — ProcCnt such that next(c) always returns the next
element w.r.t. to <. i.e, the program location of the next statement within
the process; computations are assumed to be infinite; the least element in
the order is denoted by init.

4. there exists a strict total ordering on Location and a function new : Location —
Location such that new(l) always returns the next location in that order-
ing; the least element is denoted by null; the set Location is assumed to be
infinite and countable.

With the above definitions and assumptions, we consider a program config-
uration (state) to be an element of the State set, defined as follows:

o € State = Store x StateHeap x StateProc

Intuitively, the first component of the triple ¢ is a store that holds global vari-
ables, the second is a heap referencing all existing objects, and the third is the
thread pool referencing all active threads in o.

Figure 2 presents structural rules that define the small-step semantics of
object allocator statements. These rules are needed mostly for the discussion in
Section 5. For some j € Procld, the notation o t-; ast = ¢’ expresses the fact
that the process referred to by j in state o, executing the statement given by
the abstract syntax tree ast changes the program state into o’'.

g = (Sa (ha l)a (pa Z))a 5(:1:) #1, p(]) = (Ca SI)

c =next(c), 1" =new(l), o= v.null
okj x =new() = ([z = U]s, ([I' = olh,I"),([j = (¢/,$")]p, 1))
o= (s, (h,1),(p,1), p(4) = (c, S,)a Sl(z) #1, d = next(c)
' = new(l), " =[x =1, 0= Av.null,
o bjx=mnew() = (s, ([I' = o], 1), ([= (¢, s")]p, 1))

(NEW1)

(NEW?2)

Fig. 2. Allocator Rules

The first rule (NEW1) describes the state changes that occur due to an
object allocation where the left hand side of the statement is a global variable
(s(z) #1). Analogous, the second rule (NEW2) describes the state changes
caused by a heap allocation where the left hand side is a local variable. All
rules reflect also the implicit change of control within the current process. It
is to be noticed that the allocation strategies exploit the order on the set of
memory locations. Namely, the next available element, as returned by the new
function, is used for allocation of fresh components. Such allocation strategies are

8 Radu Iosif

commonly used in real-life implementation of dynamic programming languages.
For the purposes of this paper, we will refer to these techniques as to next-free
allocation strategies.

We are now able to complete the formal definition of state symmetries by
defining the meaning of a permutation 7 applied to the heap and process com-
ponents of a state o = (s, (h,1), (p,4)). Formally, since the set Location in Figure
1 has been considered countable, we have Location = {lg,l1,...,} and by 7(l)
we actually denote [(,). A similar notation is used for the application of per-
mutations to the elements of the set Procld below.

(W,mp(), (Theap(h), 1), (Theap(p), 1))
= Mv.m(s(v))

Mo.w(h(z71(1),v))

Ai(Acs. (¢, Theap(s)))p(i)

Wheap(g
7Theap(s
(h
(

Theap\P

Theap

) =
)
) =
)

7TLDT‘OC(U) = (57 (h; l)> (ﬂ—proc(p); Z)) (5)
Tproc(p) = Ni.p(m ™" (i)) (6)

Informally, the equations (1 - 4) say that, applying a permutation to a state,
will permute all locations that are values of reference variables in the global
store, local stores within processes, and in each heap object. The objects in the
heap are also permuted, by the inverse permutation, in order to consistently
reflect this change. Permuting processes (5 - 6) is easier, since we consider that
processes are not referenced by variables, in our simple language.

3.2 Heap and Process Sorting Criteria

The other issue that remains to be dealt with in order to use heap and process
symmetries in practical software model checking, is the complexity of computing
the representatives of symmetry equivalence classes. As mentioned before, in
Section 2, we rely on sorting heuristics in order to improve the performance
of our reduction algorithm. In the remainder of this section, we will briefly
explain the ideas behind such heuristics using sorting criteria, as introduced by
Definition (5). Sorting heap objects is discussed in more detail in [19], while
specific information regarding sorting processes can be found in [6].

Since the heap is not a linear structure, finding a canonical order can be done
via topological sorting. However, a topological order is usually partial. Normally,
a total order can be derived from a partial one by linearization and in our case we
achieve that assuming a strict total order on variables (<,) and process identifiers
(<:). In practice, it is often the case that a strict total order on the set of variables
can be found at compile-time, and one might consider for instance alphabetical
order, declaration order, etc. This automatically induces the required order on
the set of sequences of variables prefixed by a process identifier. There is need
for a process identifier as prefix in order to distinguish between local variables.
Identical processes will contain multiple copies of the same local variable and

Symmetry Reduction Criteria for Software Model Checking 9

they can only be ordered using unique process identifiers. Record fields can be
distinguished from global or local variables by prefixing them with the name of
the record, as it is done in most object-oriented compilers.

Intuitively, when sorting a heap structure, we take into account, for each
object, reachability information that is, the chains of variables including global,
local or field variables, that reach every object. Formally, let Variable* denote
the set of sequences of variables and let <} be the lexicographical order induced
by <, on sequences. Also, let <* be a strict total order on the set Chain =
Procldt x Variable* naturally induced by both the order on Procldr (<;) and
<¥. As a convention, we use the literals i, j to denote process identifiers, v, u to
denote sequences and z,y to denote variables. The notation min* denotes the
greatest lower bound with respect to <* and (v,u) is sequence concatenation.
The L symbol denotes undefinedness of partial mappings. Consider the following
partial mappings:

reach : State x Chain — Location

s(z) v=(T,z)
reachio) — 1 @) pli) = (e.') Av = (i)
’ h(reach(o,u),) reach(o,u) #L Av = (u, z)
1 otherwise

trace : State x Location — Chain
min*{v | reach(o,v) =1} Ju € Chain . reach(o,u) =1

t)=
race(o,) {J- otherwise

The sorting criterion for heap objects is denoted by &peqp and is defined as
follows:
Eheap(o,m,n) = (trace(o, ly,) < trace(o,l,)) (7)

In order to asses the performance of this sorting criterion, we will show that it
actually can be the base for a canonical reduction strategy.

Lemma 1. Forallm € G I € Location, trace(o,l) = trace(mheap(o), 7(1)).

NMheap(0)?

The first condition of Theorem 1 holds as a consequence of Lemma 1. The
second condition holds due to the fact that <* was assumed to be a strict
total order on the set Chain and that each chain uniquely identifies a reachable
object location (one variable cannot point to two different objects, from the
definitions of Store and Heap). Consequently, the strategy based on heap objects
is canonical, yielding optimal reductions.

The heuristics proposed in [6] use the idea of sorting processes. One such
strategy, called pc-sorted, uses the values of the program counters in the sorting
criterion. Let ¢’ <. ¢’ stand for ¢’ <. "' V¢ = ¢". Formally, we denote by &roc
the following predicate:

o = (s, (h,1), (p, 7))
Eproc(s,m,n) = (p(m) = (¢, s') Ap(n) = (", s") A" 2) (8)

10 Radu Iosif

It is easy to see that the first condition of Theorem 1 is met by &proc, While the
second one is not aways met. Indeed, it can be often the case that two identical
processes are at the same location, that is, the values of their program counters
are equal. This situation violates the second requirement of Theorem 1, therefore
the reduction strategy induced by &, is not necessarily canonical.

4 Combining Heap and Process Symmetries

The main contribution of this section is the presentation of a reduced state space
search algorithm that combines the heap and process symmetry reduction strate-
gies defined in Section 3 on-the-fly. For heap symmetries, we briefly describe the
algorithm used to compute canonical sorting permutations.

Assuming the existence of a representative function rep, Figure 3 shows the
basic depth first search algorithm [15] with symmetry reductions. The correct-
ness of the algorithm in Figure 3 is ensured by the fact that for each s, we have
s = rep(s) by Definition (4). In case rep(s) is already in the state space when
the search reaches s, all its outgoing transitions have been already explored by
DFS and since all transitions originating in s are bisimilar to the ones originat-
ing in rep(s), the search algorithm can safely backtrack. The extension of the
correctness argument to the cycle detection algorithm [5], which is the base of
the automata-theoretic approach [5] in SPIN, was reported in [2].

DFS(s)
if error(s) then report error fi
add(rep(s), Statespace)
for each successor ¢ of s do
if rep(t) not in Statespace then DFS(¢) fi
od
end DFS

Fig. 3. Symmetry Reduced Depth First Search

In the following, we discuss the effective computation of rep(s). Intuitively,
the algorithm used to implement rep can be decomposed into two distinct phases.
First we generate a sorting permutation 7 for s; the result of rep will be the
application of this permutation to the family 7 of components in s, i.e., 7,(s).
The rules for applying a permutation to heap objects and processes in s are the
ones given by equations (1 - 6) in Section 3.

For heap objects, the algorithm used to compute sorting permutations is
presented in Figure 4. Let us remember the fact that a total strict order <,
on the set of variables is assumed to exist. We consider a function ordered :
Stores — Variables* that returns, for a given store, the <,-ordered sequence
of variables that are defined in that store.

Symmetry Reduction Criteria for Software Model Checking 11

Input: configuration o = (s, (h,1), (p, i))
Output: sorting permutation Theap € Gy, (7)

SORT (store) begin main
for next v from ordered(store) do k= 0; Theap = Ax. L
l; = store(v) SORT(s)
if [; not marked do for each 0 < i < Nproc(o) do
mark [; (*) (¢, 8") = p(i)
Theap = [l — k]ﬂ-heap SORT(S,)
k=k+1 od
SORT(h(l;)) end main
od
od
end SORT

Fig. 4. Generation of Sorting Permutations for Heap Objects

The correctness of the algorithm in Figure 4 has been discussed in great
detail in [19]. In this case, correctness implies that the generated permutation
Theap always meets the sorting criterion &peqp, defined in Section 3. Informally, it
can be noticed that, every (reachable) object stored at location [in state o, will
be eventually reached by a call to the SORT procedure. The complexity of the
sorting permutation algorithm for heap objects is O(Nheap(0)), since SORT visits
every object and every field connecting two objects only once. Let us notice that
in this case, the maximum number of outgoing edges from an object is bounded
by a compile-time constant which is the maximum number of variables declared
in the program.

The problem of computing sorting permutations for processes reduces to
the vector sorting problem, which can be solved by existing algorithms in time
O(Mproc(0) 1og(Mproc(0))). As a remark, the process ordering strategies presented
in [6] do not explicitly separate sorting permutation computation and applica-
tion, but rather compute representatives in one step. Here we need to keep that
distinction in order to describe the composition of the two reduction strategies.
The following discussion will present the combined strategy.

The idea of combining the two reduction techniques originates from the ob-
servation that the application of two permutations p and 7 to heap objects and
processes respectively, as defined by equations (1 - 6), operate independently on
different types of components. Therefore their composition could be easily de-
fined, i.e., Pheap(Tproc(0))- It is clear from the equations (1 - 6), that the compo-
sition is commutative, in the following sense: preap(Tproc(0)) = Tproc(Pheap())-
However, using this straightforward composition to define the representative
function rep for the algorithm in Figure 3 faces the following problem: if p has
been computed in o using the sorting criterion &peqp, it might be the case that p
is no longer sorting, according to &peqp, fOr mproc(0). Analogously, computing p

12 Radu Iosif

in mproc(0) might not satisfy &peqp for o. As a result, applying the heap permu-
tations computed according to Epeqp (by the algorithm in Figure 4) does not give
the canonical representatives for heap symmetric states. The reason lies within
the definition of &peqp (Section 3), since a chain that reaches a location may be
prefixed with a process identifier, and therefore the minimal chain trace(o,!)
may depend on the order of processes. In other words, permuting processes may
affect the canonical property of the heap symmetry reduction. In order to over-
come this difficulty, we need to record information that allows us to establish a
fixed order on processes during the state space search. The following definition
captures the formal meaning of the combined symmetry:

Definition 6. Let K = (S,R,L,N') be a structure, with N' = {Nheap, Nproc}-
Two states o,0' are said to be fully symmetrical, denoted by o =g o' iff the
following hold:

- L(o) = L(o"),
- nheap(g) = nheap(gl) and nproc(g) = nproc(gl)7
= Cheap(Tproc(0)) = ' for some ¢ € Gy,.,,(0) and 7w € Gy, (0).

We will proceed under the simplifying assumption that all processes are cre-
ated (statically) in the initial state of the program!. We consider two functions
50Ttheap * S X G — G and sortpro. : S — G that generate sorting permutations
according to the &peqp and &ppoc sorting criteria, respectively. Let us notice that
s07Ttheqp NOW takes into account a process permutation in order to produce a
canonical heap permutation. The state space search algorithm with combined
reductions is presented in Figure 5.

RDFS(s, m)
if error(s) then report error fi
add(s, Statespace)
for each successor ¢ of s do
7' = s0rtproc(t)
(#)p = sortheap(t, T)
t' = pheap(Tproc(t))
if t' not in Statespace then RDFS(t', ' o)
od
end DFS

Fig. 5. Depth First Search Combining Heap and Process Symmetry

Informally, the search algorithm in Figure 5 keeps track of the process per-
mutation resulting from the cumulative composition of all process permuta-
tions computed along every path within the quotient structure. Formally, let

! The extension of the algorithm to handle the dynamic creation of processes is con-
sidered as future work.

Symmetry Reduction Criteria for Software Model Checking 13

II(w,k) =mpom o...0mg_1 where w = sg, 51, ..,5k—1 and m; = s0rtproc(si)-
Intuitively, IT(w, k) gives the information needed to restore, in each state, the
initial order of processes. It is easy to show that, in a recursive call to RDF'S in
Figure 5 such that w is sequence of states passed as first parameter, IT (w, |w]|)
represents the permutation passed as second parameter.

The implementation of the sortseq, function uses a modified version of the
heap sorting algorithm in Figure 4, in which the line marked by (*) has been
changed into:

(x) (e,8") = p(r™" (i)

Here by m we denote the second argument in the invocation of sortpeqp, as in
the line marked with (#) in Figure 5. The idea is to use the inverse permutation
in order to restore the original order of processes and maintain the canonical
properties of the algorithm in Figure 4.

The following result gives sufficient conditions under which our combined
algorithm still performs a canonical heap reduction. Let Id,, denote the identity
permutation (neutral element) of G,,.

Lemma 2. Let 0 = (s,(h,l),(p,7)) and o' = (s',(h',1),(p',i)) be two states
such that o =gy 0.

1. Let m € G, . (o) be a process permutation such that p' = Tproc(p). Let
¢ = sortheap(0, Idy,,,.(0)) and (' = sortpeqp(o’,m) be two heap permuta-
tions computed by the algorithm in Figure 4 with the (*) modification. Then
Cheap(Tproc(0)) = Cheap(a’)-

2. Let w = 09,01,...,0;, = 0 and w' = 09,01,...,0; = o' be two paths. Let
¢ = S0Ttheap(o, I (w, k) and (' = sortpeqp(o’, I(w',1)) be two heap per-
mutations computed by the algorithm in Figure 4 with the (*) modification.
Then ((0) =proc ¢'(0').

Informally, Lemma 2 shows that using the algorithm in Figure 5 and com-
puting heap permutations using the modified version of the algorithm in Figure
4 still preserves the properties of the original heap symmetry reduction, without
process symmetry.

5 Symmetry versus Partial Order Reductions

In this section we investigate the relation between symmetry and partial order
reductions applied to the model checking of dynamic programs that execute al-
location statements. The previous work of Godefroid [11] also uses partial order
information to detect symmetries between states, however it focuses mostly on
flat programs, by defining permutations of actions and inferring that symmet-
ric states are reached from the initial state by transition-symmetric paths. Our
approach exploits the nature of dynamic programs that make use of the next-
free allocation policy for which a semantics has been provided in Section 3. The

14 Radu Iosif

notion of independence is extended via symmetry to define symmetric indepen-
dence. It can be shown that paths differing only by a permutation of adjacent
symmetric independent actions lead to symmetric states. In practice, this corre-
sponds to the very common situation in which various interleavings of threads
that perform heap allocations generate heap symmetric states. By conservatively
exploiting this observation, when using partial order reductions in combination
with symmetry reductions we can achieve better results when dynamic models
of behavior are considered.

For the rest of this section, let K = (S, R, L) be a Kripke structure over the
set of actions Y. An action « is said to be enabled in state s if there exists a
state ¢ such that s = ¢ in R. By enabledg (s) we denote the set of all actions
enabled in s, according to the structure K. We can now introduce the concept
of independent actions.

Definition 7. A symmetric irreflexive relation I € X x X is said to be an
independence relation for K iff for all (o, 8) € I and for each s € S such that
a, B € enabledk (s), we have:

— if s 3 t then B € enabledk(t)

— if for some s',s" € S, s % s Bt andsgs”gt', then t = t'.

All partial order reduction algorithms [10], [22], [14] exploit (conservative
under-approximations) of action independence. In practice, it has been shown
that larger independence relations yield better partial order reductions. The con-
tribution of this work to improving partial order reductions is based on defining
and exploiting a weaker notion than the one from Definition 7.

Definition 8. Given a symmetry relation = on S, a symmetric irreflezive re-
lation Is € X x X is said to be a symmetric independence relation for K iff for
all (a, B) € Is and for each s € S such that a, f € enabledk (s), we have:

— if s >t then B € enabledg (t)

— if for some s',s" € S, s % s By andsgs”gﬂf', thent = t'.

The only change with respect to the Definition (7) is that, in Is, two tran-
sitions are allowed to commute modulo symmetry. An independence relation is
trivially a symmetric independence. Let us notice however that Is can be much
larger than I, since the number of states in a symmetry equivalence class can be
exponential in the number of state components e.g., objects, processes. Dually,
one can refer to the notion of dependence, which is defined as D = ¥ x X'\ I.
Similarly, we can define the notion of symmetric dependence as Dg = X' x X'\ Is.
We can now formally relate the two notions of independence.

Lemma 3. Given a symmetry relation =C Sx S, I is a symmetric independence
for K iff I is an independence for K /=.

Symmetry Reduction Criteria for Software Model Checking 15

A second point of our discussion concerns visibility of actions. An action « is
said to be invisible with respect to a set of atomic propositions P C P iff, for all
s,t € S such that s 3 t it is the case that L(s)NP = L(t)NP. Given the quotient
structure K,= = (S, R', L"), by Definition (2) we have that L(s) = L'([s]) for
each s € S, therefore an action is invisible in K iff it is invisible in K /.

DFS([s]) DFS(s)
add([s], Statespace) add(rep(s), Statespace)
push([s], Stack) push(rep(s), Stack)
for each I in ampleq([s]) do for each I in ampley(s) do

let [t] such that [s] - [t] let ¢ such that s - ¢

if [t] ¢ Statespace DFS([t]) i if rep(t) ¢ Statespace DFS(t) fi
od od
pop(Stack) pop(Stack)
end DFS end DFS

(a) (b)

Fig. 6. Depth First Search with Partial Order and Symmetry Reductions

The correctness result of this section is based on the main result of [7]: per-
forming partial order reduction on an already built quotient structure yields
the same structure as using an on-the-fly algorithm that combines both partial
order and symmetry reduction. Figure 6 (a) shows a classical state space ex-
ploration algorithm with partial order reductions on the already built quotient
structure K ,= = (S, R, L"), while Figure 6 (b) depicts the changes done to the
algorithm in order to use both partial order and symmetry reduction on-the-fly.
Assume that rep : S — S is a canonical representative function (see Definition
4). We consider two functions ample, : S’ — X and ample, : S — X that
return, for a state s, a subset of the set of enabled actions in s for the quo-
tient and original structures respectively, i.e., ample,(s) C enabledy,_(s) and
ampley(s) C enabledk (s). In order for the reduction to be sound?, ample, must
satisfy the following requirements [4], for each state s:

C0-a ample,([s]) # 0 <= enabledk,_([s]) # 0

Cl-a on every path that starts with [s] in K /=, an action that is dependent on some
action in ample,([s]) cannot be taken before an action from ampley([s]) is
taken.

C2-a if ample,([s]) C enabled,_([s]) then every a € ample,([s]) is invisible.

C3-a if ample,([s]) C enabledy,_([s]) then for every a € ample,([s]) such that

[s] % [¢], then [t] & Stack holds.
2 Property preservation for partial order reductions uses the notion of stuttering path

equivalence, a weaker notion than bisimulation. For more details, the interested
reader is referred to [22]

16 Radu Iosif

In order to define the ample, function (used by the algorithm in Figure 6
(b)), we change conditions [C0-a] and [C2-a] into [CO-b], [C2-b] by syntactically
replacing ample, with ampley, [s] with s and K = with K. Since K and K = are
bisimilar, conditions [C0-a] and [CO-b] are actually equivalent. From the previous
discussion concerning visibility of actions, we can conclude that also [C2-a] and
[C2-b] are equivalent. The rules [C1-b] and [C3-b] are as follows:

C1-b on every path that starts with s in K, an action that is symmetric dependent
on some action in ampley(s) cannot be taken before an action from ampley(s)
is taken.

C3-b if ampley(s) C enabledg (s) then for every o € ampley(s) such that s = t,
then rep(t) € Stack holds.

A consequence of Lemma (3) is that conditions [Cl-a] and [C1-b] are equivalent.
Equivalence of [C3-a] and [C3-b] can be shown as an invariant of the lockstep
execution of the algorithms in Figure 6. The proof of the following theorem can
be done between the lines of Theorem 19 in [7].

Theorem 2. The state space explored by the algorithm (a) running on the quo-
tient structure K /= is isomorphic to the one explored by the algorithm (b) run-
ning on the original structure K.

According to [22], partial order reduction preserves all formulas of the LT'L_X
(next-free LTL) logic. An algorithm for partial order reduction that preserves
properties expressible in CT'L*_X can be found in [9]. As a consequence of this
and Theorem 2, combining partial order with symmetry reductions will preserve
all properties written as next-free temporal logic formulas.

Having discussed the correctness of our partial order reduction that uses di-
rectly symmetric independence, we need to identify actions (program statements)
that are (globally) symmetric independent without inspecting the program exe-
cutions described by K or the reduced structure K/=. The operational semantics
defined in Section 3 comes into place now. In particular, we are interested by
the rules (NEW1) and (NEW2) that define object allocator actions. It can be
noticed that the first-free allocation policy used by both (NEW1) and (NEW2)
actions is sufficient to obtain the second point of Definition (8). non-deterministic
choices in our language. In the following, let a and b denote two distinct program
variables.

Lemma 4. Let o = (s, (h,l), (p,i)) be a state and a = [a = new], § = [b = new|
be two actions whose semantics are described by either one of the rules (NEW1)

or (NEW2). If o',6",0'" and 0" are states such that ¢ = o 2oy ando B o &
0", then 0 =peqp 0"

In order to meet the first requirement of Definition (8), one can take the classi-
cal [14] approach of defining safe actions. A safe action belonging to a process
p(i) is globally independent from all actions belonging to other processes p(j)
(i # 7) and invisible with respect to the set of atomic propositions that occur

Symmetry Reduction Criteria for Software Model Checking 17

in a property expressible as a temporal logic formula. Both requirements are
met by actions x = new where x is a local variable, in cases where the property
refers only to global variables. Otherwise, static analysis can be used to com-
pute a conservative over-approximation of the set of aliases in the program and
consequently, conservatively under-approximate the set of safe actions enabled
in a state.

To conclude, we have shown how the concept of symmetry can be used to
extend the notion of independence used by partial order reductions. Identify-
ing symmetric independent actions can be done by a syntactic analysis of the
program and using them in the model checking algorithm may result in a bet-
ter partial order reduction. As a remark, none of the two reduction techniques
considered in this paper can fully replace the other. Since it uses a conservative
under-estimation of the symmetric independence relation, partial order reduction
might not always detect all symmetric states caused by different interleavings of
allocators. Symmetry reduction is therefore needed in order to deal with these
cases. On the other hand, it has been shown that partial order reduction that
uses symmetric independence is equivalent to performing classical partial order
reduction on an already built quotient structure, the result being a subset of the
quotient structure that preserves meaningful properties. In cases where all sym-
metrical states are generated by interleavings of safe allocator actions, partial
order reductions alone can actually outperform symmetry reductions.

6 Implementation and Experience

The heap symmetry and partial order reductions with symmetric independence
have been implemented in the dSPIN model checker [17]. We performed experi-
ments involving two test cases: the first one is a model of an ordered list shared
between multiple updater threads, and the second models an interlocking pro-
tocol used for controlling concurrent access to a shared B-tree structure. Both
models are verified for absence of deadlocks, as we performed these tests mainly
to assess the effectiveness of our reduction techniques.

dSPIN is an automata theoretic explicit-state model checker designed for the
verification of software. It provides a number of novel features on top of standard
SPIN’s [13] state space reduction algorithms, e.g., partial-order reduction and
state compression. The input language of dSPIN is a dialect of the PROMELA
language [13] offering, C-like constructs for allocating and referencing dynamic
data structures. On-the-fly garbage collection is also supported [18]. The pres-
ence of garbage collector algorithms in dSPIN made the implementation of heap
symmetry reductions particularly easy. The algorithm used to compute sorting
permutations is in fact an instrumented mark and sweep garbage collector. The
explicit representation of states allowed the embedding of such capabilities di-
rectly into the model checker’s core. This served to bridge the semantic gap
between high-level object oriented languages, such as Java or C++, and for-
mal description languages that use abstract representations of systems, such as
finite-state automata.

18 Radu Iosif

The first test case represents a dynamic list ordered by node keys. The list
is updated by two processes that use node locks to synchronize: an inserter that
adds given keys into the list, and an extractor that removes nodes with given
keys from the list. The example scales in the maximum length of the list (L).

The second example is an interlocking protocol that ensures the consistency of
a B-tree* data structure accessed concurrently by a variable number of replicated
updater processes. Various mutual exclusion protocols for accessing concurrent
B-tree* structures are described in [1] and our example has been inspired by this
work. The example scales in the number of updater processes (IV), B-tree order
(K) and maximum depth of the structure (D).

Table 1. Experimental Results

i. Ordered List Example

L SI+SR SR SI -
8 296159 296159 766297 766297
9 727714 727714 2.29669e+06 | 2.29669e+06
10 |1.75287e+4-06|1.75287e+06| 4.62012e+06 | 4.62012e+4-06
ii. B-Tree* Example
N, K, D| SI+SR SR SI -
2,2,3 1259 6816 1259 94105
2,43 3027 18773 3027 766842
2,4, 4 32998 142371 |out of memory|out of memory

Symmetries arise in both examples because different interleavings of the up-
dater processes cause different allocation orderings of nodes with the same data.
The results of our experiments are shown in Table 1. The table shows the number
of states generated by the model checker with standard partial order reduction
only (-), with partial order based on symmetric independence only (SI), with
symmetry reductions only (SR) and with combined partial order and symmetry
reductions (SI4+-SR).

In the first example (Ordered List) partial order reductions using symmet-
ric independence do not contribute to the overall reduction of the state space.
The reason is that the allocator statements in this model handle only global
variables, being therefore labeled as “unsafe” by the dSPIN transition table con-
structor. On the contrary, in first two instances of the second example (Btree*)
partial order reductions using symmetric independence manage to detect all
heap symmetries arising as result of interleaving allocators, therefore symmetry
reductions do not contribute any further to the overall reduction. The results
show that combining partial order with symmetry reductions can outperform
each reduction technique applied in isolation.

Symmetry Reduction Criteria for Software Model Checking 19
7 Conclusions

In this work, we have tackled issues related to the application of model checking
techniques to software verification. Programs written in high-level programming
languages have a more dynamic nature than hardware and network protocols.
The size of a program state is no longer constant, as new components are added
along executions. We have formalized this matter by means of semantic defini-
tions of program states and actions. This semantics allows definition of various
symmetry criteria for programs. We gave such criteria formal definitions, and
described algorithms for on-the-fly symmetry reductions in automata theoretic
model checking. In particular, we have discussed the combination of two or-
thogonal symmetry reductions, related to heap objects and processes. We have
also shown how our heap symmetry reduction technique relates with partial
order reductions. The emphasis is on how to adapt existing state space reduc-
tion techniques to software model checking. The ideas in this paper have been
implemented in a software model checker that extends SPIN with dynamic fea-
tures. Using this prototype implementation, a number of experiments have been
performed. Preliminary results are encouraging, making us optimistic about the
role symmetry and partial order reductions can play in enhancing model checking
techniques for software.

Acknowledgments The author wishes to thank Dennis Dams, Dragan Bosnacki
and Willem Visser, for interesting discussions and suggestions, Matthew Dwyer
and John Hatcliff for valuable corrections of the previous versions of this pa-
per, and the anonymous referees for comments leading to the discovery of an
erroneous claim in the submission draft.

References

1. R. Bayer and M. Schkolnick: Concurrency of Operations on B-Trees. Acta Infor-
matica, Vol. 9 (1977) 1-21

2. Dragan Bosnacki: Enhancing State Space Reduction Techniques for Model Check-
ing. PhD Thesis, Technical University of Eindhoven (2001)

3. Edmund M. Clarke, Somesh Jha, Reinhard Enders and Thomas Filkorn: Exploiting
Symmetry In Temporal Logic Model Checking. Formal Methods in System Design,
Vol.9, No. 1/2 (1996) 77-104

4. Edmund M. Clarke, Orna Grumberg and Doron Peled: Model Checking. MIT Press
(2001)

5. Constantin Courcoubetis, Moshe Y. Vardi, Pierre Wolper and Mihalis Yannakakis:
Memory-Efficient Algorithms for the Verification of Temporal Properties. Formal
Methods in System Design, Vol. 1, No 2/3 (1992) 275-288

6. Dennis Dams, Dragan Bosnacki and Leszek Holenderski: A Heuristic for Symmetry
Reductions with Scalarsets. Proc. Formal Methods Europe (2001) 518-533

7. E. Emerson, S. Jha and D. Peled: Combining Partial Order and Symmetry Reduc-
tions. Proc. Tools and Algorithms for Construction and Analysis of Systems, Lecture
Notes in Computer Science, Vol. 1217 (1997) 19-34

20 Radu Iosif

8. E. Emerson and A. P. Sistla: Symmetry and Model Checking. Formal Methods in
System Design, Vol.9, No. 1/2 (1996) 105-131

9. R. Gerth, R. Kuiper, D. Peled and W. Penczek: A Partial Order Approach to
Branching Time Logic Model Checking. Proc. 3rd Israel Symposium on Theory on
Computing and Systems (1995) 130-139

10. P. Godefroid: Partial-Order Methods for the Verification of Concurrent Systems.
Lecture Notes in Computer Science Vol. 1032 (1996)

11. P. Godefroid: Exploiting Symmetry when Model-Checking Software. Proc. Formal
Methods for Protocol Engineering and Distributed Systems (FORTE/PSTV) (1999)
257275

12. M. Hennessy and R. Milner: Algebraic Laws for Nondeterminism and Concurrency.
Journal of the ACM Vol. 32 (1985) 137-161

13. G.J. Holzmann: The SPIN Model Checker. IEEE Trans. on Software Engineering
Vol. 23 (1997) 279-295

14. G. J. Holzmann and D. Peled: An Improvement in Formal Verification. Formal
Description Techniques, Chapman & Hall, (1994) 197-211

15. G. Holzmann, D. Peled and M. Yannakakis: On Nested Depth First Search. Proc.
2nd SPIN Workshop (1996)

16. R. Iosif: Symmetric Model Checking for Object-Based Programs. Technical Report
KSU CIS TR 2001-5 (2001)

17. R. Iosif and R. Sisto: dSPIN: A Dynamic Extension of SPIN. Proc. 6th SPIN
Workshop, Lecture Notes in Computer Science Vol. 1680 (1999) 261-276

18. R. Iosif and R. Sisto: Using Garbage Collection in Model Checking. Proc. 7th SPIN
Workshop, Lecture Notes in Computer Science Vol. 1885 (2000) 20-33

19. R. Iosif: Exploiting Heap Symmetries in Explicit-State Model Checking of Software.
Proc. 16th IEEE Conference on Automated Software Engineering (2001) 254 — 261

20. C. Ip and D. Dill: Better Verification Through Symmetry. Formal Methods in
System Design, Vol.9, No. 1/2 (1996) 41-75

21. F. Lerda and W. Visser: Addressing Dynamic Issues of Program Model Checking.
Proc. 8th SPIN Workshop, Lecture Notes in Computer Science Vol. 2057 (2001)
80-102

22. D. Peled: All from One, One from All: on Model Checking using representatives.
Proc. 5th Conference on Computer Aided Verification, Lecture Notes in Computer
Science Vol. 697 (1993) 409423

