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Proposition 8.2, Every Muller automaton is equivalent to a transition Muller automa-
ton. Conversely, every transition Muller automaton is equivalent to a Muller automaton.

Proof, Let A = (Q, A, E, i, T) be a Muller automaton. We claim that A4 is equivalent
to the transition Muller automaton A" = (Q, A, E, j, T’), where j is a new state Q' =
Ex{j},7' =7 and
E'={(j.a (.a.9))!(.aq) €E]|
U{(g.4.9).b.(¢’.b,4")) | (q,a,q') € Eand (¢’,a,q") € E}

Indeed, to any infinite path of 4 starting at i

p="{(,a0,q91)@q1.a1,92)- -

corresponds an infinite path of A" with the same label starting at j

p' = (J,a0. (i, a0, 90))((i, a0, 1), a1, (q1. a1, G2)) - - -

and conversely, every infinite path of 4’ starting at j arises this way. Furthermore, the
transition (g, a, g’) occurs in p if and only if p’ visits the state (g, a,gq’). Therefore
Inf;(p) = Inf(p’) and A and A’ are equivalent. O

9 McNaughton’s theorem

The aim of this section is to prove the following result, due to R. McNaughton.
Theorem 9.1. Any recognizable subset of A® can be recognized by a Rabin automaton.

The proof that we are going to present relies on a determinization algorithm due to
S. Safra. It computes a Rabin automaton equivalent to a given Blichi automaton. Using
Proposition 7.7 allows one to obtain the conclusion. The states of the Rabin automaton
are labeled trees.

We first give an informal description of the construction. Consider a Biichi automaton

A=(Q,AE I F)

and a successful path p labeled u € A“. There exist statesi € I and f € F and a
factorization p = pop(p2--- where pg is a path from i to f labeled ug and for every
n > 0, p, is a path from f to f labeled u,,.

RN S N . N 2R
The usual determinization algorithm does not work with infinite words. One obtains
indeed a deterministic automaton B = (P(Q), A, -, {I}, F),where F = {P | PNF #
@} with transitions given by
S.a=48(S,a)
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for § C O and a € A. Processing u in B gives a path p’

- u©) "
t —> S() —_—> SI _ Sz

Each §; contains f, but this is not enough to make sure that such a path 1s successful,
since nothing says that the state f appearing in §; comes from the state f appearing in
S;—1. Thus, one cannot define as atable 7 = {P C Q | P N F # #}. For example, if
A is the automaton of Example 5.2, recognizing the set of infinite words containing a

finite number of b's,
a,b

the path (1} —» (1,2} —= {1,2) -2 {1,2} --- would be successful in B, al-
though 5“ 1s not recognized by A. Actually, the automaton obtained by this algonthm,
once made trim, contains only one state and thus recognizes AY whatever be the accep-
tance mode (see Figure 9.1).

The idea is to look for a path / 0 So 4, S “2, §> --- such that the follow-
ing two conditions are satisfied:

(1) So C 8(1, up), and, foreveryn > 0, S, C 8(Sp, uns1).

Uy 41

(2) Foreveryn > 0and every g € S+, thereis astate p € S, andapathp — ¢
in A passing through a final state.

To find such a path, we are going to build an automaton memorizing the occurrences of
final states. The states of this automaton are oriented trees whose nodes are labeled by
the sets .5; mentioned above. We then apply the usual determinization algorithm, taking
care of adding the new final states that appear as the label of a new child of the vertex
(see Figure 9.2). When all the states in the label § of a vertex have already visited a
final state, that is when they all appear in the children of the node, this node is marked
and all its descendants disappear.

a,b

Figure 9.1. The automaton obtained by determinization.
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Figure 9.2. The action of letter a.

We now proceed to the formal description of the construction. Let A = (Q, A,
E. I, F) be a finite Biichi automaton with

Q0={12,....,n} and V ={1,2,...,2n}.
We build a deterministic Rabin automaton D as follows. Its states are labeled oriented
trees with marks on some nodes. Formally the states are tuples (T, f, e, M) where
(1) the set of nodes T 1s a subset of V,
(2) f : T — T* is a function mapping each node on the ordered sequence of its
children,
(3) e is a function from T into the set of nonempty subsets of @, mapping each node
to its label,
(4) M C T is the set of marked nodes.
These trees should also satisfy the following conditions:
(5) The root of the tree s 1.
(6) The marked nodes have to be leaves in the tree.
(7) For every node v, the union of the labels of its children is a strict subset of e(v).
(8) If vis not an ancestor of w and if w is not an ancestor of v, then e(v) Ne(w) = @.

The set 7, of all trees defined in this way is finite. More precisely, the following result
holds:

Proposition 9.2. A tree in T, has at most n nodes.

Proof. We associate with each node v € T, the set
r=ew\ | J ew)
w child of v
By condition (7), r (v) is not empty and, if vy and v, are distinct, we have r (v))Nr(v2) =

?. This follows from condition (7) if v, is an ancestor of v, and from condition (8) in the
other cases, since r(v) C e(v). The sets r (v) are thus pairwise distinct and we obtain

Card(T) = Z 1 < ZCard(r(v)) < Card(Q) = n
ve7 veT

establishing the proposition. O
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Figure 9.3. The node m is on the left of n.

In an oriented tree, the children of a given node are ordered. These local orders can
be extended to a partial order on the set of nodes as follows. Given two nodes m and n
which are not ancestor of one another, let p be their least common ancestor and let m’
(resp- n’) be the child of p which is an ancestor of m (resp. n). We say that m is on the
left of n if m’ < n’, as illustrated in Figure 9.3.

We return to the construction of the automaton D. The set of its states is thus 7,, and
its transition function A 1s defined as follows. Let R = (7, f, e, M) be a tree in 7, and
let g be a letter from A. The state A(R, @) is obtained by the following steps.

(b

(2)

3)

We perform the transition by a on the labels of each node and we erase the marks.
For this, we build the tree (T, f, e,, M), with M, = @, and, foreachv € T,

e1(v) =68(e(v), a)

We add to each node v a new child placed at the nght of all children of v and
labeled e(v) N F. This new node is marked and taken arbitrarily among the
available nodes (in practice, we take the smallest available node). Formally, we
choose an injection from T into V \ T associating with each node v € T a node
denoted v. This is possible since T has at most n elements. Let T = {¥ | v € T}
and consider the tree (73, f2, €2, M>) where

Hh=TU T, My=T
and, foreveryv € T,
f2(v) = f)y, f(v) =¢
ex(v) = e (v), e2(V) = e (V)N F.

In the label of each node v, we suppress the states appearing in the label of a node
at the left of v. For this, we build e3 defined for each node v € T, by,

e3(v) = e2(v) \ U e2(w),

w to the Jeft of v
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Figure 9.4. Suppressing a node with an empty label.

(4) We suppress the nodes with an empty label and we update the function f and
the marks accordingly. This operation is represented in Figure 9.4. Formally, we
change to the tree (73, fa, ¢4, M4) where

L={veT:|exv) #4}.

My = My N Ty, e4(v) 1s the restriction of e3(v) to T3 and, for each node v € Ty,
the word f4(v) is obtained by erasing the symbols of 75 \ Ty.

(5) We mark all nodes with a label equal to the union of the labels of their children,
1.e. such that

e(v) = U e(w).

w child of v

and we suppress all their descendants.

We finally obtain a state (75, f5, es, Ms) = A(R, a) which is an element of 7,,.

The 1initial state of D is the tree reduced to an unmarked node labeled 7 of [ N F = (4,
to a marked node labeled 7 if I C F and to a node labeled / with a marked child labeled
I N F 1n all other cases.

There remains to specify the set R defining the acceptance condition. Let

R = {(Lv: Uy ive V}
where

L, ={R € 7, | visnotanode of R}
U, ={R € 7, | vis a marked node of R}.

Thus, a path in D 1s successful if there exists an element v € V such that, ultimately,
the path uses states in which v is a node and infinitely often states in which v is marked.

Before proving that this Rabin automaton recognizes the same set of infinite words
as the automaton we started from, we are going to illustrate the construction by some
examples. In these examples, the states are represented by labeled oriented trees and

marked nodes are indicated by a double circle. An arrow of the form U indicates that
step ¢ of the algorithm has been performed.
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Example 9.1. Consider the automaton represented in Figure 9.5, which recognizes the
set of words having a finite nonzero number of b's. We detail the steps of Satra’s
algorithm. The initial state is the tree with a single node of Figure 9.6. The action
of the letters a and b on the initial state are represented in Figure 9.7 and Figure 9.8,
respectively. A new state has now been created. The actions of the letters ¢ and » on
this new state are represented in Figure 9.9 and Figure 9.10, respectively. Thus another
new state has been created. The action of the letters a and b on this new state are easily
derived from the ones represented in Figures 9.9 and 9.10 by exchanging the names 2
and 3 in every place. After renaming the states, we obtain the automaton of Figure 9.11.

We have L) =@, L, = {1,3}, Lz = {1,2}, U, = @, U, = {2}, U3 = {3}. Thus
the accepting pairs are ({1. 3}, {2}) and ({1, 2}, {3}). Note that, by Formula (7.4), these
Rabin pairs are equivalent to the table 7 = {{2}, {3}}.

a,b a

Figure 9.5. A Biichi automaton.

10

Figure 9.6. The initial state.

© O

Figure 9.7. The action of a on the initial state.

Figure 9.8. The action of b on the initial state.
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Figure 9.10. The action of b on the new state.
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Figure 9.9. The action of a on the new state.

5% B

(4)

_,3

Figure 9.11. The Rabin automaton obtained by Safra’s algorithm.
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Example 9.2. The Biichi automaton represented in Figure 9.12 recognizes the set of
words with a finite number of b. The deterministic automaton obtained by Safra’s
algorithm 1s represented in Figure 9.13. We recognize the automaton computing the
parnity of the number of b. The acceptance conditions are, in Rabin’s form, the pairs
{11}, {2)), ({2}, {1})}, which gives the table {{1}, {2}}.

Example 9.3. Consider the set X = ({b, c}*a U b)®. A Biichi automaton recognizing
X is given in Figure 9.15: The application of Safra’s algorithm gives the deterministic
automaton of Figure 9.16, in which the set of states is {/, I/, Ill, IV, V}:

a,b

Figure 9.12. A Biichi automaton for the set A*a®.

Figure 9.13. The deterministic automaton obtained by Safra’s algorithm.

Figure 9.14. The same automaton after renaming the states.
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b,c

a

Figure 9,15. A Biichi automaton for ({b, ¢} a U b)®.

Figure 9.16. A deterministic Muller automaton for ({b, c}*a U b)“.

The Rabin pairs are (@, {1, /V, V}) and ({I,11,1V, V}, {II}). Therefore the table of
the corresponding Muller automaton is

T ={T C Q| T contains either 1,1V or V} U {{II1}}

This table is full. Indeed, if a set T contains I, /V or V, any superset of T has the same
property. If T = {III}, any superset of T contains I, IV or V, or is equal to the set
{11, [IT}. But this latter set is not admissible.

One can in fact obtain a smaller automaton by merging the states grouped inside each
dashed rectangle. After renaming the states, the resulting automaton is represented in
Figure 9.17. The table is 7 = {{1}, {2}, {1, 2}, {1, 3}, {1, 2, 3}}, which is the comple-
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b, ¢

Figure 9.17. Applying Safra’s construction.

ment of the table {{3}}. Since the table is full, X is deterministic. We have actually
X ={a, b, c}*ab* ubt,

We are now going to prove that the deterministic automaton D is equivalent to the
automaton A we started from. We shall need a lemma which makes more precise the
behavior of D, Let u = a, ---a, be a finite word and let Ry be a state of D con-
taining a marked node v labeled §;. We suppose that, for 1 < i < n, the states
R; = A(Rg.ay ---a;) also contain the node v, with a label S;, but that this node ts
marked only for i = n. The hypotheses are represented in Figure 9.18.

Rn—] Rlz

Figure 9.18. The states R;.
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Lemma 9.3. ForO <i <n— 1, S;; is contained in §(S;. aiy\). Moreover, for every
g € S,, there is a path in A starting in Sy, ending at g, labeled « and visiting at least
one final state after its origin.

Proof. We follow the construction step by step. We first compute at step 1 the set
Sit1 = 8(S;, a;+1), then we suppress some states of S; 41 during step 3. The first part
of the lemma follows.

Let us show by induction on / that, for 0 < i < n — | and for every state g; appearing
in the label of a descendant of v in R;, there exists a path in A starting in S, ending
with g;, labeled a, - - -a; and passing at least once more by a final state. The result
holds fori = 0, since v, which is marked has to be a leaf of Ry and has no descendants.
On the other hand, if g, appears in the label of a descendant of v in R;4, either
gi+) € 8(qi,a;+1) for some g, appearing in the label of a strict descendant of v in R;,
and we conclude by induction, or g; 4| appears in a label created at step 2 and thus
gi +1 € F, which also allows one to conclude.

Finally. since v is marked in R,,, it received its mark at step 5. Thusif g € §,, either
q € 8(Su~1.ay) N F, or g belongs to the union of the 8(q,,—, a,) where ¢,_) appears
in the label of a descendant of v in R,_ ;. In the first case, there exists a path labeled u,
starting in § and ending with g, which is a final state. In the second case, we use the
conclusion of the above induction: there exists a path in A starting in S, ending with
gn—1, labeled ay -+ -a,_) and passing at least once more by a final state. The lemma
follows immediately. O

Consider now a successful path ¢ in D and let u € A™ be the label of ¢. There exists a
v € V such that, ultimately, the path visits only states in which v is a node and infinitely
often states in which v is a marked node. Setting Sy = /, there exists by Lemma 9.3 a
factorization u = ugu u2 - - - and subsets S, of @, such that

(a) foreveryn >0, S~ C 5(Sn, un),

(b) for every n > 0 and for every g € S,+, there exists a path in A starting in §,,,
ending with g. labeled 4, and visiting at least one final state after its origin.

In order to apply Konig’s lemma, we build a tree (N, r, p) as follows. The set of
nodes is
N ={rjU{(g.n)|q € Sy,n € N}

The parent of each node of the form (g, 0) is » and, for n > 0, the parent of each node
of the form (g, n + 1) is chosen among the states (g’, n) such that there is a path in A
starting in ¢’, ending in g, labeled u,, and visiting at least one final state after its origin.
Conditions (a) and (b) guarantee the possibility of such a construction. Since the tree
thus obtained is infinite and since each child has only a finite number of children, it
contains an infinite path by Konig’s lemma. This implies the existence of an infinite
path in A, labeled u, starting in / and passing infinitely often through a final state. Thus
u 1s accepted by A.
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Conversely, let us consider a successful path ¢ of the automaton .4
agp aq
Ciq0 —> v —> q2
There is a untque initial path in D with the same label

() u)

(111=R0 rR| >R2

Each of the states g; belongs to the label of the root of the trees R;. This root is never
suppressed and it is thus a fixed element vy of V. If vy is marked infinitely often in
the R;’s, the path is successful in D and the word u 1s accepted. Otherwise, there is a
largest integer n such that vp is marked in R,,. Let ng be this integer and let us consider
the smallest integer m > ngq such that g, is an infinitely repeated final state. Since g,
is final, it appears in a child of the root, and from some time n; > m on, each g, with
n > n) appears in a fixed child v, of the root of R,. Indeed, if q,, occurs in the label of
given node v, then g, occurs again in the label of v at the next step, unless it occurs
on the left of v (step 3). But such a left shift can occur only a finite number of times. If
vy 1s marked infinitely often, the path is successful in D. Otherwise, we repeat the same
process, replacing vy by v(. Since the tree has a finite height, we always find some node
which is marked infinitely often. O

We shall see later other proofs of McNaughton's theorem which cast a different light
upon it (see Section I1.9). Among its numerous consequences, we begin with the most
important one, known as Biichi’s theorem.

Theorem 9.4. The class of recognizable subsets of A is closed under complement.

Proof. By McNaughton’s theorem, any recognizable set can be recognized by a Muller
automaton. This automaton can be supposed to be complete by Proposition 7.3. Con-
versely, by Theorem 7.1 and Theorem 5.4 any set recognized by a Muller automaton is
recognizable. The result follows from the fact that, by Proposition 7.6, the class of sets
recognized by Muller automata is closed under all boolean operations. O

Biicht’s theorem can also be proved directly using congruences (see Chapter II). But
the size of the automaton for the complement given by Safra’s algorithm is asymptoti-
cally optimal, as will be shown in Section 10.6 using the following result.

Theorem 9.5. For each n > 0, there exists a set L, of infinite words recognized by
a Biicht automaton with n + 2 states, such that any Biichi automaton recognizing the
complement of L, has at least n! states.

Proof. Let A, ={0,1,..., n} and let A, be the automaton on the alphabet A,, repre-
sented in Figure 9.19 and let L, = L“(A,). Oue could of course describe precisely
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0,I,...,n

Figure 9.19. A Biichi automaton recognizing L.

L, but two weaker Jemmas will be sufficient for our purpose. We start with a sufficient
condition foraword tobein L.

Lemma 9.6. Let {i,. i1, ...,ix} be asubsetof {1,2,...,n}. If an infinite word u con-
tains infinitely many occurrences of each of the factors iyiy, i213, ..., ixiy, and ifin A,
there is a finite path from | to 1| labeled by a prefix of u, thenu € L.

Proof. It suffices to describe a successful path of label « in A,. By hypothesis, there
is a path from 1 to i) labeled by a prefix of u. We then stay in state i, until the next

. ‘e . 1 . .
occurrence of iyi7, that is used to produce the transitions i) 0 -5 2. Then
we stay in state i> until the next occurrence of 213, that is used to produce the transitions
. B ’ . . . . C. .
i 2,0 i3, etc. This process, repeated infinitely often on the cycle (442, i273,
... Ixl)), produces the desired successful path. 0O

With each permutation o of {1, 2, ..., n}, associate the infinite word v, = (o (1) - - -
a(r)0)«.

Lemma 9.7. For any permutation o of {1, . ... n}, the infinite word u, is notin L,.

Proof. Clearly, L, C K%, where K = |J,;,A}i. Therefore, if ug € L,, u =
ujuy ..., where each u; is in K. It follows that ¢ (1) is the first and last letter of u,, 0 (2)
1$ the first and last letter of u7, and o (n) is the first and last letter of ,,. Consequently,
the first letter of 1,4 is 0, a contradiction, since u, 1) € K. O

Let now B be a Biichi automaton accepting the complement of L,. By Lemma 9.7,
cach word u, is accepted by B. Therefore, there is in 8 a successful path p, of label u,,.
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Figure 9.20. The path p.

We claim that if o # o', then Inf(p,) N Inf(p,') = ¥. Assume by contradiction that
some state g belongs to both Inf(p,) and Inf(p,:}. Using the two paths, we build a new
path p in B which, at the beginning, follows a prefix of p; of length at least n(n + 1)
unti] it reaches g. Then p enters a loop which is repeated infinitely often. This loop
consists of two parts that we also take of length at least n + 1: in the first part, p follows
a portion of p, to go from g to ¢ after visiting at least once all states of Inf(p, ) and in
the second part, p follows a portion of p,’ to go from ¢ to g after visiting at least once
all states of Inf(p,) (see Figure 9.20). Then Inf(p) contains Inf(p, ) (and Inf(p,-)) and
in particular contains a final state, since p, 1s successful. It follows that p is successful
and thus its label « s not in L,,. We shall arrive to a contradiction by showing that u
satisfies the conditions of Lemma 9.6, and therefore belongs to L,,.

We first verity the existence of a cycle of infinitely repeated factors of length two.
Let k be the smallest integer such that o' (k) # o'(k). Then o'(k) = o ({) for some! > k
and o (k) = ¢'(m) for some m > k. Since u is a concatenation of factors of length at
least n + 1 of u, and u,-, each of the factors c(K)a(k + 1), a(k + Nak + 2), ...,
oc(l—-1Dol)(=a(l-1c'k),c'k)e'k+1),...,6"(m—=1Da’(m)(= a’(m—1ak))
occur infinitely often in «.

It sutfices now to verify that the state o (k) is reachable in A, by a path labelled by a
prefix of ¥. By construction, the word (o (1) - - - o (n)0)” is a prefix of u. Therefore, the
path

1 2)- 0 2
0 %5 o T oy IB 0 8 @) -

sk—1 Y3V 0 2B s

is suitable for our purpose.

This proves the claim, and since there are n! permutations on {1, . . ., n}, there are at
least 7! disjoint sets of the form Inf(p,). which clearly implies that B has at least n!
states. O
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As announced above, recognizable sets are determined by the ultimately periodic
words they contain.

Corollary 9.8. Let X and Y be two recognizable subsets of A“. Let U C A® be the set
of ultimately periodic words. If X "NU C Y, then X C Y. Inparticular X =Y if and
only if X and Y contain the same ultimately periodic words. i.e. if X NU =Y NU.

Proof. In fact, if X is not contained in Y, the set X \ Y is, by Biichi’s theorem, a
nonempty recognizable subset of A”. By Lemma 5.1, there exists an ultimately periodic
word whichis in X butnotin Y. 0O

We now turn to another consequence of McNaughton’s theorem, which solves a sub-
tlc point raised in Section 6.

Theorem 9.9. A subset of A is recognizable by a finite deterministic Biichi automaton
if and only if it is both deterministic and recognizable.

Proof. Any set recognized by a finite deterministic Biichi automaton satisfies certainly
these two conditions. Conversely, let X be a subset of A” satisfying the two con-
ditions. By McNaughton’s theorem, the set X is recognized by a Muller automaton
A = (Q,A, E, i, 7). Butsince X is deterministic, the table 7 is full by Proposi-
tion 7.10. Finally, Proposition 7.9 shows that X can be recognized by a finite determin-
1stic Biichi automaton. O

Corollary 9.10. /1 is decidable whether a given recognizable subset of A? is determin-
istic or not.

Proof. Let X be a recognizable subset of A“. We may build, using the previously
described algorithms, a Muller automaton recognizing X. Proposition 7.10 allows one
to conclude. O

Example 9.4. The set X = ({b, c}*a U b)® of Example 9.3 is deterministic. On the
contrary, the set ¥ = (a{b, ¢}* U b)“ is not detenministic. In fact ¥ is recognized by
the Biichi automaton represented in Figure 9.21. The deterministic automaton obtained

a, b b, c
b, c

Figure 9.21. A co-deterministic but non deterministic automaton.
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Figure 9.22. The resulting automaton.

by Safra’s algorithm is represented in Figure 9.22 One can check directly that Y is not
deterministic, by imitating the construction used in Example 6.2. Let us indeed suppose

that ¥ — Z Since acb” € Y, there is an integer n| such that ach”' € L. Again, since
acb™ cb” € Y, there is an integer n, such that ach”' cb™? € L, etc. and the infinite word
u = acb"'cb"2ch" - .. has an infinite number of prefixes in L. This implies thatu € Y,
which is impossible since u contains infinitely many ¢’s but a finite number of a’s.

10 Computational complexIty issues

In this section, we address the problem of the computational complexity of the various
transformations introduced in this chapter. The results are summarized in Figure 10.1.
The nodes of this graph illustrate various representations of sets of infinite words, such
as w-rational expression, Biichi automaton, etc. An arrow between two nodes indicates
an algorithm to convert one representation into another one. The label of the arrow
indicates the complexity of the corresponding algorithm. The label P stands for a poly-
nomial time algorithm and Exp for an exponential one.

The size of the various objects is defined according to the following conventions. As
a general rule, we consider the cardinality of the alphabet as being a constant.

The size of an w-rational expression is the number of symbols that it involves, with-
out the parenthesis but taking the dot into account for the product. Thus size(s) =



