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This paper presents a Hoare-style calculus for formal reasoning about reconfiguration programs of distributed
systems. Such programs create and delete components and/or interactions (connectors) while the system
components change state according to their internal behaviour. Our proof calculus uses a resource logic, in the
spirit of Separation Logic [Reynolds 2002], to give local specifications of reconfiguration actions. Moreover,
distributed systems with an unbounded number of components are described using inductively defined
predicates. The correctness of reconfiguration programs relies on havoc invariants, that are assertions about
the ongoing interactions in a part of the system that is not affected by the structural change caused by the
reconfiguration. We present a proof system for such invariants in an assume/rely-guarantee style. We illustrate
the feasibility of our approach by proving the correctness of real-life distributed systems with reconfigurable
(self-adjustable) tree architectures.
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1 INTRODUCTION
The relevance of dynamic reconfiguration. Dynamic reconfigurable distributed systems are used

increasingly as critical parts of the infrastructure of our digital society, e.g. datacenters, e-banking
and social networking. In order to address maintenance (e.g., replacement of faulty and obsolete
network nodes by new ones) and data traffic issues (e.g., managing the traffic inside a datacenter
[Noormohammadpour and Raghavendra 2018]), the distributed systems community has recently put
massive effort in designing algorithms for reconfigurable systems, whose network topologies change
at runtime [Foerster and Schmid 2019]. This development provides new impulses to distributed
algorithm design [Michail et al. 2020] and has given rise to self-adjustable network architectures
whose topology reconfigurations are akin to amendments of dynamic data structures such as splay
trees [Peres et al. 2019]. However, reconfiguration is an important source of bugs, that may result
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in e.g., denial of services1. This paper introduces a logical framework for reasoning about the safety
properties of such systems, in order to prove e.g., absence of deadlocks or critical section violations.

Modeling distributed systems. In this paper wemodel distributed systems at the level of abstraction
commonly used in component-based design of large heterogeneous systems [Magee and Kramer
1996]. We rely on a clean separation of (a finite-state abstraction of) the behaviour from the
coordination of behaviors, described by complex graphs of components (nodes) and interactions
(edges). Mastering the complexity of a distributed system requires a deep understanding of the
coordination mechanisms. We distinguish between endogenous coordination, that explicitly uses
synchronization primitives in the code describing the behavior of the components (e.g. semaphores,
monitors, compare-and-swap, etc.) and exogenous coordination, that defines global rules describing
how the components interact. These two orthogonal paradigms play different roles in the design of
a system: exogenous coordination is used during high-level model building, whereas endogenous
coordination is considered at a later stage of development, to implement the model using low-level
synchronization primitives.

Here we focus on exogenous coordination of distributed systems, consisting of an unbounded num-
ber of interconnected components, with a flexible topology, i.e. not fixed à priori. We abstract from
low-level coordination mechanisms between processes such as semaphores, compare-and-swap
operations and the like. Components behave according to a small set of finite-state abstractions of
sequential programs, whose transitions are labeled with events. They communicate via interactions
(handshaking) modeled as sets of events that occur simultaneously in multiple components. Despite
their apparent simplicity, these models capture key aspects of distributed computing, such as
message delays and transient faults due to packet loss. Moreover, the explicit graph representation
of the network is essential for the modeling of dynamic reconfiguration actions.

Programming reconfiguration. The study of dynamic reconfiguration has led to the development
of a big variety of formalisms and approaches to specify the changes to the structure of a system
using e.g., graph-based, logical or process-algebraic formalisms (see [Bradbury et al. 2004] and
[Butting et al. 2017] for surveys). With respect to existing work, we consider a simple yet general
imperative reconfiguration language, encompassing four primitive reconfiguration actions (cre-
ation and deletion of components and interactions) as well as non-deterministic reconfiguration
triggers (constraints) evaluated on small parts of the structure and the state of the system. These
features exist, in very similar forms, in the vast majority of existing graph-based reconfiguration
formalisms e.g., using explicit reconfiguration scripts as in CommUnity [Wermelinger et al. 2001],
reconfiguration controllers expressed as production rules in graph-grammars [Le Metayer 1998],
guarded reconfiguration actions in Dr-Bip [El-Ballouli et al. 2021] and graph rewriting rules in
Reo [Krause et al. 2011], to cite only a few. In our model, the primitive reconfiguration actions are
executed sequentially, but interleave with the firing of interactions i.e., the normal execution of the
system. Sequential reconfiguration is not a major restriction, as the majority of reconfiguration
languages rely on a centralized management [Bradbury et al. 2004]. Nevertheless, for the sake of
simplicity, most existing reconfiguration languages avoid the fine-grain interleaving of reconfigura-
tion and execution steps i.e., they freeze the system’s execution during reconfiguration. Our choice
of allowing this type of interleaving is more realistic and closer to real-life implementation. Finally,
our language supports open reconfigurations, in which the number of possible configurations is
unbounded [Butting et al. 2017], via non-deterministic choice and iteration.
An illustrative example. We illustrate the setting by a token ring example, consisting of a finite

but unbounded number of components, indexed from 1 to 𝑛, connected via an unidirectional ring
(Fig. 1). A token may be passed from a component 𝑖 in state T (it has a token) to its neighbour,

1E.g., Google reports a cloud failure caused by reconfiguration: https://status.cloud.google.com/incident/appengine/19007
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Fig. 1. Reconfiguration of a Parametric Token Ring System
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Listing (1) Delete Component (wrong version)

1 with 𝑥,𝑦, 𝑧 : ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩
2 do
3 disconnect(y.out,z.in);
4 disconnect(x.out,y.in);
5 delete(y);
6 connect(x.out,z.in);
7 od

Listing (2) Delete Component (correct version)

1 with 𝑥,𝑦, 𝑧 : ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩
2 do
3 disconnect(x.out,y.in);
4 disconnect(y.out,z.in);
5 delete(y);
6 connect(x.out,z.in);
7 od

with index (𝑖 mod 𝑛) + 1, which must be in state H (it has a hole instead of a token). As result of
this interaction, the 𝑖-th component moves to state H while the (𝑖 mod 𝑛) + 1 component moves
to state T. Note that token passing interactions are possible as long as at least two components
are in different states; if all the components are in the same state at the same time, the ring is in a
deadlock configuration.
During operation, components can be added to, or removed from the ring. On removing the

component with index 𝑖 , its incoming (from 𝑖−1, if 𝑖 > 1, or𝑛, if 𝑖 = 1) and outgoing (to (𝑖 mod𝑛)+1)
connectors are deleted before the component is deleted, and its left and right neighbours are
reconnected in order to re-establish the ring-shaped topology. Consider the program in Listing 1,
where the variables 𝑥 , 𝑦 and 𝑧 are assigned indices 𝑖 , (𝑖 mod 𝑛) + 1 and (𝑖 mod 𝑛) + 2, respectively
(assuming 𝑛 > 2). The program removes first the right connector between 𝑦 and 𝑧 (line 3), then
removes the left connector between 𝑥 and 𝑦 (line 4), before removing the component indexed by 𝑦
(line 5) and reconnecting the 𝑥 and 𝑧 components (line 6). Note that the order of the disconnect
commands is crucial: assume that component 𝑥 is the only one in state T in the entire system. Then
the token may move from 𝑥 to 𝑦 and is deleted together with the component (line 5). In this case,
the resulting ring has no token and the system is in a deadlock configuration. The reconfiguration
program in Listing 2 is obtained by swapping lines 3 and 4 from Listing 1. In this case, the deleted
component is in state H before the reconfiguration and its left connector is removed before its right
one, thus ensuring that the token does not move to the 𝑦 component (deleted at line 5).
The framework developed in this paper allows to prove that e.g., when applied to a token ring

with at least two components in state H and at least one component in state T, the program in
Listing 2 yields a system with at least two components in different states, for any 𝑛 > 2. Using, e.g.
invariant synthesis methods similar to those described in [Abdulla et al. 2007; Bozga et al. 2020;
Bozga and Iosif 2021; Bozga et al. 2021; Chen et al. 2017], an initially correct parametric systems
can be proved to be correct after the application of a sequence of reconfiguration actions.

The contributions of this paper. Whereas various formalisms for modeling distributed systems sup-
port dynamic reconfiguration, the formal verification of system properties under reconfigurations
has received scant attention. We provide a configuration logic that specifies the safe configurations
of a distributed system. This logic is used to build Hoare-style proofs of correctness, by annotating
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reconfiguration programs (i.e. programs that delete and create interactions or components) with
assertions that describe both the topology of the system (i.e. the components and connectors that
form its coordinating architecture) and the local states of the components. The annotations of
the reconfiguration program are proved to be valid under so-called havoc invariants, expressing
global properties about the states of the components, that remain, moreover, unchanged under the
ongoing interactions in the system. In order to prove these havoc invariants for networks of any
size, we develop an induction-based proof system, that uses a parallel composition rule in the style
of assume/rely-guarantee reasoning. In contrast with existing formal verification techniques, we
do not consider the network topology to be fixed in advance, and allow it to change dynamically, as
described by the reconfiguration program. This paper provides the details of our proof systems and
the semantics of reconfiguration programs. We illustrate the usability of our approach by proving
the correctness of self-adjustable tree architectures [Schmid et al. 2016] and conclude with a list of
technical problems relevant for the automation of our method.

Main challenges. Formal reasoning about reconfigurable distributed systems faces two technical
challenges. The first issue is the huge complexity of nowadays distributed systems, that requires
highly scalable proof techniques, which can only be achieved by local reasoning, a key ingredient
of other successful proof techniques, based on Separation Logic [O’Hearn et al. 2001]. To this end,
atomic reconfiguration commands in our proof system are specified by axioms that only refer
to the components directly involved in the action, while framing out the rest of the distributed
system. This principle sounds appealing, but is technically challenging, as components from the
local specification interfere with components from the frame2. To tackle this issue, we assume
that frames are invariant under the exchange of messages between components (interactions)
and discharge these invariance conditions using cyclic proofs. The inference rules used to write
such proof rely on a compositional proof rule, in the spirit of rely/assume-guarantee reasoning
[Jones 1981; Owicki and Gries 1978], whose assumptions about the environment behavior are
automatically synthesized from the formulæ describing the system and the environment.
The second issue is dealing with the non-trivial interplay between reconfigurations and inter-

actions. Reconfigurations change the system by adding/removing components/interactions while
the system is running, i.e. while state changes occur within components by firing interactions.
Although changes to the structure of the distributed system seem, at first sight, orthogonal to the
state changes within components, the impact of a reconfiguration can be immense. For instance,
deleting a component holding the token in a token-ring network yields a deadlocked system, while
adding a component with a token could lead to a data race, in which two components access a
shared resource simultaneously. Technically, this means that a frame rule cannot be directly applied
to sequentially composed reconfigurations, as e.g. an arbitrary number of interactions may fire
between two atomic reconfiguration actions. Instead, we must prove havoc invariance of the inter-
mediate assertions in a sequential composition of reconfiguration actions. As an optimization of
the proof technique, such costly checks do not have to be applied along sequential compositions of
reconfiguration actions that only decrease/increase the size of the architecture; in such monotonic
reconfiguration sequences, invariance of a set of configurations under interaction firing needs only
to be checked in the beginning (for decreasing sequences) or in the end (for increasing sequences).

2 A MODEL OF DISTRIBUTED SYSTEMS
A distributed system is modeled as a set of network nodes (called components), each running its
own copy of the same program (called behavior). The components communicate via connectors
(called interactions) that synchronize transitions in different components. In addition, there is a

2Essentially the equivalent of the environment in a compositional proof system for parallel programs.
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designated reconfiguration manager that has access to the entire network and is allowed to change
it by executing a reconfiguration program.

A configuration is a snapshot of the system, describing the topology of the network and the current
state of each component (for simplicity, the reconfiguration manager is not explicitly represented).
The configuration is changed by executing either an interaction (which changes the states of the
components involved) or a reconfiguration action (that adds/removes a component/interaction).
The global behavior of the system is the sequence of configurations obtained by the interleaving of
interactions (also called havoc actions) and reconfiguration actions.

2.1 Components, Behavior and Interactions
For a function 𝑓 : 𝐴 → 𝐵, we denote by dom(𝑓 ) its domain and by 𝑓 [𝑎 ← 𝑏] the function that
maps 𝑎 into 𝑏 and behaves like 𝑓 for all other elements from the domain of 𝑓 . By pow(𝐴) we denote
the powerset of a set 𝐴. For a relation 𝑅 ⊆ 𝐴 × 𝐴, we denote by 𝑅∗ its reflexive and transitive
closure. Given sets 𝐴 and 𝐵, we write 𝐴 ⊆fin 𝐵 if 𝐴 is a finite subset of 𝐵 and define 𝐴 ⊎ 𝐵 def

= 𝐴 ∪ 𝐵
if 𝐴 ∩ 𝐵 = ∅ and 𝐴 ⊎ 𝐵 is undefined, if 𝐴 ∩ 𝐵 ≠ ∅.

We model a distributed system by a finite set C ⊆fin C, where C is a countably infinite universe
of components. The components in C are said to be present (in the system) and those from C \ C
are absent (from the system).
The present components can be thought of as the nodes of a network, each executing a copy

of the same program, called behavior in the following. The behavior is described by a finite-state
machine B = (𝑃,𝑄,−→), where 𝑃 is a finite set of ports i.e., the event alphabet of the machine, 𝑄 is
a finite set of states, and −→⊆ 𝑄 × 𝑃 ×𝑄 is a transition relation. We denote transitions as 𝑞

𝑝
−→ 𝑞′

instead of (𝑞, 𝑝, 𝑞′), the states 𝑞 and 𝑞′ being referred to as the pre- and post-state of the transition.
The network of the distributed system is described by a finite set I ⊆fin C × 𝑃 × C × 𝑃 of

interactions. Intuitively, an interaction (𝑐1, 𝑝1, 𝑐2, 𝑝2) connects the port 𝑝1 of component 𝑐1 with the
port 𝑝2 of component 𝑐2, provided that 𝑐1 and 𝑐2 are distinct components. Intuitively, an interaction
(𝑐1, 𝑝1, 𝑐2, 𝑝2) can be thought of as a joint execution of transitions labeled with the ports 𝑝1 and 𝑝2
from the components 𝑐1 and 𝑐2, respectively.

Definition 2.1. A configuration is a quadruple 𝛾 = (C,I, 𝜚, a), where C and I describe the present
components and the interactions of the system, 𝜚 : C → 𝑄 is a state map associating each present
component a state of the common behavior B = (𝑃,𝑄,−→) and a : V → C is a store that maps
variables, taken from a countably infinite set V, to components (not necessarily present). We denote
by Γ the set of configurations.

Example 2.2. For instance, the configuration (C,I, 𝜚, a) of the token ring system, depicted in Fig. 1
(left) has present componentsC = {𝑐1, . . . , 𝑐𝑛}, interactionsI = {(𝑐𝑖 , out, 𝑐 (𝑖 mod 𝑛)+1, in) | 𝑖 ∈ [1, 𝑛]}
and state map given by 𝜚 (𝑐1) = T and 𝜚 (𝑐𝑖 ) = H, for 𝑖 ∈ [2, 𝑛]. The store a is arbitrary. ■

Given a configuration (C,I, 𝜚, a), an interaction (𝑐1, 𝑝1, 𝑐2, 𝑝2) ∈ I is loose if and only if 𝑐𝑖 ∉ C,
for some 𝑖 = 1, 2. A configuration is loose if and only if it contains a loose interaction. Interactions
(resp. configurations) that are not loose are said to be tight. In particular, loose configurations are
useful for the definition of a composition operation, as the union of disjoint sets of components
and interactions, respectively:

Definition 2.3. The composition of two configurations 𝛾𝑖 = (C𝑖 ,I𝑖 , 𝜚𝑖 , a), for 𝑖 = 1, 2, is defined as
𝛾1 •𝛾2

def
= (C1⊎C2,I1⊎I2, 𝜚1∪𝜚2, a). The composition 𝛾1 •𝛾2 is undefined if either C1⊎C2 or I1⊎I2

is undefined3. A composition 𝛾1 • 𝛾2 is trivial if C𝑖 = I𝑖 = 𝜚𝑖 = ∅, for some 𝑖 = 1, 2. A configuration
3Since dom(𝜚𝑖 ) ⊆ C𝑖 , for 𝑖 = 1, 2 and C1 ∩ C2 = ∅, the disjointness condition is not necessary for state maps.
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Fig. 2. Havoc and Reconfigurations of a Token Ring
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disconnect(𝑥 .out, 𝑦.in)
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delete(𝑦)

connect(𝑥 .out, 𝑧.in)

𝛾2 is a subconfiguration of 𝛾1, denoted 𝛾2 ⊑ 𝛾1, if and only if there exists a configuration 𝛾3 ∈ Γ,
such that 𝛾1 = 𝛾2 • 𝛾3.

Note that a tight configuration may be the result of composing two loose configurations, whereas
the composition of tight configurations is always tight. The example below shows that, in most
cases, a non-trivial decomposition of a tight configuration necessarily involves loose configurations.

Example 2.4. Let 𝛾𝑖 = (C𝑖 ,I𝑖 , 𝜚𝑖 , a), where C𝑖 = {𝑐𝑖 }, I𝑖 = {(𝑐𝑖 , out, 𝑐 (𝑖 mod 3)+1, in)}, for all
𝑖 ∈ [1, 3], 𝜚1 (𝑐1) = 𝜚2 (𝑐2) = H and 𝜚3 (𝑐3) = T. Then 𝛾 def

= 𝛾1 • 𝛾2 • 𝛾3 is the configuration from the
top-left corner of Fig. 2, where the store a is arbitrary. Note that 𝛾1, 𝛾2, and 𝛾3 are loose, respectively,
but 𝛾 is tight. Moreover, the only way of decomposing 𝛾 into two tight subconfigurations 𝛾 ′1 and 𝛾

′
2

is taking 𝛾 ′1
def
= 𝛾 and 𝛾 ′2

def
= (∅, ∅, ∅, a), or viceversa. ■

A configuration is changed by two types of actions: (a) havoc actions change the local states
of the components by executing interactions (that trigger simultaneous transitions in different
components), without changing the structure or the store, and (b) reconfiguration actions that
change the structure, store and possibly the state map of a configuration. We refer to Fig. 2 for
a depiction of havoc and reconfiguration actions. Each havoc action is the result of executing
a sequence of interactions (horizontally depicted using straight double arrows), whereas each
reconfiguration action (vertically depicted using snake-shaped arrows) corresponds to a statement
in a reconfiguration program. The two types of actions may interleave, yielding a transition graph
with a finite but unbounded (parametric) or even infinite (obtained by iteratively adding new
components) set of vertices (configurations).
Formally, an action is a function 𝑓 : Γ → pow(Γ)⊤, where pow(Γ)⊤ def

= pow(Γ) ∪ {⊤}. The
complete lattice (pow(Γ), ⊆,∪,∩) is extended with a greatest element ⊤, with the conventions
𝑆 ∪ ⊤ def

= ⊤ and 𝑆 ∩ ⊤ def
= 𝑆 , for each 𝑆 ∈ pow(Γ). We consider that an action 𝑓 is disabled in a

configuration 𝛾 if and only if 𝑓 (𝛾) = ∅ and that it faults in 𝛾 if and only if 𝑓 (𝛾) = ⊤. Actions are
naturally lifted to sets of configurations as 𝑓 (𝑆) def

=
⋃

𝛾 ∈𝑆 𝑓 (𝛾), for each 𝑆 ⊆ Γ.
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Definition 2.5. The havoc action 𝔥 : Γ → pow(Γ) is defined as 𝔥(𝛾) def
= {𝛾 ′ | 𝛾 =⇒∗ 𝛾 ′}, where =⇒∗

is the reflexive and transitive closure of the relation =⇒⊆ Γ × Γ, defined by the following rule:
(𝑐1, 𝑝1, 𝑐2, 𝑝2) ∈ I 𝑐1, 𝑐2 ∈ C 𝜚 (𝑐𝑖 ) = 𝑞𝑖 𝑞𝑖

𝑝𝑖−→ 𝑞′𝑖 , for all 𝑖 = 1, 2
(Havoc)

(C,I, 𝜚, a) =⇒ (C,I, 𝜚 [𝑐1 ← 𝑞′1] [𝑐2 ← 𝑞′2], a)

Note that the havoc action is the result of executing any sequence of tight interactions, whereas
loose interactions are simply ignored. The above definition can be generalized to multi-party
interactions (𝑐1, 𝑝1, . . . , 𝑐𝑛, 𝑝𝑛) with 𝑛 ≥ 1 pairwise distinct participant components 𝑐1, . . . , 𝑐𝑛 ,
that fire simultaneously transitions of the behavior labeled with the ports 𝑝1, . . . , 𝑝𝑛 , respectively.
In particular, the interactions of arity 𝑛 = 1 correspond to the local (silent) actions performed
independently by a single component. To keep the presentation simple, we refrain from considering
such generalizations, for the time being.

Example 2.6. Let 𝛾𝑖 = ({𝑐1, 𝑐2, 𝑐3}, {(𝑐𝑖 , out, 𝑐𝑖 mod 3+1, in) | 𝑖 ∈ [1, 3]}, 𝜚𝑖 , a), for 𝑖 ∈ [1, 3] be the
top-most configurations from Fig. 2, where 𝜚1 (𝑐1) = 𝜚1 (𝑐2) = H, 𝜚1 (𝑐3) = T, 𝜚2 (𝑐1) = T, 𝜚2 (𝑐2) =
𝜚2 (𝑐3) = H, 𝜚3 (𝑐1) = 𝜚3 (𝑐3) = H, 𝜚3 (𝑐2) = T and a (𝑥) = 𝑐1, a (𝑦) = 𝑐2, a (𝑧) = 𝑐3. Then 𝔥(𝛾𝑖 ) =
{𝛾1, 𝛾2, 𝛾3}, for all 𝑖 ∈ [1, 3]. ■

2.2 The Expressiveness of the Model
Before moving on to the formal definitions of a logic describing sets of configurations (§3), a
reconfiguration language and a proof system for reconfiguration programs (§4), we discuss the
expressive power of the components-behavior-interactions model of distributed systems introduced
so far, namely what kinds of distributed algorithms can be described in our model?
The component model (a finite-state machine representing a behavior encapsulated within an

interface consisting of a set of ports) is reminiscent of I/O automata [Lynch and Tuttle 1989] and
interface automata [de Alfaro and Henzinger 2001], whereas the interaction model is reminiscent
of the Behavior-Interaction-Priorities (BIP) framework [Basu et al. 2006] and the extensive body of
work on verification of parameterized networks (see [Bloem et al. 2015] for a survey). This model
is widely used to describe multi-core and distributed concurrency: multi-party communication
protocols such as mutual exclusion, flooding/notification of crowd, deadlock problems (dining
philosophers/cryptographers) etc. are described using finite-state machines with rendez-vous
[Bozga et al. 2020].
In addition to synchronous interactions, this model is also capable of describing asynchro-

nous communication, via bounded message channels modeled using additional components4.
Furthermore, transient faults (process delays, message losses, etc.) can be modeled as well, by
nondeterministic transitions e.g., a channel component might chose to nondeterministically lose
a message. In particular, having a single finite-state machine that describes the behavior of all
components is not a limitation, because finitely many behaviors B1, . . . ,B𝑚 can be represented
by state machines with disjoint transition graphs, the state map distinguishing between different
behavior types – if 𝜚 (𝑐) = 𝑞 and 𝑞 is a state of B𝑖 , the value of 𝜚 (𝑐) can never change to a state of a
different behavior B𝑗 , as the result of a havoc action.
On the other hand, the current model cannot describe complex distributed algorithms, such as

leader election [Chang and Roberts 1979; Dolev et al. 1982], spanning tree [Kruskal 1956; Prim
1957], topological linearization [Gall et al. 2014], Byzantine consensus [Lamport et al. 1982] or
Paxos parliament [Lamport 1998], due to the following limitations:

4The number of messages in transit depends on the number of states in the behavior; unbounded message queues would
require an extension of the model to infinite-state behaviors.
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• Finite-state behavior is oblivious of the identity of the components (processes) in distributed
systems of arbitrary sizes. For instance, there is no distributed algorithm over rings that can
elect a leader under the assumption of anonymous processes [Chang and Roberts 1979; Dolev
et al. 1982].
• Interactions between a bounded number of participants cannot describe broadcast between
arbitrarily many components, as in most common consensus algorithms [Lamport 1998;
Lamport et al. 1982].

We proceed in the rest of the paper under these simplifying assumptions (i.e., finite-state behavior
and bounded-arity interactions), as our focus is modeling the reconfiguration aspect of a distributed
system, and consider the following extensions for future work:
• Identifiers in registers: the behavior is described by a finite-state machine equipped with
finitely many registers 𝑟 holding component identifiers, that can be used to send (𝑝!𝑟 ) and
receive (𝑝?𝑟 ) identifiers (𝑝 stands for a port name), perform equality (𝑟 = 𝑟 ′) and strict
inequality (𝑟 < 𝑟 ′) checks, with no other relation or function on the domain of identifiers. For
instance, identifier-aware behaviors are considered in [Aiswarya et al. 2015] in the context of
bounded model checking i.e., verification of temporal properties (safety and liveness) under
the assumption that the system has a ring topology and proceeds in a bounded number of
rounds (in a round each component executes exactly one transition). Algorithms running on
networks of arbitrary topologies (described by graphs, not necessarily linear) are modeled
using distributed register automata [Bollig et al. 2019], that offer a promising lead for verifying
properties of distributed systems with arbitrary/mutable networks.
• Broadcast interactions: interactions involving an unbounded number of component-port pairs
e.g., the 𝑝0 ports of all components except for a bounded set 𝑐1, . . . , 𝑐𝑘 , that interact with ports
𝑝1, . . . , 𝑝𝑘 , for a given integer constant 𝑘 ≥ 0. Broadcast interactions are described using
universal quantifiers in [Bozga et al. 2020], where network topologies are specified using
first-order logic. To accommodate broadcast interactions in our model, one has to redefine
composition, by considering e.g., glueing of interactions, in addition to the disjoint union of
configurations (Def. 2.3). Changing this definition would have a non-trivial impact on the
configuration logic used to write assertions in reconfiguration proofs (§3).

Due to the separation of the behavior from the coordination aspect (i.e., network topology), adopting
a richer model of behavior (e.g., register or timed automata) would impact mainly the part of the
framework that deals with checking the properties (i.e., safety, liveness or havoc invariance) of a set
of configurations described by a formula of the configuration logic (§3) but should not, in principle,
impact the programming language nor the proof system for reconfiguration programs (§4).

3 A LOGIC OF CONFIGURATIONS
We define a Configuration Logic (CL) that is, an assertion language describing sets of configurations.
Let A be a countably infinite set of predicate symbols, where #(A) ≥ 1 denotes the arity of a
predicate symbol A ∈ A. The CL formulæ are inductively described by the following syntax:

𝜙 ::= true | emp | 𝑥 = 𝑦 | 𝑥@𝑞 | ⟨𝑥1 .p1, 𝑥2 .p2⟩ | A(𝑥1, . . . , 𝑥#(A) ) | 𝜙 ∗ 𝜙 | 𝜙 ∧ 𝜙 | ¬𝜙 | ∃𝑥 . 𝜙

where 𝑞 ∈ 𝑄 , A ∈ A are predicate symbols and 𝑥,𝑦, 𝑥1, 𝑥2, . . . ∈ V are variables. The atomic
formulæ 𝑥@𝑞, ⟨𝑥1 .p1, 𝑥2 .p2⟩, and A(𝑥1, . . . , 𝑥#(A) ) are called component, interaction and predicate
atoms, respectively. A formula is said to be predicate-free if it has no occurrences of predicate
atoms. By fv(𝜙) we denote the set of free variables in 𝜙 , that do not occur within the scope of an
existential quantifier. A formula is quantifier-free if it has no occurrence of existential quantifiers.
A substitution is a partial mapping 𝜎 : V→ V and the formula 𝜙𝜎 is the result of replacing each
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free variable 𝑥 ∈ fv(𝜙) ∩ dom(𝜎) by 𝜎 (𝑥) in 𝜙 . We denote by [𝑥1/𝑦1, . . . , 𝑥𝑘/𝑦𝑘 ] the substitution
that replaces 𝑥𝑖 with 𝑦𝑖 , for all 𝑖 ∈ [1, 𝑘]. We use the shorthands false def

= ¬true, 𝑥 ≠ 𝑦
def
= ¬𝑥 = 𝑦,

𝜙1 ∨ 𝜙2
def
= ¬(¬𝜙1 ∧ ¬𝜙2), ∀𝑥 . 𝜙1

def
= ¬(∃𝑥 . ¬𝜙1) and 𝑥@_ def

=
∨

𝑞∈𝑄 𝑥@𝑞.
We distinguish the boolean (∧) from the separating (∗) conjunction: 𝜙1 ∧ 𝜙2 means that 𝜙1 and

𝜙2 hold for the same configuration, whereas 𝜙1 ∗ 𝜙2 means that 𝜙1 and 𝜙2 hold separately, on two
disjoint parts of the same configuration. Intuitively, a formula emp describes empty configurations,
with no components and interactions, 𝑥@𝑞 describes a configuration with a single component,
given by the store value of 𝑥 , in state 𝑞, and ⟨𝑥1 .p1, 𝑥2 .p2⟩ describes a single interaction between
ports 𝑝1 and 𝑝2 of the components given by the store values of 𝑥1 and 𝑥2, respectively. The formula
𝑥1@𝑞1 ∗ . . . ∗ 𝑥𝑛@𝑞𝑛 ∗ ⟨𝑥1.p1, 𝑥2.p2⟩ ∗ . . . ∗ ⟨𝑥𝑛−1 .pn−1, 𝑥𝑛 .pn⟩ describes a structure consisting of 𝑛
pairwise distinct components, in states 𝑞1, . . . , 𝑞𝑛 , respectively, joined by interactions between ports
𝑝𝑖 and 𝑝𝑖+1, respectively, for all 𝑖 ∈ [1, 𝑛 − 1].
The CL logic is used to describe configurations of distributed systems of unbounded size, by

means of predicate symbols, defined inductively by a given set of rules. As usual, the interpretation
of a predicate is a set of configurations, that is a component of the least solution of the system
of recursive equations defined by the set of rules. However, the existence and unicity of the least
solution is subject to the monotonicity of the function induced by the set of definitions. For this
reason, we avoid using negation and define the rules in a small fragment of the logic. The symbolic
configurations are formulæ of the form Z ∧ 𝜋 , where Z and 𝜋 are defined by the following syntax:

Z ::= emp | 𝑥@𝑞 | ⟨𝑥1 .p1, 𝑥2 .p2⟩ | A(𝑥1, . . . , 𝑥#(A) ) | Z ∗ Z 𝜋 ::= 𝑥 = 𝑦 | 𝑥 ≠ 𝑦 | 𝜋 ∧ 𝜋
The interpretation of CL formulæ is given by a semantic relation |=Δ, parameterized by a finite

set of inductive definitions (SID) Δ, consisting of rules A(𝑥1, . . . , 𝑥#(A) ) ← ∃𝑦1 . . . 𝑦𝑘 . 𝜙 , where 𝜙 is a
symbolic configuration, such that fv(𝜙) ⊆ {𝑥1, . . . , 𝑥#(A) } ∪ {𝑦1, . . . , 𝑦𝑘 }. The relation |=Δ is defined
inductively on the structure of formulæ, as follows:

(C,I, 𝜚, a) |=Δ true ⇐⇒ true
(C,I, 𝜚, a) |=Δ emp ⇐⇒ C = ∅ and I = ∅
(C,I, 𝜚, a) |=Δ 𝑥 = 𝑦 ⇐⇒ a (𝑥) = a (𝑦)
(C,I, 𝜚, a) |=Δ 𝑥@𝑞 ⇐⇒ C = {a (𝑥)}, I = ∅ and 𝜚 (a (𝑥)) = 𝑞

(C,I, 𝜚, a) |=Δ ⟨𝑥1.p1, 𝑥2.p2⟩ ⇐⇒ C = ∅, I = {(a (𝑥1), 𝑝1, a (𝑥2), 𝑝2)}
(C,I, 𝜚, a) |=Δ A(𝑦1, . . . , 𝑦#(A) ) ⇐⇒ (C,I, 𝜚, a) |=Δ b [𝑥1/𝑦1, . . . , 𝑥#(A)/𝑦#(A) ], for some

rule A(𝑥1, . . . , 𝑥#(A) ) ← b from Δ
(C,I, 𝜚, a) |=Δ 𝜙1 ∗ 𝜙2 ⇐⇒ there exist configurations 𝛾1 and 𝛾2, such that

(C,I, 𝜚, a) = 𝛾1 • 𝛾2 and 𝛾𝑖 |=Δ 𝜙𝑖 , for both 𝑖 = 1, 2
(C,I, 𝜚, a) |=Δ 𝜙1 ∧ 𝜙2 ⇐⇒ (C,I, 𝜚, a) |=Δ 𝜙𝑖 , for both 𝑖 = 1, 2
(C,I, 𝜚, a) |=Δ ¬𝜙1 ⇐⇒ not (C,I, 𝜚, a) |=Δ 𝜙1
(C,I, 𝜚, a) |=Δ ∃𝑥 . 𝜙1 ⇐⇒ (C,I, 𝜚, a [𝑥 ← 𝑐], 𝜚 ) |=Δ 𝜙1, for some 𝑐 ∈ C

From now on, we consider the SID Δ to be clear from the context and write 𝛾 |= 𝜙 instead of 𝛾 |=Δ 𝜙 .
If 𝛾 |= 𝜙 , we say that 𝛾 is a model of 𝜙 and define the set of models of 𝜙 as [[𝜙]] def

= {𝛾 | 𝛾 |= 𝜙}. A
formula 𝜙 is satisfiable if and only if [[𝜙]] ≠ ∅. Given formulæ 𝜙 and𝜓 , we say that 𝜙 entails𝜓 if
and only if [[𝜙]] ⊆ [[𝜓 ]] , written 𝜙 |= 𝜓 .

Example 3.1. The SID below defines chains of components and interactions, with at least ℎ, 𝑡 ∈ N
components in state H and T, respectively:

chain0,1 (𝑥, 𝑥) ← 𝑥@T chainℎ,𝑡 (𝑥,𝑦) ← ∃𝑧. 𝑥@T ∗ ⟨𝑥 .out, 𝑧.in⟩ ∗ chainℎ,𝑡 ¤−1 (𝑧,𝑦)
chain1,0 (𝑥, 𝑥) ← 𝑥@H chainℎ,𝑡 (𝑥,𝑦) ← ∃𝑧. 𝑥@H ∗ ⟨𝑥 .out, 𝑧.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑧,𝑦)
chain0,0 (𝑥, 𝑥) ← 𝑥@_
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where 𝑘 ¤−1 def
= max(𝑘−1, 0), for all 𝑘 ∈ N. The configurations ({𝑐1, . . . , 𝑐𝑛}, {(𝑐𝑖 , out, 𝑐 (𝑖 mod 𝑛)+1, in) |

𝑖 ∈ [1, 𝑛]}, 𝜚, a) from Example 2.2 are models of the formula ∃𝑥∃𝑦 . chain0,0 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩, for
all 𝑛 ∈ N. This is because any such configuration can be decomposed into a model of ⟨𝑦.out, 𝑥 .in⟩
and a model of chain0,0 (𝑥,𝑦). The latter is either a model of 𝑥@_, matching the body of the rule
chain0,0 (𝑥, 𝑥) ← 𝑥@_ if 𝑥 = 𝑦, or a model of ∃𝑧. 𝑥@_ ∗ ⟨𝑥 .out, 𝑧.in⟩ ∗ chain0,0 (𝑧,𝑦), matching the
body of the rule chain0,0 ← ∃𝑧. 𝑥@_ ∗ ⟨𝑥 .out, 𝑧.in⟩ ∗ chain0,0 (𝑧,𝑦) etc. ■

3.1 The Expressiveness of CL
The CL logic is quite expressive, due to the interplay between first-order quantifiers and inductively
defined predicates. For instance, the class of cliques, in which there is an interaction between the
out and in ports of any two present components are defined by the formula:

∀𝑥∀𝑦 . 𝑥@_ ∗ 𝑦@_ ∗ true→ ⟨𝑥 .out, 𝑦.in⟩ ∗ true

Describing cliques is an important step towards modeling the network topology and communication
scheme in consensus protocols, such as Byzantine [Lamport et al. 1982] or Paxos [Lamport 1998]
(though currently the model of behavior is too weak to describe such algorithms).

Connected networks, used in e.g., linearization algorithms [Gall et al. 2014], are such that there
exists a path of interactions (involving e.g., the ports out and in) between each two components in
the system: connected def

= ∀𝑥∀𝑦 . 𝑥@_ ∗ 𝑦@_ ∗ true→ reach(𝑥,𝑦), where the predicate reach(𝑥,𝑦)
is defined by the rules reach(𝑥,𝑦) ← ⟨𝑥 .out, 𝑦.in⟩ ∗ true and reach(𝑥,𝑦) ← ∃𝑧 . ⟨𝑥 .out, 𝑧.in⟩ ∗
reach(𝑧,𝑦) ∗ true. A system has a cycle if and only if it is a model of the formula cyclic def

= ∃𝑥 . 𝑥@_ ∗
reach(𝑥, 𝑥) and is acyclic if and only if it is a model of ¬cyclic. Acyclicity is an important property
that allows to define dag and grid topologies, that are used in modeling distributed scientific
computing [Foster 2002].
As suggested by work on Separation Logic (SL) [Demri et al. 2018], the price to pay for this

expressivity is the inherent impossibility of having decision procedures for a fragment of CL, that
combines first-order quantifiers with inductively defined predicates. A non-trivial fragment of CL
that has decision procedures for satisfiability and entailment is the class of symbolic configurations
[Bozga et al. 2022a]. However, modeling systems with clique or grid topologies lies beyond the
expressive capability of the symbolic configurations fragment [Iosif and Zuleger 2022, §5].
Finally, CL is found to be strictly more expressive than SL. On one hand, heaps are directed

graphs of fixed out-degree, that can be described by networks of components and (possibly loose)
interactions. On the other hand, CL can describe sets of networks of unbounded degree, as e.g.,
the following definition of a star topology consisting of a controller interacting with an un-
bounded number of workers: star (𝑥) ← 𝑥@_ ∗ worker (𝑥), worker (𝑥) ← emp and worker (𝑥) ←
∃𝑦 . ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@_ ∗ worker (𝑥). Such models are the source of a gap between SL and CL
regarding the complexity of decision problems, such as entailment (see §7 for more details).

4 A LANGUAGE FOR PROGRAMMING RECONFIGURATIONS
This section defines reconfiguration actions that change the structure of a configuration. We
distinguish between reconfigurations and havoc actions (Def. 2.5), that change configurations in
orthogonal ways (see Fig. 2 for an illustration of the interplay between the two types of actions).
The reconfiguration actions are the result of executing a given reconfiguration program on the
distributed system at hand. For simplicity, we consider a centralized reconfiguration model, in
which the reconfiguration program is executed sequentially by a designated node, that has access
to the entire network. This model is currently adopted by most architecture description languages
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that consider reconfiguration [Bradbury et al. 2004; Butting et al. 2017]. Reasoning about distributed
reconfiguration models, e.g., [Peres et al. 2019], is considered for future work.

4.1 Syntax and Operational Semantics
Reconfiguration programs, ranged over by R, are inductively defined by the following syntax:

R ::= new(𝑞, 𝑥) | delete(𝑥) | connect(𝑥1.𝑝1, 𝑥2.𝑝2) | disconnect(𝑥1 .𝑝1, 𝑥2 .𝑝2)
| with 𝑥1, . . . , 𝑥𝑘 : \ do R1 od | R1;R2 | R1 + R2 | R∗1

where 𝑞 ∈ 𝑄 is a state, 𝑥, 𝑥1, 𝑥2, . . . ∈ V are program variables and \ is a predicate-free quantifier-free
formula of the CL logic, called a trigger.
The primitive commands are new(𝑞, 𝑥) and delete(𝑥), that create and delete a component

(the newly created component is set to execute from state 𝑞) given by the store value of 𝑥 ,
connect(𝑥1.𝑝1, 𝑥2.𝑝2) and disconnect(𝑥1.𝑝1, 𝑥2.𝑝2), that create and delete an interaction, between
the ports 𝑝1 and 𝑝2 of the components given by the store values of 𝑥1 and 𝑥2, respectively. We
denote by𝔓 the set of primitive commands.

A conditional is a program of the form (with 𝑥1, . . . , 𝑥𝑘 : \ do R od) that performs the following
steps, with no havoc action (Def. 2.5) in between the first and second steps below:
(1) maps the variables 𝑥1, . . . , 𝑥𝑘 to some components 𝑐1, . . . , 𝑐𝑘 ∈ C such that the configuration

after the assignment contains a model of the trigger \ ; the conditional is disabled if the
current configuration is not a model of ∃𝑥1 . . . ∃𝑥𝑘 . \ ∗ true,

(2) launches the first command of the program R on this configuration, and
(3) continues with the remainder of R, in interleaving with havoc actions;
(4) upon completion of R, the values of 𝑥1, . . . , 𝑥𝑘 are forgotten.

To avoid technical complications, we assume that nested conditionals use pairwise disjoint tuples
of variables; every program can be statically changed to meet this condition, by renaming variables.
Note that the trigger \ of a conditional (with 𝑥1, . . . , 𝑥𝑘 : \ do R od) has no quantifiers nor
predicate atoms, which means that the overall number of components and interactions in a model
of \ is polynomially bounded by the size of (number of symbols needed to represent) \ . Intuitively,
this means that the part of the system (matched by \ ) to which the reconfiguration is applied
is relatively small, thus the procedure that evaluates the trigger can be easily implemented in a
distributed environment, as e.g., consensus between a small number of neighbouring components.
The sequential composition R1;R2 executes R1 followed by R2, with zero or more interactions

firing in between. This is because, even though being sequential, a reconfiguration program runs in
parallel with the state changes that occur as a result of firing the interactions. Last, R1 +R2 executes
either R1 or R2, and R∗ executes R zero or more times in sequence, nondeterministically.
It is worth pointing out that the reconfiguration language does not have explicit assignments

between variables. As a matter of fact, the conditionals are the only constructs that nondeterministi-
cally bind variables to indices that satisfy a given logical constraint. This design choice sustains the
view of a distributed system as a cloud of components and interactions in which reconfigurations can
occur anywhere a local condition is met. In other words, we do not need variable assignments to tra-
verse the architecture — the programworks rather by identifying a part of the system that matches a
small pattern, and applying the reconfiguration locally to that subsystem. For instance, a typical pat-
tern for writing reconfiguration programs is (with x1 : \1 do R1 od + . . . +with x𝑘 : \𝑘 do R𝑘 od)∗,
where R1, . . . ,R𝑘 are loop-free sequential compositions of primitive commands. This program
continuously choses a reconfiguration sequence R𝑖 nondeterministically and either applies it on a
small part of the configuration that satisfies \𝑖 , or does nothing, if no such subconfiguration exists
within the current configuration.
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Fig. 3. Operational Semantics of the Reconfiguration Language

𝑐 ∈ C\C
new(𝑞, 𝑥) : (C,I, 𝜚, a) { (C ∪ {𝑐},I, 𝜚 [𝑐 ← 𝑞], a [𝑥 ← 𝑐])

a (𝑥) ∈ C
delete(𝑥) : (C,I, 𝜚, a) { (C\{a (𝑥)},I, 𝜚, a)

a (𝑥) ∉ C
delete(𝑥) : (C,I, 𝜚, a) {

connect(𝑥1 .𝑝1, 𝑥2 .𝑝2) : (C,I, 𝜚, a) { (C,I ∪ {(a (𝑥1), 𝑝1, a (𝑥2), 𝑝2)}, 𝜚, a)
(a (𝑥1), 𝑝1, a (𝑥2), 𝑝2) ∈ I

disconnect(𝑥1 .𝑝1, 𝑥2 .𝑝2) : (C,I, 𝜚, a) { (C,I\{(a (𝑥1), 𝑝1, a (𝑥2), 𝑝2)}, 𝜚, a)
(a (𝑥1), 𝑝1, a (𝑥2), 𝑝2) ∉ I

disconnect(𝑥1 .𝑝1, 𝑥2 .𝑝2) : (C,I, 𝜚, a) {

𝑐1, 𝑐 ′1, . . . , 𝑐𝑘 , 𝑐
′
𝑘
∈ C (C,I, 𝜚, a [𝑥1 ← 𝑐1, . . . , 𝑥𝑘 ← 𝑐𝑘 ]) |= b ∗ true

R : (C,I, 𝜚, a [𝑥1 ← 𝑐1, . . . , 𝑥𝑘 ← 𝑐𝑘 ]) { (C′,I ′, 𝜚 ′, a ′)
with 𝑥1, . . . , 𝑥𝑘 : b do R od : (C,I, 𝜚, a) { (C′,I ′, 𝜚 ′, a ′[𝑥1 ← 𝑐 ′1, . . . , 𝑥𝑘 ← 𝑐 ′

𝑘
])

R1 : 𝛾 { 𝛾0 𝛾1 ∈ 𝔥(𝛾0) R2 : 𝛾1 { 𝛾 ′

R1;R2 : 𝛾 { 𝛾 ′
R1 : 𝛾 { 𝛾 ′

R1 + R2 : 𝛾 { 𝛾 ′

R𝑛 : 𝛾 { 𝛾 ′
, R𝑛 =

{
R𝑛−1;R if 𝑛 ≥ 1
skip if 𝑛 = 0R∗ : 𝛾 { 𝛾 ′

The operational semantics of reconfiguration programs is given by the structural rules in Fig. 3,
that define the judgements R : 𝛾 { 𝛾 ′ and R : 𝛾 {, where 𝛾 and 𝛾 ′ are configurations and R is a
program. Intuitively, R : 𝛾 { 𝛾 ′ means that 𝛾 ′ is a successor of 𝛾 following the execution of R and
R : 𝛾 { means that R faults in 𝛾 . The semantics of a program R is the action ⟨⟨R⟩⟩ : Γ → pow(Γ)⊤,
defined as ⟨⟨R⟩⟩(𝛾) def

= ⊤, if R : 𝛾 { and ⟨⟨R⟩⟩(𝛾)
def
= {𝛾 ′ | R : 𝛾 { 𝛾 ′}, otherwise. The only primitive

commands that may fault are delete(𝑥) and disconnect(𝑥1.𝑝1, 𝑥2.𝑝2); for both, the premisses of the
faulty rules are disjoint from the ones for normal termination, thus the action ⟨⟨R⟩⟩ is properly
defined for all programs R. Notice that the rule for sequential composition uses the havoc action 𝔥

in the premiss, thus capturing the interleaving of havoc state changes and reconfiguration actions.

4.2 Reconfiguration Proof System
To reason about the correctness properties of reconfiguration programs, we introduce a Hoare-
style proof system consisting of a set of axioms that formalize the primitive commands (Fig. 4a),
a set of inference rules for the composite programs (Fig. 4b) and a set of structural rules (Fig.
4c). The judgements are Hoare triples {𝜙} R {𝜓 }, where 𝜙 and 𝜓 (called pre- and postcondition,
respectively) are CL formulæ. The triple {𝜙} R {𝜓 } is valid, written |= {𝜙} R {𝜓 }, if and only if
⟨⟨R⟩⟩([[𝜙]] ) ⊆ [[𝜓 ]] . Note that this semantics of Hoare triples corresponds to partial correctness
i.e., correctness under the assumption that R terminates, without enforcing the latter condition.
Moreover, a triple is valid only if the program does not fault on any model of the precondition i.e.,
an invalid Hoare triple {𝜙} R {𝜓 } cannot distinguish between ⟨⟨R⟩⟩([[𝜙]] ) ⊈ [[𝜓 ]] (non-faulting
incorrectness) and ⟨⟨R⟩⟩([[𝜙]] ) = ⊤ (faulting).
The axioms (Fig. 4a) give the local specifications of the primitive commands in the language by

Hoare triples whose preconditions describe only those resources (components and interactions)
necessary to avoid faulting. In particular, delete(𝑥) and disconnect(𝑥1.𝑝1, 𝑥2.𝑝2) require a single
component 𝑥@_ and an interaction ⟨𝑥1.p1, 𝑥2.p2⟩ to avoid faulting, respectively. The rules for
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Fig. 4. Proof System for the Reconfiguration Language

{emp} new(𝑞, 𝑥) {𝑥@𝑞} {𝑥@_} delete(𝑥) {emp}

{emp} connect(𝑥1 .𝑝1, 𝑥2 .𝑝2) {⟨𝑥1 .p1, 𝑥2 .p2⟩} {⟨𝑥1 .p1, 𝑥2 .p2⟩} disconnect(𝑥1 .𝑝1, 𝑥2 .𝑝2) {emp}

a. Axioms for Primitive Commands

{𝜙 ∧ (\ ∗ true)} R {𝜓 }
fv(𝜙) ∩ {𝑥1, . . . , 𝑥𝑘 } = ∅{𝜙} with 𝑥1, . . . , 𝑥𝑘 : \ do R od {∃𝑥1 . . . ∃𝑥𝑘 . 𝜓 }

{𝜙} R1 {b} {b} R2 {𝜓 }
𝔥( [[b]] ) ⊆ [[b]]

{𝜙} R1;R2 {𝜓 }
{𝜙} R1 {𝜓 } {𝜙} R2 {𝜓 }

{𝜙} R1 + R2 {𝜓 }
{𝜙} R {𝜙}

𝔥( [[𝜙]] ) ⊆ [[𝜙]]
{𝜙} R∗ {𝜙}

b. Inference Rules for Programs

{𝜙𝑖 } R {𝜓𝑖 } | 𝑖 ∈ [1, 𝑘]
{∨𝑘

𝑖=1 𝜙𝑖 } R {
∨𝑘

𝑖=1𝜓𝑖 }
{𝜙𝑖 } R {𝜓𝑖 } | 𝑖 ∈ [1, 𝑘]
{∧𝑘

𝑖=1 𝜙𝑖 } R {
∧𝑘

𝑖=1𝜓𝑖 }

{𝜙 ′} R {𝜓 ′} 𝜙 |= 𝜙 ′

𝜓 ′ |= 𝜓{𝜙} R {𝜓 }
{𝜙} R {𝜓 } R ∈ 𝔏

modif (R) ∩ fv(𝐹 ) = ∅{𝜙 ∗ 𝐹 } R {𝜓 ∗ 𝐹 }
c. Structural Inference Rules

sequential composition and iteration (Fig 4b) use the following semantic side condition, based on
the havoc action (Def. 2.5):

Definition 4.1. A formula 𝜙 is havoc invariant if and only if 𝔥( [[𝜙]] ) ⊆ [[𝜙]] .

Note that the dual inclusion [[𝜙]] ⊆ 𝔥( [[𝜙]] ) always holds, because 𝔥 is the reflexive and transitive
closure of the =⇒ relation (Def. 2.5). Since havoc invariance is required to prove the validity of
Hoare triples involving sequential composition, it is important to have a way of checking havoc
invariance. We describe a proof system for such havoc queries in §5. Moreover, the side condition
of the consequence rule (Fig. 4c left) consists of two entailments, that are discharged by an external
decision procedure (discussed in §7).

The frame rule (Fig. 4c bottom-right) allows to apply the specification of a local program, defined
below, to a set of configurations that may contain more resources (components and interactions)
than the ones asserted by the precondition. Intuitively, a local program requires a bounded amount
of components and interactions to avoid faulting and, moreover, it only changes the configuration
of the local subsystem, not affecting the entire system’s configuration. Formally, the set 𝔏 of local
programs is the least set that contains the primitive commands𝔓 and is closed under the application
of the following rules:

R ∈ 𝔏⇒ with x : 𝜋 do R od ∈ 𝔏, if 𝜋 is a conjunction of (dis-)equalities R1,R2 ∈ 𝔏⇒ R1+R2 ∈ 𝔏

The extra resources, not required to execute a local program, are specified by a frame 𝐹 , whose free
variables are not modified by the local program R. Formally, the set of variables modified by a local
program R ∈ 𝔏 is defined inductively on its structure:

modif (new(𝑞, 𝑥)) def
= {𝑥} modif (R) def

= ∅, for all R ∈ 𝔓\{new(𝑞, 𝑥) | 𝑞 ∈ 𝑄, 𝑥 ∈ V}
modif (with x : \ do R od) def

= x ∪modif (R) modif (R1 + R2)
def
= modif (R1) ∪modif (R2)

The frame rule is sound only for programs whose semantics are local actions, defined below:
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Definition 4.2 (Locality). Given a set of variables 𝑋 ⊆ V, an action 𝑓 : Γ → pow(Γ)⊤ is local for
𝑋 if and only if 𝑓 (𝛾1 • 𝛾2) ⊆ 𝑓 (𝛾1) • {𝛾2}↑𝑋 for all 𝛾1, 𝛾2 ∈ Γ, where, for any set 𝑆 of configurations:

𝑆↑𝑋 def
= {(C,I, 𝜚 ′, a ′) | (C,I, 𝜚, a) ∈ 𝑆,∀𝑥 ∈ V\𝑋 . a ′(𝑥) = a (𝑥), ∀𝑐 ∈ C\a (𝑋 ) . 𝜚 ′(𝑐) = 𝜚 (𝑐)} .

An action 𝑓 is local if and only if it is local for the empty set of variables.

An action that is local for a set of variables 𝑋 allows for the change of the store values of the
variables in𝑋 and the states of the components indexed by those values, only. Essentially, new(𝑞, 𝑥)
is local for {𝑥}, because the fresh index associated to 𝑥 is nondeterministically chosen and the state
is 𝑞, whereas the other primitive commands are local, in general. The semantics of every local
program R ∈ 𝔏 is a local action, as shown below:

Lemma 4.3. For every program R ∈ 𝔏, the action ⟨⟨R⟩⟩ is local for modif (R).
Moreover, 𝔏 is precisely the set of programs with local semantics, as conditionals and sequential

compositions (hence also iterations) are not local, in general:

Example 4.4. To understand why𝔏 is precisely the set of local commands, consider the programs:
• (with 𝑥 : 𝑥@𝑞 do delete(𝑥) od) is not local because, letting 𝛾1 be a configuration with zero
components and 𝛾2 be a configuration with one component in state 𝑞, we have:
⟨⟨with 𝑥 : 𝑥@𝑞 do delete(𝑥) od⟩⟩(𝛾1 • 𝛾2) = ⟨⟨with 𝑥 : 𝑥@𝑞 do delete(𝑥) od⟩⟩(𝛾2) = {𝛾1}
whereas ⟨⟨with 𝑥 : 𝑥@𝑞 do delete(𝑥) od⟩⟩(𝛾1) • {𝛾2} = ∅ • {𝛾2} = ∅.
• (skip; skip) is not local because, considering the system from Fig. 1, if we take 𝛾1 and 𝛾2, such
that 𝛾1 |= 𝑥@T and 𝛾2 |= ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H, we have:
⟨⟨skip; skip⟩⟩(𝛾1 • 𝛾2) = [[𝑥@T ∗ ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H]] ∪ [[𝑥@H ∗ ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@T]]
whereas ⟨⟨skip; skip⟩⟩(𝛾1) • {𝛾2} = [[𝑥@T ∗ ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H]] ■

Wewrite ⊢ {𝜙} R {𝜓 } if and only if {𝜙} R {𝜓 } can be derived from the axioms using the inference
rules from Fig. 4 and show the soundness of the proof system in the following. The next lemma
gives sufficient conditions for the soundness of the axioms (Fig. 4a):

Lemma 4.5. For each axiom {𝜙} R {𝜓 }, where R ∈ 𝔓 is primitive, we have ⟨⟨R⟩⟩([[𝜙]] ) = [[𝜓 ]] .
The soundness of the proof system in Fig. 4 follows from the soundness of each inference rule:

Theorem 4.6. For any Hoare triple {𝜙} R {𝜓 }, if ⊢ {𝜙} R {𝜓 } then |= {𝜙} R {𝜓 }.
As an optimization, reconfiguration proofs can often be simplified, by safely skipping the check

of one or more havoc invariance side conditions of sequential compositions, as explained below.

Definition 4.7. A program of the form disconnect(𝑥1 .𝑝1, 𝑥 ′1 .𝑝 ′1); . . . disconnect(𝑥𝑘 .𝑝𝑘 , 𝑥 ′𝑘 .𝑝
′
𝑘
);

connect(𝑥𝑘+1 .𝑝𝑘+1, 𝑥 ′𝑘+1.𝑝
′
𝑘+1); . . . connect(𝑥ℓ .𝑝ℓ , 𝑥

′
ℓ .𝑝
′
ℓ ) is said to be a single reversal program.

Single reversal programs first disconnect components and then reconnect them in a different way.
For such programs, only the first and last application of the sequential composition rule require
checking havoc invariance:

Proposition 4.8. Let R = disconnect(𝑥1.𝑝1, 𝑥 ′1 .𝑝 ′1); . . . disconnect(𝑥𝑘 .𝑝𝑘 , 𝑥 ′𝑘 .𝑝
′
𝑘
);

connect(𝑥𝑘+1 .𝑝𝑘+1, 𝑥 ′𝑘+1.𝑝
′
𝑘+1); . . . connect(𝑥ℓ .𝑝ℓ , 𝑥

′
ℓ .𝑝
′
ℓ ) be a single reversal program. If 𝜙0, . . . , 𝜙ℓ are

CL formulæ, such that:
• |= {𝜙𝑖−1} disconnect(𝑥𝑖 .𝑝𝑖 , 𝑥 ′𝑖 .𝑝 ′𝑖 ) {𝜙𝑖 }, for all 𝑖 ∈ [1, 𝑘],
• |= {𝜙 𝑗−1} connect(𝑥 𝑗 .𝑝 𝑗 , 𝑥

′
𝑗 .𝑝
′
𝑗 ) {𝜙 𝑗 }, for all 𝑗 ∈ [𝑘 + 1, ℓ], and

• 𝜙1 and 𝜙ℓ−1 are havoc invariant,
then we have |= {𝜙0} R {𝜙ℓ }.
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4.3 Examples of Reconfiguration Proofs
We prove that the outcome of the reconfiguration program from Fig. 1 (Listing 2), started in
a token ring configuration with at least two components in state H and at least one in state
T, is a token ring with at least one component in each state. The pre- and postcondition are
∃𝑥∃𝑦 . chain2,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩ and ∃𝑥∃𝑦 . chain1,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩, respectively, with the
definitions of chainℎ,𝑡 (𝑥,𝑦) given in Example 3.1, for all constants ℎ, 𝑡 ∈ N.

{∃𝑥∃𝑦 . chain2,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩}
with 𝑥,𝑦, 𝑧 : ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ do

{(∃𝑥∃𝑦 . chain2,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩) ∧
(
⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ true

)
} (★)

{⟨𝑥 .out, 𝑦.in⟩ ∗
�� ��𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ chain1,1 (𝑧, 𝑥) }

disconnect(x.out, y.in);

{
�� ��𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗

�� ��chain1,1 (𝑧, 𝑥) } (♯)
disconnect(y.out, z.in);

{𝑦@H ∗
�� ��chain1,1 (𝑧, 𝑥) } (♯)

delete(y);

{
�� ��chain1,1 (𝑧, 𝑥) } (♯)
connect(x.out, z.in)
{chain1,1 (𝑧, 𝑥) ∗ ⟨𝑥 .out, 𝑧.in⟩}
od

{∃𝑥∃𝑦 . chain1,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩}

The inference rule for conditional programs sets up the precondition (★) for the body of the
conditional. This formula is equivalent to ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ chain1,1 (𝑧, 𝑥). To
understand this point, we derive from (★) the equivalences:
(∃𝑥∃𝑦 . chain2,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩) ∧ (⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ true) ≡
∃𝑥∃𝑦∃𝑧 . ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ chain1,1 (𝑧, 𝑥) ∧ (⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ true)
≡ ⟨𝑥 .out, 𝑦.in⟩ ∗ 𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗ chain1,1 (𝑧, 𝑥)

where the first step can be proven by entailment checking (discussed in §7). The following four
annotations above are obtained by applications of the axioms and the frame rule (the frame formulæ
are displayed within boxes). The sequential composition rule is applied by proving first that the
annotations marked as (♯) are havoc invariant (the proof is given later in §5.4).
We have considered the reconfiguration program from Fig. 1 (Listing 2) which deletes a com-

ponent from a token ring. The dual operation is the addition of a new component. Here the
precondition states that the system is a valid token ring, with at least one component in state H
and at least another one in state T. We prove that the execution of the dual program yields a token
ring with at least two components in state H, as the new component is added without a token.

{∃𝑥∃𝑦 . chain1,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩}
with 𝑥, 𝑧 : ⟨𝑥 .out, 𝑧.in⟩ do

{(∃𝑥∃𝑦 . chain1,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩) ∧
(
⟨𝑥 .out, 𝑧.in⟩ ∗ true

)
} (★)

{⟨𝑥 .out, 𝑧.in⟩ ∗
�� ��chain1,1 (𝑧, 𝑥) }

disconnect(x.out, z.in);
{chain1,1 (𝑧, 𝑥)} (♯)
new(H,y);

{𝑦@H ∗
�� ��chain1,1 (𝑧, 𝑥) } (♯)

connect(y.out,z.in);

{
�� ��𝑦@H ∗ ⟨𝑦.out, 𝑧.in⟩ ∗

�� ��chain1,1 (𝑧, 𝑥) }
{chain2,1 (𝑦, 𝑥)} (♯)
connect(x.out,y.in)
{chain2,1 (𝑦, 𝑥) ∗ ⟨𝑥 .out, 𝑦.in⟩}
od

{∃𝑥∃𝑦 . chain2,1 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑥 .in⟩}
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The annotation (★) is given by the inference rule for conditional programs. Thenwe can derive the
equivalence (∃𝑥∃𝑦 . chain1,1 (𝑥,𝑦)∗⟨𝑦.out, 𝑥 .in⟩)∧

(
⟨𝑥 .out, 𝑧.in⟩∗true

)
≡ ⟨𝑥 .out, 𝑧.in⟩∗chain1,1 (𝑧, 𝑥).

In the subsequent lines, some axioms and the frame rule are applied (the frame is displayed in the
postconditions of the commands within the boxes). The annotations marked as (♯) must be shown
to be havoc invariant and then the sequential composition rule is applied to complete the proof.

5 THE HAVOC PROOF SYSTEM
This section describes a set of axioms and inference rules for proving the validity of havoc invariance
queries of the form 𝔥( [[𝜙]] ) ⊆ [[𝜙]] , where 𝜙 is a CL formula interpreted over a given SID and 𝔥 is
the havoc action (Def. 2.5). Such a query is valid if and only if the result of applying any sequence
of interactions on a model of 𝜙 is again a model of 𝜙 (Def. 4.1). Havoc invariance queries occur as
side conditions in the rules for sequential composition and iteration (Fig. 4b) of reconfiguration
programs. Thus, having a proof system for havoc invariance is crucial for the applicability of the
rules in Fig. 4 to obtain proofs of reconfiguration programs.

The havoc proof system uses a compositional rule, able to split a query of the form 𝔥( [[𝜙1 ∗ 𝜙2]] ) ⊆
[[𝜓1 ∗𝜓2]] into two queries 𝔥( [[𝜙𝑖 ∗ F𝑖 ]] ) ⊆ [[𝜓𝑖 ∗ F𝑖 ]] , where each frontier formula F𝑖 defines a set
of interactions that over-approximate the effect of executing the system described by 𝜙3−𝑖 (resp.
𝜓3−𝑖 ) over the one described by 𝜙𝑖 (resp.𝜓𝑖 ), for 𝑖 = 1, 2. In principle, the frontier formulæ (F1 and
F2) can be understood as describing the interference between parallel actions in an assume/rely
guarantee-style parallel composition rule [Jones 1981; Owicki and Gries 1978]. In particular, since
the frontier formulæ only describe interactions and carry no state information whatsoever, such
assumptions about events triggered by the environment are reminiscent of compositional reasoning
about input/output automata [Chilton et al. 2014].

Compositional reasoning about havoc actions requires the following relaxation of the definition
of havoc state changes (Def. 2.5), by allowing the firing of loose, in addition to tight interactions.
The relaxation from tight to loose interaction semantics is needed in order to reason about partial
systems, in which some end of an interaction is controlled by an external environment. This loose
semantics considers thus that these loose ends might get active at any time.

Definition 5.1. The following rules define a relation
(𝑐1,𝑝1,𝑐2,𝑝2)
99999999K ⊆ Γ × Γ, parameterized by a

given interaction (𝑐1, 𝑝1, 𝑐2, 𝑝2):
(𝑐1, 𝑝1, 𝑐2, 𝑝2) ∈ I 𝑐𝑖 ∈ C, 𝑐3−𝑖 ∉ C 𝜚 (𝑐𝑖 ) = 𝑞𝑖 𝑞𝑖

𝑝𝑖−→ 𝑞′𝑖(Loose) 𝑖 = 1, 2
(C,I, 𝜚, a)

(𝑐1,𝑝1,𝑐2,𝑝2)
99999999K (C,I, 𝜚 [𝑐𝑖 ← 𝑞′𝑖 ], a)

(𝑐1, 𝑝1, 𝑐2, 𝑝2) ∈ I 𝑐1 ≠ 𝑐2 ∈ C 𝜚 (𝑐𝑖 ) = 𝑞𝑖 𝑞𝑖
𝑝𝑖−→ 𝑞′𝑖 , 𝑖 = 1, 2

(Tight)
(C,I, 𝜚, a)

(𝑐1,𝑝1,𝑐2,𝑝2)
99999999K (C,I, 𝜚 [𝑐1 ← 𝑞′1] [𝑐2 ← 𝑞′2], a)

For a sequence𝑤 = 𝑖1 . . . 𝑖𝑛 of interactions, we define
𝑤
99K to be the composition of

𝑖1
99K , . . . ,

𝑖𝑛
99K ,

assumed to be the identity relation, if𝑤 is empty.

The difference with Def. 2.5 is that only the states of the components from the configuration
are changed according to the transitions in the behavior. This more relaxed definition matches
the intuition of partial systems in which certain interactions may be controlled by an external
environment; those interactions are conservatively assumed to fire anytime they are enabled by
the components of the current structure, independently of the environment.

Example 5.2. (contd. fromExample 2.6) Let𝛾𝑖 = ({𝑐2, 𝑐3}, {(𝑐𝑖 , out, 𝑐𝑖 mod 3+1, in) | 𝑖 ∈ [1, 3]}, 𝜚𝑖 , a),
for 𝑖 ∈ [1, 3] be the top-most configurations from Fig. 2 without the 𝑐1 component, where 𝜚1 (𝑐2) = H,
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𝜚1 (𝑐3) = T, 𝜚2 (𝑐2) = 𝜚2 (𝑐3) = H, 𝜚3 (𝑐2) = T, 𝜚3 (𝑐3) = H. Then, by executing the loose interactions

(𝑐3, out, 𝑐1, in) and (𝑐1, out, 𝑐2, in) from 𝛾1, we obtain 𝛾1
(𝑐3,out,𝑐1,in)
999999999K 𝛾2

(𝑐1,out,𝑐2,in)
999999999K 𝛾3. Executing

the tight interaction (𝑐2, out, 𝑐3, in) from 𝛾3 leads back to 𝛾1 i.e., 𝛾3
(𝑐2,out,𝑐3,in)
999999999K 𝛾1. ■

5.1 Regular Expressions
Proving the validity of a havoc query 𝔥( [[𝜙]] ) ⊆ [[𝜓 ]] involves reasoning about the sequences of
interactions that define the outcome of the havoc action. We specify languages of such sequences
using extended regular expressions, defined inductively by the following syntax:

L ::= 𝜖 | Σ[𝛼] | L · L | L ∪ L | L∗ | L ⊲⊳[,[ L

where 𝜖 denotes the empty string, Σ[𝛼] is an alphabet symbol associated with either an interaction
atom or a predicate atom 𝛼 and ·, ∪ and ∗ are the usual concatenation, union and Kleene star. By
L1 ⊲⊳[1,[2 L2 we denote the interleaving (zip) product of the languages described by L1 and L2 with
respect to the sets [1 and [2 of alphabet symbols of the form Σ[𝛼], respectively.
The language of a regular expression L in a configuration 𝛾 = (C,I, 𝜚, a) is defined below:

⟨⟨𝜖⟩⟩(𝛾) def
= {𝜖} ⟨⟨Σ[𝛼]⟩⟩(𝛾) def

=
⋃{I | (C,I, 𝜚, a) ⊑ 𝛾, (C,I, 𝜚, a) |= 𝛼}

⟨⟨L1 · L2⟩⟩(𝛾)
def
= {𝑤1𝑤2 | 𝑤𝑖 ∈ ⟨⟨L𝑖⟩⟩(𝛾), 𝑖 = 1, 2} ⟨⟨L1 ∪ L2⟩⟩(𝛾)

def
= ⟨⟨L1⟩⟩(𝛾) ∪ ⟨⟨L2⟩⟩(𝛾)

⟨⟨L∗⟩⟩(𝛾) def
=
⋃

𝑖≥0 ⟨⟨L𝑖⟩⟩(𝛾) ⟨⟨L1 ⊲⊳[1,[2 L2⟩⟩(𝛾)
def
= {𝑤 | 𝑤 ↓⟨⟨[𝑖 ⟩⟩ (𝛾 )∈ ⟨⟨L𝑖⟩⟩(𝛾), 𝑖 = 1, 2}

where ⟨⟨[⟩⟩(𝛾) def
=

⋃
Σ [𝛼 ] ∈[ ⟨⟨Σ[𝛼]⟩⟩(𝛾) and 𝑤 ↓⟨⟨[⟩⟩ (𝛾 ) is the word obtained from 𝑤 by deleting each

symbol not in ⟨⟨[⟩⟩(𝛾) from it. The 𝑖-th composition of L with itself is defined, as usual, by L0
def
= 𝜖

and L𝑖+1 = L𝑖 · L, for 𝑖 ≥ 0. We denote by supp(L) the support of L i.e., set of alphabet symbols Σ[𝛼]
from the regular expression L.

Example 5.3. Let𝛾 = ({𝑐1, 𝑐2, 𝑐3, 𝑐4}, {(𝑐1, out, 𝑐2, in), (𝑐2, out, 𝑐3, in), (𝑐3, out, 𝑐4, in)}, 𝜚, a) be a con-
figuration, such that a (𝑥) = 𝑐1, a (𝑦) = 𝑐2 and a (𝑧) = 𝑐3. Then, we have ⟨⟨Σ[⟨𝑥 .out, 𝑦.in⟩]⟩⟩(𝛾) =
{(𝑐1, out, 𝑐2, in)}, ⟨⟨Σ[⟨𝑦.out, 𝑧.in⟩]⟩⟩(𝛾) = {(𝑐2, out, 𝑐3, in)} and ⟨⟨Σ[chain0,0 (𝑥, 𝑧)]⟩⟩(𝛾) = {(𝑐1, out, 𝑐2, in),
(𝑐2, out, 𝑐3, in)}. ■

Given a configuration 𝛾 and a predicate atom 𝛼 , there can be, in principle, more than one
subconfiguration 𝛾 ′ ⊑ 𝛾 , such that 𝛾 ′ |= 𝛼 . This is problematic, because then ⟨⟨Σ[𝛼]⟩⟩(𝛾) may
contain interactions from different subconfigurations of 𝛾 , that are models of 𝛼 , thus cluttering
the definition of the language ⟨⟨Σ[𝛼]⟩⟩(𝛾). We fix this issue by adapting the notion of precision,
originally introduced for SL [Calcagno et al. 2007; O’Hearn et al. 2009], to our configuration logic:

Definition 5.4 (Precision). A formula 𝜙 is precise on a set 𝑆 of configurations if and only if, for
every configuration 𝛾 ∈ 𝑆 , there exists at most one configuration 𝛾 ′, such that 𝛾 ′ ⊑ 𝛾 and 𝛾 ′ |= 𝜙 . A
set of formulæ Φ is precisely closed if𝜓 is precise on [[𝜙]] , for any two formulæ 𝜙,𝜓 ∈ Φ.

Symbolic configurations using predicate atoms are not precise for Γ, in general5. To understand
this point, consider a configuration consisting of two overlapping models of chainℎ,𝑡 (𝑥,𝑦), starting
and ending in 𝑥 and 𝑦, respectively, with a component that branches on two interactions after 𝑥
and another component that joins the two branches before 𝑦. Then chainℎ,𝑡 (𝑥,𝑦) is not precise on
such configurations (that are not models of chainℎ,𝑡 (𝑥,𝑦) whatsoever). On the positive side, we can
state the following:

Proposition 5.5. The set of symbolic configurations built using predicate atoms chainℎ,𝑡 (𝑥,𝑦), for
ℎ, 𝑡 ≥ 0 (Example 3.1) is precisely closed.
5Unlike the predicates that define acyclic data structures (lists, trees) in SL, which are typically precise.
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Two regular expressions are congruent if they denote the same language, whenever interpreted
in the same configuration. Lifted to models of a symbolic configuration, we define:

Definition 5.6. Given a symbolic configuration 𝜙 , the regular expressions L1 and L2 are congruent
for 𝜙 , denoted L1 �𝜙 L2, if and only if ⟨⟨L1⟩⟩(𝛾) = ⟨⟨L2⟩⟩(𝛾), for all configurations 𝛾 ∈ [[𝜙]] .

Despite the universal condition that ranges over a possibly infinite set of configurations, congru-
ence of regular expressions with alphabet symbols of the form Σ[𝛼], where 𝛼 is an interaction or a
predicate atom, is effectively decidable by an argument similar to the one used to prove equivalence
of symbolic automata [D’Antoni and Veanes 2021].

5.2 Inference Rules for Havoc Triples
We use judgements of the form [ ⊲ {{𝜙}} L {{𝜓 }}, called havoc triples, where 𝜙 and𝜓 are CL formulæ,
L is a regular expression, and [ is an environment (a set of alphabet symbols), whose role will be
made clear below (Def. 5.13 and Lemma 5.14). A havoc triple states that each finite sequence of
(possibly loose) interactions described by a word in L, when executed in a model of the precondition
𝜙 , yields a model of the postcondition𝜓 .

Definition 5.7. A havoc triple [ ⊲ {{𝜙}} L {{𝜓 }} is valid, written |= [ ⊲ {{𝜙}} L {{𝜓 }} if and only if, for
each configuration 𝛾 ∈ [[𝜙]] , each sequence of interactions𝑤 ∈ ⟨⟨L⟩⟩(𝛾) and each configuration 𝛾 ′,
such that 𝛾

𝑤
99K 𝛾 ′, we have 𝛾 ′ ∈ [[𝜓 ]] .

For a symbolic configuration 𝜙 , we denote by inter(𝜙) and preds(𝜙) the sets of interaction and
predicate atoms from 𝜙 , respectively and define the set of atoms atoms(𝜙) def

= inter(𝜙) ∪ preds(𝜙)
and the regular expression Σ[𝜙] def

=
⋃

𝛼 ∈atoms(𝜙) Σ[𝛼]. We show that the validity of a havoc triple
is a sufficient argument for the validity of a havoc query; because havoc triples are evaluated via
open state changes (Def. 5.7), the dual implication is not true, in general.

Proposition 5.8. If |= [ ⊲ {{𝜙}} Σ[𝜙]∗ {{𝜓 }} then 𝔥( [[𝜙]] ) ⊆ [[𝜓 ]] .

We describe next a set of axioms and inference rules used to prove the validity of havoc triples.
For a symbolic configuration 𝜙 , we write 𝑥 ≃𝜙 𝑦 (𝑥 ;𝜙 𝑦) if and only if the equality (disequality)
between 𝑥 and𝑦 is asserted by the symbolic configuration𝜙 , e.g. 𝑥 ≃emp∗𝑥=𝑧∗𝑧=𝑦 𝑦 and 𝑥 ;𝑥@_∗𝑦@_ 𝑦;
note that 𝑥 ;𝜙 𝑦 is not necessarily the negation of 𝑥 ≃𝜙 𝑦.

Definition 5.9. For a symbolic configuration 𝜙 and an interaction atom ⟨𝑥1.p1, 𝑥2.p2⟩, we write:
• 𝜙 † ⟨𝑥1 .p1, 𝑥2 .p2⟩ if and only if 𝜙 contains a subformula 𝑦@𝑞, such that 𝑦 ≃𝜙 𝑥𝑖 and 𝑞 is not
the pre-state of some behavior transition with label 𝑝𝑖 , for some 𝑖 = 1, 2; intuitively, any
interaction defined by the formula ⟨𝑥1.p1, 𝑥2.p2⟩ is disabled in any model of 𝜙 ,
• 𝜙 ‡ ⟨𝑥1.p1, 𝑥2.p2⟩ if and only if, for each interaction atom ⟨𝑦1.p′1, 𝑦2.p′2⟩ ∈ inter(𝜙), there exists
𝑖 ∈ [1, 2], such that 𝑥𝑖 ;𝜙 𝑦𝑖 ; intuitively, the interaction defined by the formula ⟨𝑥1.p1, 𝑥2.p2⟩
is not already present in a model of 𝜙 i.e., ⟨𝑥1 .p1, 𝑥2.p2⟩ ∗ 𝜙 is satisfiable.

The axioms (Fig. 5a) discharge valid havoc triples for the empty sequence (𝜖), that changes
nothing and the sequence consisting of a single interaction atom, that can be either disabled in
every model (†), or enabled in some model (Σ) of the precondition, respectively; in particular, the
(Σ) axiom describes the open state change produced by an interaction (Def. 5.1), firing on a (possibly
empty) set of components, whose states match the pre-states of transitions for the associated
behaviors. The (⊥) axiom discharges trivially valid triples with unsatisfiable (false) preconditions.
The redundancy rule (I−) in Fig. 5b removes an interaction atom from the precondition of a

havoc triple, provided that the atom is never interpreted as an interaction from the language
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denoted by the regular expression from the triple. Conversely, the rule (I+) adds an interaction to
the precondition, provided that the precondition (with that interaction atom) is consistent. Note
that, without the 𝜙 ‡ 𝛼 side condition, we would obtain a trivial proof for any triple, by adding an
interaction atom twice to the precondition, i.e. using the rule (I+), followed by (⊥).

The composition rule (⊲⊳) splits a proof obligation into two simpler havoc triples (Fig. 5c). The pre-
and postconditions of the premisses are subformulæ of the pre- and postcondition of the conclusion,
joined by separating conjunction and extended by so-called frontier formulæ, describing those sets
of interaction atoms that may cross the boundary between the two separated conjuncts. The frontier
formulæ play the role of environment assumptions in a rely/assume-guarantee style of reasoning
[Jones 1981; Owicki and Gries 1978]. They are required for soundness, under the semantics of open
state changes (Def. 5.1), which considers that the interactions can fire anytime, unless they are
explicitly disabled by some component from 𝜙𝑖 , for 𝑖 = 1, 2.

Nevertheless, defining the frontier syntactically faces the following problem: interactions intro-
duced by a predicate atom in 𝜙𝑖 , can impact the state of a component defined by 𝜙3−𝑖 . We tackle this
problem by forbidding predicate atoms that describe configurations with loose ports, that belong to
components lying outside of the current configuration. We recall that a configuration (C,I, 𝜚, a)
is tight if and only if, for each interaction (𝑐1, 𝑝1, 𝑐2, 𝑝2) ∈ I, we have 𝑐1, 𝑐2 ∈ C. Moreover, we
say that a formula b is tight if and only if every model of b is tight. For instance, a predicate atom
chainℎ,𝑡 (𝑥,𝑦), for given ℎ, 𝑡 ≥ 0 (Example 3.1) is tight, because, in each model, the interactions
involve only the out and in ports of adjacent components from the configuration.

Definition 5.10 (Frontier). Given symbolic configurations𝜙1 and𝜙2, the frontier of𝜙𝑖 and𝜙3−𝑖 is the
formula F (𝜙𝑖 , 𝜙3−𝑖 )

def
= ∗𝛼 ∈inter(𝜙3−𝑖 )\(inter(𝜙3−𝑖 )∪inter(𝜙𝑖 )) 𝛼 , where 𝜙𝑖 is the largest tight subformula

of 𝜙𝑖 , for 𝑖 = 1, 2.
Example 5.11. Let 𝜙1 = chainℎ,𝑡 (𝑥,𝑦) ∗ ⟨𝑦.out, 𝑧.in⟩ and 𝜙2 = chainℎ,𝑡 (𝑦, 𝑧) ∗ ⟨𝑥 .out, 𝑦.in⟩. We

have F (𝜙1, 𝜙2) = ⟨𝑥 .out, 𝑦.in⟩ and F (𝜙2, 𝜙1) = ⟨𝑦.out, 𝑧.in⟩, because the tightness of chainℎ,𝑡 (𝑥,𝑦)
and chainℎ,𝑡 (𝑦, 𝑧) means that the only interactions crossing the boundary of 𝜙1 and 𝜙2 are the ones
described by ⟨𝑦.out, 𝑧.in⟩ and ⟨𝑥 .out, 𝑦.in⟩. ■

Finally, the regular expression of the conclusion of the (⊲⊳) rule is the interleaving of the reg-
ular expressions from the premisses, taken with respect to the sets of alphabet symbols [𝑖 =

Σ[𝜙𝑖 ∗ F (𝜙𝑖 , 𝜙3−𝑖 )], for 𝑖 = 1, 2.
The rules in Fig. 5d introduce regular expressions built using concatenation, Kleene star and

union. In particular, for reasons related to the soundness of the proof system, the concatenation rule
(·) applies to havoc triples whose preconditions are finite disjunctions of symbolic configurations,
sharing the same structure of component, interaction and predicate atoms, whereas the cut formulæ
(postcondition of the left and precondition of the right premisse) share the same structure as the
precondition. We formalize below the fact that two formulæ share the same structure:

Definition 5.12. Two formulæ 𝜙 and𝜓 share the same structure, denoted 𝜙 ≃ 𝜓 if and only if they
become equivalent when every component atom 𝑥@𝑞 is replaced by the formula 𝑥@_, in both 𝜙

and𝜓 . We write 𝜙 ⪰ 𝜓 if and only if 𝜙 is satisfiable and𝜓 is not, or else 𝜙 ≃ 𝜓 .
The (⊂) rule is the dual of (∪), that restricts the language from the conclusion to a subset of the

one from the premisse. As a remark, by applying the (I+) and (⊂) rules in any order, one can derive
the havoc invariance of the intermediate assertions in a single-reversal reconfiguration sequence
(see Def. 4.7 and Prop. 4.8). The rule (�) substitutes a regular expression with a congruent one,
with respect to the precondition.

Last, the rules in Fig. 5e modify the structure of the pre- and postconditions. In particular, the
left unfolding rule (LU) has a premisse for each step of unfolding of a predicate atom from the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 130. Publication date: October 2022.



130:20 Emma Ahrens, Marius Bozga, Radu Iosif, and Joost-Pieter Katoen

Fig. 5. Proof System for Havoc Triples

(𝜖)
[ ⊲ {{𝜙}} 𝜖 {{𝜙}} (†) 𝛼 = ⟨𝑥1.p1, 𝑥2.p2⟩

𝜙 † 𝛼[ ⊲ {{𝜙}} Σ[𝛼] {{false}}
(⊥)

[ ⊲ {{false}} L {{𝜓 }}

(Σ) 𝛼 = ⟨𝑥1.p1, 𝑥2.p2⟩
𝐽 ⊆ [1, 2][ ⊲ {{𝛼 ∗ ∗𝑗 ∈𝐽 𝑥 𝑗@𝑞 𝑗 }} Σ[𝛼] {{𝛼 ∗ ∗𝑗 ∈𝐽 ∨

𝑞 𝑗

𝑝 𝑗−−→𝑞′
𝑗

𝑥 𝑗@𝑞′𝑗 }}

a. Axioms

[ \ {Σ[𝛼]} ⊲ {{𝜙}} L {{𝜓 }}
(I−) 𝛼 = ⟨𝑥1.p1, 𝑥2.p2⟩

Σ[𝛼] ∈ [ \ supp(L)[ ⊲ {{𝜙 ∗ 𝛼}} L {{𝜓 ∗ 𝛼}}

[ ∪ {Σ[𝛼]} ⊲ {{𝜙 ∗ 𝛼}} L {{𝜓 ∗ 𝛼}}
(I+) 𝛼 = ⟨𝑥1.p1, 𝑥2.p2⟩

𝜙 ‡ 𝛼[ ⊲ {{𝜙}} L {{𝜓 }}
b. Redundancy Rules

[𝑖 ⊲ {{𝜙𝑖 ∗ F (𝜙𝑖 , 𝜙3−𝑖 )}} L𝑖 {{𝜓𝑖 ∗ F (𝜙𝑖 , 𝜙3−𝑖 )}} | 𝑖 = 1, 2
(⊲⊳) [𝑖 = Σ[𝜙𝑖 ∗ F (𝜙𝑖 , 𝜙3−𝑖 )]

𝑖 = 1, 2[1 ∪ [2 ⊲ {{𝜙1 ∗ 𝜙2}} L1 ⊲⊳[1,[2 L2 {{𝜓1 ∗𝜓2}}

c. Composition Rule

[ ⊲ {{𝜙}} L1 {{b}} [ ⊲ {{b}} L2 {{𝜓 }}(·) 𝜙 ⪰ b
[ ⊲ {{𝜙}} L1 · L2 {{𝜓 }}

[ ⊲ {{𝜙}} L {{𝜙}}
(∗)

[ ⊲ {{𝜙}} L∗ {{𝜙}}

[ ⊲ {{𝜙}} L1 {{𝜓 }} [ ⊲ {{𝜙}} L2 {{𝜓 }}(∪)
[ ⊲ {{𝜙}} L1 ∪ L2 {{𝜓 }}

[ ⊲ {{𝜙}} L1 ∪ L2 {{𝜓 }}(⊂)
[ ⊲ {{𝜙}} L1 {{𝜓 }}

[ ⊲ {{𝜙}} L1 {{𝜓 }}(�) L1 �𝜙 L2
[ ⊲ {{𝜙}} L2 {{𝜓 }}

d. Regular Expression Rules

[ ⊲ {{𝜙}} L {{𝜓 ′}}
(C) 𝜓 ′ |= 𝜓

[ ⊲ {{𝜙}} L {{𝜓 }}

[ ′ ⊲ {{𝜙 ∗ b ′}} L′ {{𝜓 }}

��������
A(𝑥1, . . . , 𝑥#(A) ) ← ∃z . b ∈ Δ
(∃z . b) [𝑥1/𝑦1, . . . , 𝑥#(A)/𝑦#(A) ] = ∃z . b ′
[ ′ =

(
[ \ {Σ[A(𝑦1, . . . , 𝑦#(A) )]}

)
∪ Σ[b ′]

L′ = L
[
Σ[A(𝑥1, . . . , 𝑥#(A) )] / Σ[b ′]

]
(LU)

[ ⊲ {{𝜙 ∗ A(𝑦1, . . . , 𝑦#(A) )}} L {{𝜓 }}

[ ⊲ {{𝜙𝑖 }} L {{𝜓𝑖 }} | 𝑖 ∈ [1, 𝑘](∨) 𝜙𝑖 ≃ 𝜙 𝑗

𝑖 ≠ 𝑗 ∈ [1, 𝑘][ ⊲ {{∨𝑘
𝑖=1 𝜙}} L {{

∨𝑘
𝑖=1𝜓𝑖 }}

[ ⊲ {{𝜙𝑖 }} L {{𝜓𝑖 }} | 𝑖 ∈ [1, 𝑘](∧) 𝜙𝑖 ≃ 𝜙 𝑗

𝑖 ≠ 𝑗 ∈ [1, 𝑘][ ⊲ {{∧𝑘
𝑖=1 𝜙𝑖 }} L {{

∧𝑘
𝑖=1𝜓𝑖 }}

e. Structural Rules
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conclusion’s precondition, with respect to a rule from the SID. The environment and the regular
expression in each premisse are obtained by replacing the alphabet symbol of the unfolded predicate
symbol by the set of alphabet symbols from the unfolding step, where L[Σ[𝛼]/L′] denotes the
regular expression obtained by replacing each occurrence of the alphabet symbol Σ[𝛼] in L with
the regular expression L′.

5.3 Havoc Proofs
A proof tree is a finite tree 𝑇 whose nodes are labeled by havoc triples and, for each node 𝑛 not on
the frontier of 𝑇 , the children of 𝑛 are the premisses of the application of a rule from Fig. 5, whose
conclusion is the label of 𝑛. For the purposes of this paper, we consider only proof trees that meet
the following condition:

Assumption 1. The root of the proof tree is labeled by a havoc triple [ ⊲ {{𝜙}} L {{𝜓 }}, such that 𝜙 is a
symbolic configuration and [ = {Σ[𝛼] | 𝛼 ∈ atoms(𝜙)}.

It is easy to check that the above condition on the shape of the precondition and the relation
between the precondition and the environment holds recursively, for the labels of all nodes in a
proof tree that meets assumption 1. Before tackling the soundness of the havoc proof system (Fig.
5), we state an invariance property of the environments of havoc triples that occur in a proof tree:

Definition 5.13. Ahavoc triple[⊲{{𝜙}} L {{𝜓 }} is distinctive if and only if ⟨⟨Σ[𝛼1]⟩⟩(𝛾)∩⟨⟨Σ[𝛼2]⟩⟩(𝛾) =
∅, for all Σ[𝛼1], Σ[𝛼2] ∈ [ and all 𝛾 ∈ [[𝜙]] .

The next lemma is proved inductively on the structure of the proof tree, using Assumption 1.

Lemma 5.14. Given a proof tree 𝑇 , each node in 𝑇 is labeled with a distinctive havoc triple.

In order to deal with inductively defined predicates that occur within the pre- and postconditions
of the havoc triples, we use cyclic proofs [Brotherston and Simpson 2011]. A cyclic proof tree 𝑇 is a
proof tree such that every node on the frontier is either the conclusion of an axiom in Fig. 5a, or
there is another node𝑚 whose label matches the label of 𝑛 via a substitution of variables; we say
that 𝑛 is a bud and𝑚 is its companion. A cyclic proof tree is a cyclic proof if and only if every infinite
path through the proof tree extended with bud-companion edges, goes through the conclusion of a
(LU) rule infinitely often6. We denote by ⊩ [ ⊲ {{𝜙}} L {{𝜓 }} the fact that [ ⊲ {{𝜙}} L {{𝜓 }} labels the
root of a cyclic proof and state the following soundness theorem:

Theorem 5.15. If ⊩ [ ⊲ {{𝜙}} L {{𝜓 }} then |= [ ⊲ {{𝜙}} L {{𝜓 }}.

The proof is by induction on the structure of the proof tree, using Lemma 5.14.

5.4 A Havoc Proof Example
We illustrate the use of the proof system in Fig. 5 on the havoc invariance side conditions required
by the reconfiguration proofs from §4.3. In fact, we prove a more general statement, namely
that chainℎ,𝑡 (𝑥,𝑦) is havoc invariant, for all ℎ, 𝑡 ≥ 0 (see Example 3.1 for the definition of the
chainℎ,𝑡 (𝑥,𝑦) predicates).
The idea of the proof is to unfold the precondition of the havoc triple {Σ[chainℎ,𝑡 (𝑧, 𝑥)]} ⊲
{{chainℎ,𝑡 (𝑧, 𝑥)}} Σ[chainℎ,𝑡 (𝑧, 𝑥)]∗ {{chainℎ,𝑡 (𝑧, 𝑥)}} by an application of (LU), discharge the base
cases 𝑥@_, 𝑥@H and 𝑥@T by applications of (𝜖) and prove the non-trivial subgoals (A) and (B),
corresponding to the unfoldings 𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥) and 𝑧@T ∗ ⟨𝑧.out, 𝑦.in⟩ ∗
chainℎ,𝑡 ¤−1 (𝑦, 𝑥) of chainℎ,𝑡 (𝑧, 𝑥), respectively.

6This condition can be effectively decided by checking the emptiness of a Büchi automaton [Brotherston and Simpson 2011].
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(𝜖) ∅ ⊲ {{𝑥@_}} 𝜖 {{𝑥@_}} (𝜖) ∅ ⊲ {{𝑥@H}} 𝜖 {{𝑥@H}} (𝜖) ∅ ⊲ {{𝑥@T}} 𝜖 {{𝑥@T}} (A) (B)
(LU) {Σ[chainℎ,𝑡 (𝑧, 𝑥)]} ⊲ {{chainℎ,𝑡 (𝑧, 𝑥)}} Σ[chainℎ,𝑡 (𝑧, 𝑥)]∗ {{chainℎ,𝑡 (𝑧, 𝑥)}} (1)

The regular expression describing the language of interactions is split (using congruence) into:
• sequences in which the interaction ⟨𝑧.out, 𝑦.in⟩ is never executed, described by the regular
expression Σ1

𝑦,𝑥
∗, where Σ1

𝑦,𝑥

def
= Σ[chainℎ ¤−1,𝑡 (𝑦, 𝑥)], and

• sequences in which ⟨𝑧.out, 𝑦.in⟩ is executed at least once, described by the regular expression
Σ1
𝑦,𝑥
∗ · Σ𝑧,𝑦 · (Σ𝑧,𝑦 ∪ Σ1

𝑦,𝑥 )∗, where Σ𝑧,𝑦
def
= Σ[⟨𝑧.out, 𝑦.in⟩].

The proof for the first case leads to the subgoal {Σ1
𝑦,𝑥 } ⊲ {{chainℎ ¤−1,𝑡 (𝑦, 𝑥)}} Σ1

𝑦,𝑥
∗ {{chainℎ ¤−1,𝑡 (𝑦, 𝑥)}},

with a similar structure as the goal of the proof, hence the backlink to (1)7. The rule (C) strenght-
ens the postcondition chainℎ,𝑡 (𝑧, 𝑥) to an unfolding chainℎ,𝑡 (𝑧, 𝑥) ⇐ ∃𝑦 . 𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗
chainℎ ¤−1,𝑡 (𝑦, 𝑥), whose existentially quantified variable is, moreover, bound to the free variable
𝑦 from the precondition. The frontier formulæ for the rule (⊲⊳) are F (𝑧@H, chainℎ ¤−1,𝑡 (𝑦, 𝑥)) =
F (chainℎ ¤−1,𝑡 (𝑦, 𝑥), 𝑧@H) = emp.

(𝜖) ∅ ⊲ {{𝑧@H}} 𝜖 {{𝑧@H}}
backlink to (1)

{Σ1
𝑦,𝑥 } ⊲ {{chainℎ ¤−1,𝑡 (𝑦, 𝑥)}} Σ1

𝑦,𝑥
∗ {{chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

(⊲⊳)
{Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}} Σ1
𝑦,𝑥
∗ {{𝑧@H ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

(I−)
(A1) {Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

Σ1
𝑦,𝑥
∗ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

(C)
{Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

Σ1
𝑦,𝑥
∗ {{chainℎ,𝑡 (𝑧, 𝑥)}} (A2)

(∪)
{Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

Σ1
𝑦,𝑥
∗ ∪ [Σ1

𝑦,𝑥
∗ · Σ𝑧,𝑦 · (Σ𝑧,𝑦 ∪ Σ1

𝑦,𝑥 )∗] {{chainℎ,𝑡 (𝑧, 𝑥)}}(�)
(A) {Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}
(Σ𝑧,𝑦 ∪ Σ1

𝑦,𝑥 )∗ {{chainℎ,𝑡 (𝑧, 𝑥)}}

The proof for the language Σ1
𝑦,𝑥
∗ · Σ𝑧,𝑦 · (Σ𝑧,𝑦 ∪ Σ1

𝑦,𝑥 )∗ (A2) is given below:

backlink to (A1)
{Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

Σ1
𝑦,𝑥
∗ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}} (A3) (A4)

(·)
{Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

Σ1
𝑦,𝑥
∗ · Σ𝑧,𝑦 · (Σ𝑧,𝑦 ∪ Σ1

𝑦,𝑥 )∗ {{false}}(C)
(A2) {Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}}

Σ1
𝑦,𝑥
∗ · Σ𝑧,𝑦 · (Σ𝑧,𝑦 ∪ Σ1

𝑦,𝑥 )∗ {{chainℎ,𝑡 (𝑧, 𝑥)}}

7To save space, we draw backlinks between nodes whose labels differ by a renaming of predicates chainℎ,𝑡 into chainℎ′,𝑡′ ,
such that (ℎ′, 𝑡 ′) is lexicographically smaller than (ℎ, 𝑡 ) .
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(†)
(A3) {Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{𝑧@H ∗ ⟨𝑧.out, 𝑦.in⟩ ∗ chainℎ ¤−1,𝑡 (𝑦, 𝑥)}} Σ𝑧,𝑦 {{false}}

(⊥)
(A4) {Σ𝑧,𝑦, Σ1

𝑦,𝑥 } ⊲ {{false}} (Σ𝑧,𝑦 ∪ Σ1
𝑦,𝑥 )∗ {{false}}

6 A WORKED-OUT EXAMPLE: RECONFIGURABLE TREE ARCHITECTURES
In addition to token rings (Fig. 1), we apply our method to reconfiguration scenarios of distributed
systems with tree-shaped architectures. Such (virtual) architectures are e.g. used in flooding and
leader election algorithms. They are applicable, for instance, when every component in the system
must notify a designated controller, placed in the root of the tree, about an event that involves each
component from the frontier of the tree. Conversely, the root component may need to notify the
rest of the components. The tree architecture guarantees that the notification phase takes time
O(log𝑛) in the number 𝑛 of components in the tree, when the tree is balanced, i.e. the lengths
of the longest and shortest paths between the root and the frontier differ by at most a constant
factor. A reconfiguration of a tree places a designated component (whose priority has increased
dynamically) closer to the frontier (dually, closer to the root) in order to receive the notification
faster. In balanced trees, reconfigurations involve structure-preserving rotations. For instance,
self-adjustable splay-tree networks [Schmid et al. 2016] use the zig (left rotation), zig-zig (left-left
rotation) and zig-zag (left-right rotation) operations [Sleator and Tarjan 1985] to move nodes in
the tree, while keeping the balance between the shortest and longest paths.
Fig. 6 shows a model of reconfigurable tree architectures, in which each leaf component starts

in state leaf_busy and sends a notification to its parent before entering the leaf_idle state. An
inner component starts in state idle and waits for notifications from both its left (rℓ ) and right (rr )
children before sending a notification to its parent (s), unless this component is the root (Fig. 6a).
We model notifications by interactions of the form ⟨_.s, _.rℓ⟩ and ⟨_.s, _.rr⟩. The notification phase
is completed when the root is in state right, every inner component is in the idle state and every
leaf is in the leaf_idle state.

Fig. 6b shows a right rotation that reverses the positions of components with identifiers 𝑥 and 𝑦,
implemented by the reconfiguration program from Fig. 7. The rotation applies only to configurations
in which both 𝑥 and 𝑦 are in state idle, by distinguishing the case when 𝑦 is a left or a right child of
𝑧. For simplicity, Fig. 7 shows the program in case 𝑦 is a left child, the other case being symmetric.
Note that, applying the rotation in a configuration where the component indexed by 𝑥 is in state
right (both 𝑎 and 𝑏 have sent their notifications to 𝑥 ) and the one indexed by 𝑦 is in state idle (𝑐 has
not yet sent its notification to 𝑦) yields a configuration from which 𝑐 cannot send its notification
further, because 𝑥 has now become the root of the subtree changed by the rotation.
We prove that, whenever a right rotation is applied to a tree, such that the subtrees rooted at 𝑎, 𝑏

and 𝑐 have not sent their notifications yet, the result is another tree in which the subtrees rooted at
𝑎, 𝑏 and 𝑐 are still waiting to submit their notifications. This guarantees that the notification phase
will terminate properly with every inner component (except for the root) in state idle and every
leaf component in state leaf_idle, even if one or more reconfigurations take place in between. In
particular, this proves the correctness of more complex reconfigurations of splay tree architectures,
using e.g. the zig-zig and zig-zag operations [Schmid et al. 2016].

The proof in Fig. 7 uses the inductive definitions from Fig. 6c. The predicates treeidle (𝑥), tree¬idle (𝑥)
define trees where all components are idle, and where some notifications are still being propagated,
respectively. The predicate tree(𝑥) conveys no information about the states of the components
and the predicate tseg(𝑥,𝑢) defines a tree segment, from component 𝑥 to component 𝑢. To use the
havoc proof system from Fig. 5, we need the following statement8:
8This is similar to Prop. 5.5.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 130. Publication date: October 2022.



130:24 Emma Ahrens, Marius Bozga, Radu Iosif, and Joost-Pieter Katoen

Fig. 6. Reconfiguration of a Tree Architecture
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treeidle (𝑥) ← 𝑥@leaf_idle
treeidle (𝑥) ← ∃𝑦∃𝑧 . 𝑥@idle ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ treeidle (𝑦) ∗ treeidle (𝑧)

tree¬idle (𝑥) ← 𝑥@leaf_busy
tree¬idle (𝑥) ← ∃𝑦∃𝑧 . 𝑥@left ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ treeidle (𝑦) ∗ tree¬idle (𝑧)
tree¬idle (𝑥) ← ∃𝑦∃𝑧 . 𝑥@right ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ treeidle (𝑦) ∗ treeidle (𝑧)
tree¬idle (𝑥) ← ∃𝑦∃𝑧 . 𝑥@idle ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ tree¬idle (𝑦) ∗ tree¬idle (𝑧)

tree(𝑥) ← 𝑥@leaf_idle
tree(𝑥) ← 𝑥@leaf_busy
tree(𝑥) ← ∃𝑦∃𝑧 . 𝑥@_ ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ tree(𝑦) ∗ tree(𝑧)

tseg(𝑥, 𝑥) ← 𝑥@_
tseg(𝑥,𝑢) ← ∃𝑦∃𝑧 . 𝑥@_ ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ tseg(𝑦,𝑢) ∗ tree(𝑧)
tseg(𝑥,𝑢) ← ∃𝑦∃𝑧 . 𝑥@_ ∗ ⟨𝑦.s, 𝑥 .rℓ⟩ ∗

⟨𝑧.s, 𝑥 .rr⟩ ∗ tree(𝑦) ∗ tseg(𝑧,𝑢)
(c)

Proposition 6.1. The set of symbolic configurations using predicate atoms treeidle (𝑥), tree¬idle (𝑥),
tree(𝑥) and tseg(𝑥,𝑦) is precisely closed.

Moreover, each predicate atom treeidle (𝑥), tree¬idle (𝑥), tree(𝑥) and tseg(𝑥,𝑦) is tight, because,
in each model of these atoms, the interactions ⟨𝑢.s, 𝑣 .rℓ⟩ and ⟨𝑢.s, 𝑣 .rr⟩ are between the ports ⟨s, rℓ⟩
and ⟨s, rr⟩ of the components 𝑢 and 𝑣 , respectively.

The precondition of the reconfiguration program in Fig. 7 states that 𝑥 and 𝑦 are idle components,
and the 𝑎, 𝑏 and 𝑐 subtrees are not idle, whereas the postcondition states that the 𝑥 subtree is not
idle. As mentioned, this is sufficient to guarantee the correct termination of the notification phase after
the right rotation. As in the proofs from §4.3, proving the correctness of the sequential composition
of primitive commands requires proving the havoc invariance of the annotations. However, since in
this case, the reconfiguration sequence is single-reversal (Def. 4.7), we are left with proving havoc
invariance only for the annotations marked with (♯) in Fig. 7 (Prop. 4.8).

7 TOWARDS AUTOMATED PROOF GENERATION
Proof generation can be automated, by tackling the following technical problems.
Entailment. Given a SID Δ and two CL formulæ 𝜙 and 𝜓 , interpreted over Δ, is every model

of 𝜙 also a model of𝜓? This problem arises e.g., when applying the rule of consequence (Fig. 4c
bottom-left) in a Hoare-style proof of a reconfiguration program. Unsurprisingly, the CL entailment
inherits the positive and negative aspects of the SL entailment [Reynolds 2002]. For instance, one
can reduce the undecidable problem of universality of context-free languages [Bar-Hillel et al. 1961]
to CL entailment, with 𝜙 and𝜓 restricted to predicate atoms. Decidability can be recovered via two
restrictions on the syntax of the rules in the SID and a semantic restriction on the configurations
that occur as models of the predicate atoms defined by the SID. The syntactic restrictions are
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Fig. 7. Proof of a Tree Rotation{
∃𝑟∃𝑥∃𝑦∃𝑧∃𝑎∃𝑏∃𝑐 . tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑦.s, 𝑧.rℓ ⟩ ∗ ⟨𝑥 .s, 𝑦.rℓ ⟩ ∗ ⟨𝑏.s, 𝑥 .rr ⟩∗

𝑥@idle ∗ 𝑦@idle ∗ tree¬idle (𝑎) ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐)

}
with 𝑥,𝑦, 𝑧, 𝑎, 𝑏, 𝑐 : ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑦.s, 𝑧.rℓ ⟩ ∗ ⟨𝑥 .s, 𝑦.rℓ ⟩ ∗ ⟨𝑏.s, 𝑥 .rr ⟩ ∗ 𝑥@idle ∗ 𝑦@idle do{
tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑦.s, 𝑧.rℓ ⟩ ∗ ⟨𝑥 .s, 𝑦.rℓ ⟩ ∗ ⟨𝑏.s, 𝑥 .rr ⟩ ∗
𝑥@idle ∗ 𝑦@idle ∗ tree¬idle (𝑎) ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐)

}
disconnect(𝑏.s,𝑥 .rr );{

tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑦.s, 𝑧.rℓ ⟩ ∗ ⟨𝑥 .s, 𝑦.rℓ ⟩ ∗
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎)) ∗ 𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐)

}
(♯)

disconnect(𝑥 .s,𝑦.rℓ );{
tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑦.s, 𝑧.rℓ ⟩∗
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎)) ∗ 𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐)

}
disconnect(𝑦.s,𝑧.rℓ );{

tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩∗
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎)) ∗ 𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐)

}
connect(𝑏.s,𝑦.rℓ );

tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑏.s, 𝑦.rℓ ⟩∗
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎))∗
(𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐) ∨ 𝑦@left ∗ treeidle (𝑏) ∗ tree¬idle (𝑐)
∨𝑦@right ∗ treeidle (𝑏) ∗ treeidle (𝑐))


connect(𝑦.s,𝑥 .rr );

tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑏.s, 𝑦.rℓ ⟩ ∗ ⟨𝑦.s, 𝑥 .rr ⟩∗(
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎))∗
(𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐) ∨ 𝑦@left ∗ treeidle (𝑏) ∗ tree¬idle (𝑐)
∨𝑦@right ∗ treeidle (𝑏) ∗ treeidle (𝑐))

)
∨

𝑥@right ∗ 𝑦@idle ∗ treeidle (𝑎) ∗ treeidle (𝑏) ∗ treeidle (𝑐)


(♯)

connect(𝑥 .s,𝑧.rℓ )
tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑏.s, 𝑦.rℓ ⟩ ∗ ⟨𝑦.s, 𝑥 .rr ⟩ ∗ ⟨𝑥 .s, 𝑧.rℓ ⟩∗(
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎))∗
(𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐) ∨ 𝑦@left ∗ treeidle (𝑏) ∗ tree¬idle (𝑐)
∨𝑦@right ∗ treeidle (𝑏) ∗ treeidle (𝑐))

)
∨

𝑥@right ∗ 𝑦@idle ∗ treeidle (𝑎) ∗ treeidle (𝑏) ∗ treeidle (𝑐)


od
∃𝑟, 𝑥,𝑦, 𝑧, 𝑎, 𝑏, 𝑐 . tseg(𝑟, 𝑧) ∗ ⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑏.s, 𝑦.rℓ ⟩ ∗ ⟨𝑦.s, 𝑥 .rr ⟩ ∗ ⟨𝑥 .s, 𝑧.rℓ ⟩∗(
(𝑥@idle ∗ tree¬idle (𝑎) ∨ 𝑥@left ∗ treeidle (𝑎))∗
(𝑦@idle ∗ tree¬idle (𝑏) ∗ tree¬idle (𝑐) ∨ 𝑦@left ∗ treeidle (𝑏) ∗ tree¬idle (𝑐)
∨𝑦@right ∗ treeidle (𝑏) ∗ treeidle (𝑐))

)
∨

𝑥@right ∗ 𝑦@idle ∗ treeidle (𝑎) ∗ treeidle (𝑏) ∗ treeidle (𝑐)

{
∃𝑟, 𝑥,𝑦, 𝑧, 𝑎, 𝑏, 𝑐 . tseg(𝑟, 𝑧) ∗ ⟨𝑥 .s, 𝑧.rℓ ⟩ ∗ tree¬idle (𝑥) ∧
(⟨𝑎.s, 𝑥 .rℓ ⟩ ∗ ⟨𝑐.s, 𝑦.rr ⟩ ∗ ⟨𝑏.s, 𝑦.rℓ ⟩ ∗ ⟨𝑦.s, 𝑥 .rr ⟩ ∗ true)

}
that, each rule is of the form A(𝑥1, . . . , 𝑥#(A) ) ← ∃𝑦1 . . . ∃𝑦𝑚 . 𝑥@𝑞 ∗ 𝜙 ∗ ∗ ℎ

ℓ=1B
ℓ (𝑧ℓ1, . . . , 𝑧ℓ#(Bℓ ) ),

where 𝜙 consists of interaction atoms, such that: (1) 𝑥1 occurs in each interaction atom from 𝜙 ,
(2)

⋃ℎ
𝑒𝑙𝑙=1{𝑧ℓ1, . . . , 𝑧ℓ#(Bℓ ) } = {𝑥2, . . . , 𝑥#(A) } ∪ {𝑦1, . . . , 𝑦𝑚}, and (3) for each ℓ ∈ [1, ℎ], 𝑧ℓ1 occurs in

𝜙 . Furthermore, the semantic restriction is that, in each model of a predicate atom, a component
must occur in a bounded number of interactions, i.e., the structure is a graph of bounded degree. For
instance, star topologies with a central controller and an unbounded number of workers can be
defined in CL, but do not satisfy this constraint. With these restrictions, it can be shown that the
CL entailment problem is 2EXP-complete, thus matching the complexity of the similar problem for
SL [Echenim et al. 2020; Katelaan and Zuleger 2020]. Details are given in [Bozga et al. 2022a].

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 130. Publication date: October 2022.



130:26 Emma Ahrens, Marius Bozga, Radu Iosif, and Joost-Pieter Katoen

Frame inference. Given two CL formulæ 𝜙 and 𝜓 find a formula b , such that 𝜙 |= 𝜓 ∗ b . This
problem occurs e.g., when applying the frame rule (Fig. 4c bottom-right) with a premisse {𝜙} R {𝜓 }
to an arbitrary precondition 𝜋 i.e., one must infer a frame b such that 𝜋 |= 𝜙 ∗ b . This problem
has been studied for SL [Calcagno et al. 2011; Gorogiannis et al. 2011], in cases where the SID
defines only data structures of a restricted form (typically nested lists). Reconsidering the frame
inference problem for CL is of paramount importance for automating the generation of Hoare-style
correctness proofs and is an open problem.
Automated havoc invariance. Given a precondition 𝜙 and a regular expression L, the parallel

composition rule (⊲⊳) requires the inference of regular expressions L1 and L2, such that L1 ⊲⊳[1,[2
L2 �𝜙 L. We conjecture that, under the bounded degree restriction above, the languages of the
frontier (cross-boundary) interactions (Def. 5.10) are regular and can be automatically inferred by
classical automata construction techniques. Another promising direction is using regular model
checking techniques based on tree transducers, to reduce the havoc invariance to the entailment
problem [Bozga et al. 2022b], for which a general decidable fragment was found [Bozga et al. 2022a].

8 RELATEDWORK
The ability of reconfiguring coordinating architectures of software systems has received much
interest in the Software Engineering community, see the surveys [Bradbury et al. 2004; Butting
et al. 2017]. We consider programmed reconfiguration, in which the architecture changes occur
according to a sequential program, executed in parallel with the system to which reconfiguration
applies. The languages used to write such programs are classified according to the underlying
formalism used to define their operational semantics: process algebras, e.g. 𝜋-ADL [Cavalcante et al.
2015], darwin [Magee and Kramer 1996], hyper-graphs and graph rewriting [Arad 2013; Cao et al.
2005; Le Metayer 1998; Taentzer et al. 1998; Wermelinger and Fiadeiro 2002], chemical reactions
[Wermelinger 1998], etc. We separate architectures (structures) from behaviors, thus relating to the
BIP framework [Basu et al. 2006] and its extensions for dynamic reconfigurable systems DR-BIP
[El-Ballouli et al. 2021]. In a similar vein, the REO language [Arbab 2004] supports reconfiguration
by changing the structure of connectors [Clarke 2008].
Checking the correctness of a dynamically reconfigurable system considers mainly runtime

verification methods, i.e. checking a given finite trace of observed configurations against a logical
specification. For instance, in [Bucchiarone and Galeotti 2008], configurations are described by
annotated hyper-graphs and configuration invariants of finite traces, given first-order logic, are
checked using Alloy [Jackson 2002]. More recently, [Dormoy et al. 2010; El-Hokayem et al. 2021;
Lanoix et al. 2011] apply temporal logic to runtime verification of reconfigurable systems. Model
checking of temporal specifications is also applied to REO programs, under simplifying assump-
tion that render the system finite-state [Clarke 2008]. In contrast, we use induction to deal with
parameterized systems of unbounded sizes.
To the best of our knowledge, our work is the first to tackle the verification of reconfiguration

programs, by formally proving the absence of bugs, using a Hoare-style annotation of a reconfigura-
tion program with assertions that describe infinite sets of configurations, with unboundedly many
components. Traditionally, reasoning about the correctness of unbounded networks of parallel
processes uses mostly hard-coded architectures (see [Bloem et al. 2015] for a survey), whereas the
more recently developed architecture description logics [Konnov et al. 2016; Mavridou et al. 2017]
do not consider the reconfigurability aspect of distributed systems.

Specifying parameterized component-based systems by inductive definitions is not new. Network
grammars [Hirsch et al. 1998; Le Metayer 1998; Shtadler and Grumberg 1989] use context-free
grammar rules to describe systems with linear (pipeline, token-ring) architectures obtained by
composition of an unbounded number of processes. In contrast, we use predicates of unrestricted
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arities to describe architectural styles that are, in general, more complex than trees. Moreover, we
write inductive definitions using a resource logic, suitable also for writing Hoare logic proofs of
reconfiguration programs, based on local reasoning [Calcagno et al. 2007].

The assertion language introduced in this paper is a resource logic that supports local reasoning
[O’Hearn et al. 2001]. Local reasoning about parallel programs has been traditionally within the
scope of Concurrent Separation Logic (CSL), that introduced a parallel composition rule [O’Hearn
2007], with a non-interfering (race-free) semantics of shared-memory parallelism [Brookes and
O’Hearn 2016]. Considering interference in CSL requires more general proof rules, combining ideas
of assume- and rely-guarantee [Jones 1981; Owicki and Gries 1978] with local reasoning [Feng
et al. 2007; Vafeiadis and Parkinson 2007] and abstract notions of framing [Dinsdale-Young et al.
2013, 2010; Farka et al. 2021]. These rules generalize from both standard CSL parallel composition
and rely-guarantee rules, allowing even to reason about properties of concurrent objects, such as
(non-)linearizability [Sergey et al. 2016]. However, the body of work on CSL deals almost entirely
with shared-memory multithreading programs, instead of distributed systems, which is the aim of
our work. In contrast, we develop a resource logic in which the processes do not just share and
own resources, but become mutable resources themselves.

9 CONCLUSIONS
We present a framework for deductive verification of reconfiguration programs, based on a config-
uration logic that supports local reasoning. We prove the absence of design bugs in ideal networks,
without packet loss and communication delays, using a discrete event-based model of behavior, the
usual level of abstraction in formal verification of parameterized distributed systems. Our configura-
tion logic relies on inductive predicates to describe systems with unbounded number of components.
It is used to annotate reconfiguration programs with Hoare triples, whose validity relies on havoc
invariants about the ongoing interactions in the system. These invariants are tackled with a specific
proof system, that uses a parallel composition rule in the style of assume/rely-guarantee reasoning.
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