
Parity Games

Barbara Jobstmann

Cadence Design Systems

Ecole Polytechnique Fédérale de Lausanne

Grenoble, December 2018



Hierarchy

Reachability Safety

Obligation: Staiger-Wagner, Weak-Parity

Recurrence: Büchi Persistence: co-Büchi

Reactivity: Muller, Parity
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Parity Games

A Parity game is a pair (G, p), where

◮ G = (S, S0, E) is a game graph and

◮ p : S → {0, . . . , k} is a priority function mapping every state in S

to a number in {0, . . . , k}.

A play ρ is winning for Player 0 iff the minimum priority visited

infinitely often in ρ is even: min
s∈Inf(ρ) p(s) is even.



Parity Games

Theorem

1. Parity games are determined (i.e., each state belongs to W0 or

W1), and the has a positional winning strategy.

2. Over finite graphs, the winning regions and winning strategies of

the two players can be effectively computed.



Overview

We will show two proofs:

◮ One for general (even infinite) game graph

◮ One constructive for finite game graphs to establish effectiveness.



Proof 1

Given G = (S, S0, E) with priority function p : S → {0, . . . , d} and let

Pi = {s ∈ S | p(s) = i}. We proceed by induction on the number of

priorities.

◮ Basis case: we either have an even or an odd priority



Proof 1

Given G = (S, S0, E) with priority function p : S → {0, . . . , d} and let

Pi = {s ∈ S | p(s) = i}. We proceed by induction on the number of

priorities

◮ Basis case: we either have an even or an odd priority

◮ Induction step: we assume that the minimum priority k is even

(otherwise switch the roles of players 0 and 1 below).

Let Π1 be the set of vertices from which player 1 has a positional

winning strategy.

Show that from each vertex in S \ Π1, player 0 has a positional

winning strategy.



Proof 1: Induction step

Consider the subgame with vertex set S \ Π1

◮ Case 1: S \ Π1 does not reach the minimal priority k.

Then, S \Π1 defines a subgame. Why?

Induction hypothesis applies.

◮ Case 2: S \ Π1 contains vertices of minimal (even) priority.

Then, S \ (Π1 ∪Attr0(Pk \ Π1)) defines a subgame



Proof 1: Induction step

Player 0 can guarantee that starting from a vertex in S \Π1 the play

remains there.

Either the play stays in S \ (Π1 ∪Attr0(Pk \Π1)) from some point on,

or it visits Attr0(Pk \ Π1) infinitely often.

In the first case player 0 wins by induction hypothesis with a

positional strategy, in the second case by infinitely many visits to the

lowest (even) priority, also with a positional strategy.

Altogether: Player 0 wins from each vertex in S \Π1 with a positional

strategy.



Proof 2

Given G = (S, S0, E) with S finite and priority function

p : S → {0, . . . , d}. We proceed by induction on the number of states

denoted by n.

◮ Basis case: we either have one Player-0 or Player-1 state with a

selfloop (Note that every state in a game has at least one

outgoing edge). Then the priority of the state determines if

S = W0 or S = W1.

◮ Induction step: Let Pi = {s | p(s) = i} be the set of states with

priority i. Assume P0 6= ∅, otherwise assume P1 6= ∅ and switch

the roles of Players 0 and 1 below. Finally, if P0 = P1 = ∅

decrease every priority by 2.



Proof (induction step cont.)

Choose s ∈ P0 and let X = Attr0({s}). Note that S \X is a subgame

with < n states.

The induction hypothesis gives a partition of S \X into winning

regions U0 and U1 for Player 0 and 1, respectively, and corresponding

positional winning strategies.

◮ Case 1: Player 0 can guarantee a transition from s to U0 ∪X,

i.e., if s ∈ S0, then there exists s′ ∈ U0 ∪X such that (s, s′) ∈ E

or if s ∈ S1, then for all (s, s′) ∈ E, s′ ∈ U0 ∪X holds.

Claim:

(i) U0 ∪X ⊆ W0

(ii) U1 ⊆ W1.



Proof (Case 1 cont.)

The positional strategy for Player 0 on U0 ∪X is:

1. On U0 play according to the positional strategy given by the

induction hypothesis

2. On X (= Attr0({s})) play according to the attractor strategy.

Then eventually reach s

3. From s “move back” to U0 ∪X.

For Player 1 use the positional strategy on U1 given by the induction

hypothesis.

Proof of claim: (ii) is clear, since starting in U1 Player 1 can guarantee

that the play remains in U1 (see picture). For (i), the play remains in

U0 ∪X if the strategy for state s is followed. If the play eventually

remains in U0, then Player 0 wins by induction hypothesis, otherwise

the play passes through s infinitely often, which is winning as well.



Proof (Case 2)

◮ Case 2: Player 1 can guarantee a transition to U1 from s, i.e., if

s ∈ S0, then all edges (s, s′) ∈ E lead to U1 (s′ ∈ U1), and if

s ∈ S1, then there exists s′ ∈ U1 such that (s, s′) ∈ E.

Let Y = Attr1(U1), then s ∈ Y and S \ Y is a subgame with < n

states. The induction hypothesis gives winning region V0 and V1

and corresponding positional winning strategies.

Claim:

(i) V0 ⊆ W0

(ii) V1 ∪ Y ⊆ W1.

Proof of claim: (i) is clear, since Player 0 can guarantee to stay

within V0. For (ii), for all states in Y , Player 1 can guarantee to

move to U1 and remind there. From t ∈ V1 Player 0 can either

move to Y or stay in V1. Both choices are winning for Player 1.



Example

1 0 3

2 1 2


