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Parity Games

A Parity game is a pair (G, p), where
» G = (5,850, F) is a game graph and
» p: S —{0,...,k} is a priority function mapping every state in S
to a number in {0, ..., k}.
A play p is winning for Player 0 iff the minimum priority visited

infinitely often in p is even: min_ ¢, p(s) is even.



Parity Games

Theorem
1. Parity games are determined (i.e., each state belongs to Wy or
W1), and the has a positional winning strategy.

2. Qwer finite graphs, the winning regions and winning strategies of

the two players can be effectively computed.



Overview

We will show two proofs:
» One for general (even infinite) game graph

» One constructive for finite game graphs to establish effectiveness.



Proof 1

Given G = (S, Sp, E') with priority function p: S — {0,...,d} and let
P, ={s € S|p(s) =i}. We proceed by induction on the number of

priorities.

» Basis case: we either have an even or an odd priority



Proof 1

Given G = (S, Sp, E') with priority function p: S — {0,...,d} and let
P, ={s € S|p(s) =i}. We proceed by induction on the number of
priorities

» Basis case: we either have an even or an odd priority

» Induction step: we assume that the minimum priority & is even
(otherwise switch the roles of players 0 and 1 below).
Let II; be the set of vertices from which player 1 has a positional
winning strategy.
Show that from each vertex in S\ II;, player 0 has a positional

winning strategy.



Proof 1: Induction step

Consider the subgame with vertex set S\ II;

» Case 1: S\ II; does not reach the minimal priority k.
Then, S\ IT; defines a subgame. Why?
Induction hypothesis applies.

» Case 2: S\ II; contains vertices of minimal (even) priority.
Then, S\ (II; U Attro(Px \ II;)) defines a subgame



Proof 1: Induction step

Player 0 can guarantee that starting from a vertex in S\ II; the play
remains there.

Either the play stays in S\ (II; U Attrg(Py \ I1;)) from some point on,
or it visits Attro(Py \ II1) infinitely often.

In the first case player 0 wins by induction hypothesis with a
positional strategy, in the second case by infinitely many visits to the
lowest (even) priority, also with a positional strategy.

Altogether: Player 0 wins from each vertex in S\ II; with a positional

strategy.



Proof 2

Given G = (S, Sy, E) with S finite and priority function
p:S—{0,...,d}. We proceed by induction on the number of states
denoted by n.

» Basis case: we either have one Player-0 or Player-1 state with a
selfloop (Note that every state in a game has at least one
outgoing edge). Then the priority of the state determines if
S=Wyor S=Wj.

» Induction step: Let P; = {s | p(s) =i} be the set of states with
priority 7. Assume Py # (), otherwise assume P; # ) and switch
the roles of Players 0 and 1 below. Finally, if Py = P =0

decrease every priority by 2.



Proof (induction step cont.)

Choose s € Py and let X = Attro({s}). Note that S\ X is a subgame
with < n states.

The induction hypothesis gives a partition of S\ X into winning
regions Uy and U; for Player 0 and 1, respectively, and corresponding

positional winning strategies.

» Case 1: Player 0 can guarantee a transition from s to Uy U X,
ie., if s € Sy, then there exists s’ € Uy U X such that (s,s') € E
or if s € Sy, then for all (s,s') € E, s’ € Uy U X holds.

Claim:
(i) UpUX C W,y
(ii) Uy € Wy.



Proof (Case 1 cont.)

The positional strategy for Player 0 on Uy U X is:
1. On Uy play according to the positional strategy given by the
induction hypothesis
2. On X (= Attro({s})) play according to the attractor strategy.
Then eventually reach s
3. From s “move back” to Uy U X.
For Player 1 use the positional strategy on U; given by the induction
hypothesis.
Proof of claim: (ii) is clear, since starting in U; Player 1 can guarantee
that the play remains in U; (see picture). For (i), the play remains in
Up U X if the strategy for state s is followed. If the play eventually
remains in Uy, then Player 0 wins by induction hypothesis, otherwise

the play passes through s infinitely often, which is winning as well.



Proof (Case 2)

> Case 2: Player 1 can guarantee a transition to U; from s, i.e., if
s € Sy, then all edges (s,s") € E lead to U; (s’ € Uy), and if
s € S, then there exists s’ € U; such that (s,s’) € E.
Let Y = Attr;(U;), then s € Y and S\ Y is a subgame with < n
states. The induction hypothesis gives winning region V and V}
and corresponding positional winning strategies.
Claim:

(i) Vo €W

(i) ViUY C Wy,
Proof of claim: (i) is clear, since Player 0 can guarantee to stay
within Vj. For (ii), for all states in Y, Player 1 can guarantee to
move to U; and remind there. From ¢ € V; Player 0 can either

move to Y or stay in V. Both choices are winning for Player 1.



Example




