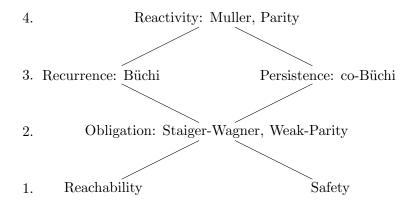
Parity Games

Barbara Jobstmann

Cadence Design Systems Ecole Polytechnique Fédérale de Lausanne

Grenoble, December 2018

Hierarchy



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Parity Games

A Parity game is a pair (G, p), where

- $G = (S, S_0, E)$ is a game graph and
- p: S → {0,...,k} is a priority function mapping every state in S to a number in {0,...,k}.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A play ρ is winning for Player 0 iff the minimum priority visited infinitely often in ρ is even: $\min_{s \in \text{Inf}(\rho)} p(s)$ is even.

Theorem

- Parity games are determined (i.e., each state belongs to W₀ or W₁), and the has a positional winning strategy.
- 2. Over finite graphs, the winning regions and winning strategies of the two players can be effectively computed.

(日) (四) (분) (분) (분) 분

Overview

We will show two proofs:

- ▶ One for general (even infinite) game graph
- One constructive for finite game graphs to establish effectiveness.

Proof 1

Given $G = (S, S_0, E)$ with priority function $p : S \to \{0, \ldots, d\}$ and let $P_i = \{s \in S \mid p(s) = i\}$. We proceed by induction on the number of priorities.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

▶ Basis case: we either have an even or an odd priority

Proof 1

Given $G = (S, S_0, E)$ with priority function $p : S \to \{0, \dots, d\}$ and let $P_i = \{s \in S \mid p(s) = i\}$. We proceed by induction on the number of priorities

- ▶ Basis case: we either have an even or an odd priority
- Induction step: we assume that the minimum priority k is even (otherwise switch the roles of players 0 and 1 below).
 Let Π₁ be the set of vertices from which player 1 has a positional winning strategy.

Show that from each vertex in $S \setminus \Pi_1$, player 0 has a positional winning strategy.

Proof 1: Induction step

Consider the subgame with vertex set $S \setminus \Pi_1$

- Case 1: S \ Π₁ does not reach the minimal priority k. Then, S \ Π₁ defines a subgame. Why? Induction hypothesis applies.
- ► Case 2: $S \setminus \Pi_1$ contains vertices of minimal (even) priority. Then, $S \setminus (\Pi_1 \cup \text{Attr}_0(P_k \setminus \Pi_1))$ defines a subgame

Proof 1: Induction step

Player 0 can guarantee that starting from a vertex in $S \setminus \Pi_1$ the play remains there.

Either the play stays in $S \setminus (\Pi_1 \cup \operatorname{Attr}_0(P_k \setminus \Pi_1))$ from some point on, or it visits $\operatorname{Attr}_0(P_k \setminus \Pi_1)$ infinitely often.

In the first case player 0 wins by induction hypothesis with a

positional strategy, in the second case by infinitely many visits to the lowest (even) priority, also with a positional strategy.

Altogether: Player 0 wins from each vertex in $S \setminus \Pi_1$ with a positional strategy.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

$\underline{\text{Proof } 2}$

Given $G = (S, S_0, E)$ with S finite and priority function $p: S \to \{0, \ldots, d\}$. We proceed by induction on the number of states denoted by n.

- Basis case: we either have one Player-0 or Player-1 state with a selfloop (Note that every state in a game has at least one outgoing edge). Then the priority of the state determines if S = W₀ or S = W₁.
- Induction step: Let $P_i = \{s \mid p(s) = i\}$ be the set of states with priority *i*. Assume $P_0 \neq \emptyset$, otherwise assume $P_1 \neq \emptyset$ and switch the roles of Players 0 and 1 below. Finally, if $P_0 = P_1 = \emptyset$ decrease every priority by 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 の々で

Proof (induction step cont.)

Choose $s \in P_0$ and let $X = \text{Attr}_0(\{s\})$. Note that $S \setminus X$ is a subgame with < n states.

The induction hypothesis gives a partition of $S \setminus X$ into winning regions U_0 and U_1 for Player 0 and 1, respectively, and corresponding positional winning strategies.

► Case 1: Player 0 can guarantee a transition from s to $U_0 \cup X$, i.e., if $s \in S_0$, then there exists $s' \in U_0 \cup X$ such that $(s, s') \in E$ or if $s \in S_1$, then for all $(s, s') \in E$, $s' \in U_0 \cup X$ holds. Claim:

- (i) $U_0 \cup X \subseteq W_0$
- (ii) $U_1 \subseteq W_1$.

Proof (Case 1 cont.)

The positional strategy for Player 0 on $U_0 \cup X$ is:

- 1. On U_0 play according to the positional strategy given by the induction hypothesis
- 2. On X (= Attr₀({s})) play according to the attractor strategy. Then eventually reach s
- 3. From s "move back" to $U_0 \cup X$.

For Player 1 use the positional strategy on U_1 given by the induction hypothesis.

Proof of claim: (ii) is clear, since starting in U_1 Player 1 can guarantee that the play remains in U_1 (see picture). For (i), the play remains in $U_0 \cup X$ if the strategy for state s is followed. If the play eventually remains in U_0 , then Player 0 wins by induction hypothesis, otherwise the play passes through s infinitely often, which is winning as well.

Proof (Case 2)

- ▶ Case 2: Player 1 can guarantee a transition to U_1 from s, i.e., if $s \in S_0$, then all edges $(s, s') \in E$ lead to U_1 $(s' \in U_1)$, and if $s \in S_1$, then there exists $s' \in U_1$ such that $(s, s') \in E$. Let $Y = \text{Attr}_1(U_1)$, then $s \in Y$ and $S \setminus Y$ is a subgame with < n states. The induction hypothesis gives winning region V_0 and V_1 and corresponding positional winning strategies. Claim:
 - (i) $V_0 \subseteq W_0$
 - (ii) $V_1 \cup Y \subseteq W_1$.

Proof of claim: (i) is clear, since Player 0 can guarantee to stay within V_0 . For (ii), for all states in Y, Player 1 can guarantee to move to U_1 and remind there. From $t \in V_1$ Player 0 can either move to Y or stay in V_1 . Both choices are winning for Player 1.

Example

